The present disclosure relates generally to computer user interfaces, and more specifically to techniques for displaying and editing images with depth information.
Users are increasingly using electronic devices to display and edit images. Most electronic devices are capable of displaying a static image for viewing. As an example, some electronic devices provide interactive interfaces to display and edit images.
Some techniques for displaying and editing images using electronic devices, however, are generally cumbersome and inefficient. For example, some existing techniques use a complex and time-consuming user interface, which may include multiple key presses or keystrokes. Existing techniques require more time than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices.
Accordingly, the present technique provides electronic devices with faster, more efficient methods and interfaces for displaying and editing images. Such methods and interfaces optionally complement or replace other methods for displaying and editing images. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.
In some embodiments, a method is performed at an electronic device with a display. The method includes: receiving a request to display an image that includes a subject, wherein image data associated with the image includes depth information associated with the subject; in response to the request: displaying a first modified image on the display, wherein displaying the first modified image includes displaying, based on the depth information, a first level of simulated lighting on a first portion of the subject and a second level of simulated lighting on a second portion of the subject, the first level being greater than the second level; and subsequent to displaying the first modified image, displaying a second modified image, wherein displaying the second modified image includes displaying, based on the depth information, a third level of simulated lighting on the first portion of the subject and a fourth level of simulated lighting on the second portion of the subject, the fourth level being greater than the second level.
In some embodiments, a non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display. The one or more programs include instructions for: receiving a request to display an image that includes a subject, wherein image data associated with the image includes depth information associated with the subject; in response to the request: displaying a first modified image on the display, wherein displaying the first modified image includes displaying, based on the depth information, a first level of simulated lighting on a first portion of the subject and a second level of simulated lighting on a second portion of the subject, the first level being greater than the second level; and subsequent to displaying the first modified image, displaying a second modified image, wherein displaying the second modified image includes displaying, based on the depth information, a third level of simulated lighting on the first portion of the subject and a fourth level of simulated lighting on the second portion of the subject, the fourth level being greater than the second level.
In some embodiments, a transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display. The one or more programs include instructions for: receiving a request to display an image that includes a subject, wherein image data associated with the image includes depth information associated with the subject; in response to the request: displaying a first modified image on the display, wherein displaying the first modified image includes displaying, based on the depth information, a first level of simulated lighting on a first portion of the subject and a second level of simulated lighting on a second portion of the subject, the first level being greater than the second level; and subsequent to displaying the first modified image, displaying a second modified image, wherein displaying the second modified image includes displaying, based on the depth information, a third level of simulated lighting on the first portion of the subject and a fourth level of simulated lighting on the second portion of the subject, the fourth level being greater than the second level.
In some embodiments, an electronic device includes a display, one or more processors, and memory. The memory stores one or more programs configured to be executed by the one or more processors. The one or more programs including instructions for: receiving a request to display an image that includes a subject, wherein image data associated with the image includes depth information associated with the subject; in response to the request: displaying a first modified image on the display, wherein displaying the first modified image includes displaying, based on the depth information, a first level of simulated lighting on a first portion of the subject and a second level of simulated lighting on a second portion of the subject, the first level being greater than the second level; and subsequent to displaying the first modified image, displaying a second modified image, wherein displaying the second modified image includes displaying, based on the depth information, a third level of simulated lighting on the first portion of the subject and a fourth level of simulated lighting on the second portion of the subject, the fourth level being greater than the second level.
In some embodiments, an electronic device includes: a display; means for receiving a request to display an image that includes a subject, wherein image data associated with the image includes depth information associated with the subject; means for, in response to the request: displaying a first modified image on the display, wherein displaying the first modified image includes displaying, based on the depth information, a first level of simulated lighting on a first portion of the subject and a second level of simulated lighting on a second portion of the subject, the first level being greater than the second level; and subsequent to displaying the first modified image, displaying a second modified image, wherein displaying the second modified image includes displaying, based on the depth information, a third level of simulated lighting on the first portion of the subject and a fourth level of simulated lighting on the second portion of the subject, the fourth level being greater than the second level.
In some embodiments, a method is performed at an electronic device with a display. The method includes: displaying, on the display, an image including a plurality of elements, wherein the plurality of elements are associated with depth information that specifies different depths for different elements in the plurality of elements; while displaying the image on the display, receiving a request to edit a portion of the image; and in response to receiving the request to edit the portion of the image, modifying, based on the depth information, visual characteristics of one or more elements of the plurality of elements in a first depth range without modifying visual characteristics of elements that are not in the first depth range.
In some embodiments, a non-transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display. The one or more programs include instructions for: displaying, on the display, an image including a plurality of elements, wherein the plurality of elements are associated with depth information that specifies different depths for different elements in the plurality of elements; while displaying the image on the display, receiving a request to edit a portion of the image; and in response to receiving the request to edit the portion of the image, modifying, based on the depth information, visual characteristics of one or more elements of the plurality of elements in a first depth range without modifying visual characteristics of elements that are not in the first depth range.
In some embodiments, a transitory computer-readable storage medium stores one or more programs configured to be executed by one or more processors of an electronic device with a display. The one or more programs include instructions for: displaying, on the display, an image including a plurality of elements, wherein the plurality of elements are associated with depth information that specifies different depths for different elements in the plurality of elements; while displaying the image on the display, receiving a request to edit a portion of the image; and in response to receiving the request to edit the portion of the image, modifying, based on the depth information, visual characteristics of one or more elements of the plurality of elements in a first depth range without modifying visual characteristics of elements that are not in the first depth range.
In some embodiments, an electronic device includes a display, one or more processors, and memory. The memory stores one or more programs configured to be executed by the one or more processors. The one or more programs including instructions for: displaying, on the display, an image including a plurality of elements, wherein the plurality of elements are associated with depth information that specifies different depths for different elements in the plurality of elements; while displaying the image on the display, receiving a request to edit a portion of the image; and in response to receiving the request to edit the portion of the image, modifying, based on the depth information, visual characteristics of one or more elements of the plurality of elements in a first depth range without modifying visual characteristics of elements that are not in the first depth range.
In some embodiments, an electronic device includes: a display; means displaying, on the display, an image including a plurality of elements, wherein the plurality of elements are associated with depth information that specifies different depths for different elements in the plurality of elements; means for, while displaying the image on the display, receiving a request to edit a portion of the image; and means for, in response to receiving the request to edit the portion of the image, modifying, based on the depth information, visual characteristics of one or more elements of the plurality of elements in a first depth range without modifying visual characteristics of elements that are not in the first depth range.
Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
Thus, devices are provided with faster, more efficient methods and interfaces for displaying and editing images with depth information, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for displaying and editing images.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
There is a need for electronic devices that provide efficient methods and interfaces for displaying and editing images with depth information. Such techniques can reduce the cognitive burden on a user who views or edits the images with depth information, thereby enhancing productivity. Further, such techniques can reduce processor and battery power otherwise wasted on redundant user inputs.
Below,
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).
In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaining application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface: One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 optionally controls access to memory 102 by other components of device 100.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, depth camera controller 169, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
A quick press of the push button optionally disengages a lock of touch screen 112 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) optionally turns power to device 100 on or off. The functionality of one or more of the buttons are, optionally, user-customizable. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.
A touch-sensitive display in some embodiments of touch screen 112 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 112 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 optionally also includes one or more optical sensors 164.
Device 100 optionally also includes one or more depth camera sensors 175.
In some embodiments, a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor). In one embodiment of a depth map, each depth pixel defines the position in the viewpoint's Z-axis where its corresponding two-dimensional pixel is located. In some embodiments, a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255). For example, the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., a camera, an optical sensor, a depth camera sensor) in the “three dimensional” scene. In other embodiments, a depth map represents the distance between an object in a scene and the plane of the viewpoint. In some embodiments, the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user's face). In some embodiments, the depth map includes information that enables the device to determine contours of the object of interest in a z direction.
Device 100 optionally also includes one or more contact intensity sensors 165.
Device 100 optionally also includes one or more proximity sensors 166.
Device 100 optionally also includes one or more tactile output generators 167.
Device 100 optionally also includes one or more accelerometers 168.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 (
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing; to camera 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference module 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 are optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo!Widgets).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module is, optionally, combined with music player module into a single module (e.g., video and music player module 152,
In some embodiments, device 100 is a device where operation ofa predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripherals interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 172, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177, or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 include one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170 and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event (187) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (187) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 optionally also include one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally, executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In some embodiments, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, subscriber identity module (SIM) card slot 210, headset jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that are, optionally, implemented on, for example, portable multifunction device 100.
It should be noted that the icon labels illustrated in
Although some of the examples that follow will be given with reference to inputs on touch screen display 112 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, published as WIPO Publication No. WO/2013/169849, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, published as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 500 has one or more input mechanisms 506 and 508. Input mechanisms 506 and 508, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 500 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 500 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 500 to be worn by a user.
Input mechanism 508 is, optionally, a microphone, in some examples. Personal electronic device 500 optionally includes various sensors, such as GPS sensor 532, accelerometer 534, directional sensor 540 (e.g., compass), gyroscope 536, motion sensor 538, and/or a combination thereof, all of which can be operatively connected to I/O section 514.
Memory 518 of personal electronic device 500 can include one or more non-transitory computer-readable storage mediums, for storing computer-executable instructions, which, when executed by one or more computer processors 516, for example, can cause the computer processors to perform the techniques described below, including processes 800 and 1000 (
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 100, 300, and/or 500 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally, based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation), rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the display of representations 578A-578C includes an animation. For example, representation 578A is initially displayed in proximity of application icon 572B, as shown in
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
Attention is now directed towards embodiments of user interfaces (“UI”) and associated processes that are implemented on an electronic device, such as portable multifunction device 100, device 300, or device 500.
When simulated lighting is applied to three dimensional model 604, the contours of the model cause the level of simulated lighting appearing on different portions of the model to vary. For example, simulated light source 606a positioned on the left side of three dimensional model 604 causes light to be cast primarily on the left side of three dimensional model 604 while less light is cast on the right side of three dimensional model 604. Furthermore, certain contours of three dimensional model 604 cause shadows to be cast on portions of three dimensional model 604 based on the position and direction of a simulated light source. For example, simulated light source 606b positioned below three dimensional model 604 causes the nose and cheekbones of three dimensional model 604 to cast shadows on other portions of three dimensional model 604.
Using the three dimension model 604 of face 602, simulated lighting is applied to face 602, as shown in
As shown in
At the beginning of the reveal animation (as shown in
In some embodiments, at the end of the reveal animation (as shown in
In some embodiments, at the end of the reveal animation (as shown in
In some embodiments, at the end of the reveal animation (as shown in
In some embodiments, when lock-screen interface 708 is displayed (e.g., when electronic device 700 wakes from a low-power (e.g., sleep) state), image 706 is displayed using the reveal animation described in reference to
In some embodiments, image 706 is displayed in lock-screen interface 708 using the reveal animation in response to an unlocking of electronic device 700. For example, image 706 is initially displayed in lock-screen interface 708 with a low level of simulated lighting (as shown in the left drawing of
In some embodiments, when incoming call interface 712 is displayed (e.g., when a request to join a telephone call is detected), image 706 is displayed using the reveal animation described in reference to
In some embodiments, image 706 is displayed in incoming call interface 712 using the reveal animation in response to detecting an input (e.g., a finger contact) on accept affordance 714. For example, image 706 is initially displayed in incoming call interface 712 with a low level of simulated lighting (as shown in the left drawing of
After the reveal animation, image 706 is displayed in photo viewing interface 718 as shown in
While image 706 is displayed in photo viewing interface 718, a swipe input 703 (e.g., a finger contact moving in left/right direction) is detected on image 706, as shown in
In some embodiments, as image 706 moves off of display 702, a second image 720 moves onto display 702 in the same direction of movement, as shown in
In some embodiments, image 720 is displayed with simulated lighting that corresponds to one or more simulated light source(s) in fixed position(s). While image 720 is displayed, a change in orientation of electronic device 700 is detected (e.g., using a gyroscope and/or accelerometer). In some embodiments, in response to the change in orientation of electronic device 700, image 720 is displayed with different simulated lighting, as shown in
As described below, method 800 provides an intuitive way for displaying an image with depth information. The method reduces the cognitive burden on a user for recognizing the subject of an image, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to recognize the subject of an image faster and more efficiently conserves power and increases the time between battery charges.
Electronic device (e.g., 700) receives (802) a request to display an image (e.g., 706) that includes a subject (e.g., an authorized user of the device or another person who is the subject of the image). Image data associated with the image includes depth information associated with the subject.
In response (804) to the request, electronic device displays (806) a first modified image on the display (e.g., the first frame of a reveal animation, such as as shown in
Further in response (804) to the request, and subsequent to displaying the first modified image, the electronic device (e.g., 700) displays (808) a second modified image (e.g., the second frame of a reveal animation, such as shown in
In accordance with some embodiments, the depth information is obtained during a biometric enrollment process wherein one or more portions of the subject's face are captured for purposes of biometric authentication. In some embodiments, the image data includes at least two components: an RGB component that encodes the visual characteristics of a captured image, and depth data that encodes information about the relative spacing relationship of elements within the captured image (e.g., the depth data encodes that a user is in the foreground, and background elements, such as a tree positioned behind the user, are in the background). In some embodiments, the depth data is a depth map. In some embodiments, a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera). In some examples of a depth map, each depth pixel defines the position in the viewpoint's Z-axis where its corresponding two-dimensional pixel is located. In some examples, a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255). For example, the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., camera) in the “three dimensional” scene. In other examples, a depth map represents the distance between an object in a scene and the plane of the viewpoint. In some embodiments, the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user's face). In some embodiments, the depth map includes information that enables the device to determine contours of the object of interest in a z direction. In some embodiments, the depth data has a second depth component (e.g., a second portion of depth data that encodes a spatial position of the background in the camera display region; a plurality of depth pixels that form a discrete portion of the depth map, such as a background), separate from the first depth component, the second depth aspect including the representation of the background in the camera display region. In some embodiments, the first depth aspect and second depth aspect are used to determine a spatial relationship between the subject in the camera display region and the background in the camera display region. This spatial relationship can be used to distinguish the subject from the background. This distinction can be exploited to, for example, apply different visual effects (e.g., visual effects having a depth component) to the subject and background.
In accordance with some embodiments, the first portion of the subject corresponds to content of the image at a first depth (e.g., an eye socket) and the second portion of the subject corresponds to content of the image at a second depth (e.g., a cheekbone).
In accordance with some embodiments, the third level of simulated lighting is less than the first level of simulated lighting. For example, the first portion of the subject appears less bright as the second portion appears brighter, such as when the simulated light source pans or rotates from the side of the subject's face toward the center of the subject's face.
In accordance with some embodiments, the third level of simulated lighting is greater than the first level of simulated lighting (e.g., all portions of the subject appear brighter in the second modified image).
In accordance with some embodiments, the request to display the image is received in response to the electronic device exiting a low power mode (e.g., when a phone wakes from a sleep mode, such as shown in
In accordance with some embodiments, the request to display the image is received in response to the electronic device detecting biometric information associated with an authorized user (e.g., detecting the face of an authorized user).
In accordance with some embodiments, displaying the first modified image (e.g., 706, as shown in
In accordance with some embodiments, the request to display the image is received in response to receiving a communication (e.g., phone call, instant message, video chat, such as shown in
In accordance with some embodiments, the request to display the image is received in response to an input selecting the image for viewing (e.g., tapping on a thumbnail of the image in a photo gallery).
In accordance with some embodiments, while displaying the second modified image (e.g., 706, as shown in
In accordance with some embodiments, in response to the input, the electronic device (e.g., 700) displays (812) a third modified image (e.g., 706, such as shown in
In accordance with some embodiments, in response to the input, the electronic device (e.g., 700) displays at least a portion of a second image (e.g., 720) on the touch-sensitive display (e.g., 702). The second image (e.g., 720) includes a second subject and second image data associated with the second image includes second depth information associated with the second subject. In some embodiments, displaying at least the portion of the second image includes displaying, based on the second depth information, a seventh level of simulated lighting on a first portion of the second subject and a eighth level of simulated lighting on a second portion of the second subject, the seventh level and eighth level being based on the first direction of the movement (e.g., 720, such as shown in
In accordance with some embodiments, the electronic device (e.g., 700) includes an orientation sensor (e.g., accelerometer 168, gyroscope). While displaying the second modified image, the electronic device detects a change in orientation of the electronic device. In response to detecting the change in orientation, the electronic device displays a fourth modified image (e.g., 720, such as shown in
In accordance with some embodiments, after displaying the second modified image, the electronic device (e.g., 700) displays a fifth modified image (e.g., 706, as shown in
In accordance with some embodiments, after displaying the second modified image, the electronic device (e.g., 700) displays a sixth modified image (e.g., 706, as shown in
In accordance with some embodiments, after displaying the second modified image, the electronic device (e.g., 700) displays a seventh modified image. Displaying the seventh modified image optionally includes displaying, based on the depth information, a fifteenth level of simulated lighting on the first portion of the subject and a sixteenth level of simulated lighting on the second portion of the subject. The fifteenth level and sixteenth level are optionally based on a current weather information (e.g., less light on subject when cloudy). In some embodiments, the weather corresponds to current weather where the electronic device displaying the photo is located, or current weather where the subject of the photo is located. In some embodiments, the overall lighting is based on one or more properties of the lighting at the time the photo was taken (e.g., brightness, color, angle with respect to subject) combined with the current weather information. Displaying an image with simulated lighting corresponding to the current weather improves visual feedback by enabling a user to quickly and easily recognize the current weather. Providing improved visual feedback to the user enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
Note that details of the processes described above with respect to method 800 (e.g.,
While displaying image 906 in user interface 904, an input 903 (e.g., a finger contact) is detected at a location on image 906 corresponding to background element 908b. Using the depth information associated with image 906, a depth range corresponding to the location of input 903 is determined.
As shown in
In some embodiments, a simulated depth effect (e.g., a visual effect having a depth component) is applied to the inserted graphical object 910. The simulated depth effect is associated with a focal plane of the depth range of input 903 such that the inserted graphical object 910 appears with a similar focus as other elements in the depth range (e.g., the inserted graphical object 910 is visually modified to have a different degree of blurriness/sharpness, size, degree of brightness, degree of saturation, and/or degree of shape-distortion in order to simulate a depth effect, such as a bokeh effect). In some embodiments, the simulated depth effect is “simulated” in that the effect is generated (e.g., artificially generated) based on a manipulation of the underlying image data for the graphical object 910 to create and apply the effect to the graphical object 910 (e.g., as opposed to being a “natural” effect that is based on underlying data as originally captured via one or more cameras based on the optical properties of light passing through one or more lenses to reach the image sensor of the camera).
In some embodiments, the location of inserted graphical object 910 is modified in response to detecting a change in orientation (e.g., with an accelerometer and/or gyroscope) of the electronic device 900. For example, the location of inserted graphical object 910 can be modified as the orientation of electronic device 900 changes to create a parallax between graphical object 910 and other elements of image 906.
As shown in
As shown in
As shown in
In some embodiments, the simulated light source is initially positioned to substantially recreate the original lighting of image 906 (e.g., the natural lighting that was originally captured in the image data for image 906) (e.g., amount of light, color of the light, direction(s) of source(s) of light).
In some embodiments, the simulated lighting corresponds to a predetermined lighting style (e.g., the simulated lighting source changes location over time in a predefined pattern, multiple simulated lighting sources are positioned at predefined locations, and/or additional filter effects applied to image 906).
A position of the simulated light source is indicated by light icon 914. In some embodiments, the size of light icon 914 further indicates the intensity (e.g., brightness) of the simulated light source. In some embodiments, the horizontal/vertical position (e.g., x/y position) of the simulated light source is changed in response to input 907 moving light icon 914 to a different location. In some embodiments, input 907 is also associated with a characteristic intensity. In some embodiments, an intensity of the simulated light source (e.g., brightness) is changed based on the characteristic intensity of input 907. In some embodiments, a depth of the simulated light source (e.g., z position) is changed based on the characteristic intensity of input 907.
In some embodiments, input 907 is also associated with a duration. In some embodiments, an intensity of the simulated light source (e.g., brightness) is changed based on the duration of input 907.
As shown in
As shown in
As shown in
In some embodiments, simulated lighting is applied to the inserted graphical object 916 (e.g., the lighting of the inserted graphical object is based on position(s) of one or more light source(s) (real or simulated) in image 906 and relative positions of other elements in the image (e.g., other elements cast shadows on the inserted graphical object 916)).
As shown in
As shown in
As described below, method 1000 provides an intuitive way for editing an image with depth information. The method reduces the cognitive burden on a user for editing the image, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to edit an image faster and more efficiently conserves power and increases the time between battery charges.
Electronic device (e.g., 900) displays (1002), on the display (e.g., 902), an image (e.g., 906) (e.g., a photograph or video) including a plurality of elements (e.g., 908a, 908b). The plurality of elements are associated with depth information that specifies different depths for different elements in the plurality of elements. In some embodiments, the depth information is obtained with a depth sensor used in conjunction with a camera of the electronic device. In some embodiments, the depth information is determined based on image data from multiple cameras using parallax to generate a depth map.
In accordance with some embodiments, the display (e.g., 902) is a touch-sensitive display. Optionally, prior to receiving a request (e.g., 1004) to edit a portion of the image (e.g., 906), the electronic device (e.g., 900) receives (1012) an input at a location on the touch-sensitive display corresponding to the portion of the image. The electronic device identifies (1014) an object in the image (e.g., 908a) associated the location for editing. The identified object is an element of the plurality of elements in a first depth range.
In accordance with some embodiments, the electronic device (e.g., 900) isolates the identified object (e.g., 922) from one or more (e.g., all remaining) other elements in the image (e.g., 908a, 908b). The electronic device displays the isolated object separately from (e.g., as a cut out, in isolation without displaying the one or more other elements) the one or more other of elements in the image. In some examples, the object (e.g., 922) is displayed and edited independently of the rest of the image (e.g., as a sticker in an instant messaging application, such as shown in
While displaying the image on the display (e.g., 902), the electronic device (e.g., 900) receives (1004) a request (e.g., 905, 907) to edit a portion of the image. For example, the electronic device receives an input instructing how the image is to be edited (e.g., dragging a slider after selecting a particular person to apply a color filter to that person or increase/decrease saturation of that person).
In response to receiving the request (e.g., 905, 907) to edit the portion of the image, the electronic device (e.g., 900) modifies (1006), based on the depth information, visual characteristics of one or more elements (e.g., a wall, a face, a location in space (e.g., where text is to be inserted)) of the plurality of elements in the first depth range (e.g., a range of distances (e.g., 2-4 feet) from the camera used to the capture the image) without modifying visual characteristics of elements that are not in (e.g., that are outside of) the first depth range. Modifying visual characteristics in a selected depth range without modifying visual characteristics outside the selected depth range allows a user to edit an image more efficiently. Performing an optimized operation without requiring further user input enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In accordance with some embodiments, the image data for the image (e.g., 906) includes at least two components: an RGB component that encodes the visual characteristics of a captured image, and depth data that encodes information about the relative spacing relationship of elements within the captured image (e.g., the depth data encodes that a user is in the foreground, and background elements, such as a tree positioned behind the user, are in the background). In accordance with some embodiments, the depth data is a depth map. In some embodiments, a depth map (e.g., depth map image) contains information (e.g., values) that relates to the distance of objects in a scene from a viewpoint (e.g., a camera). In some embodiments of a depth map, each depth pixel defines the position in the viewpoint's Z-axis where its corresponding two-dimensional pixel is located. In some examples, a depth map is composed of pixels wherein each pixel is defined by a value (e.g., 0-255). For example, the “0” value represents pixels that are located at the most distant place in a “three dimensional” scene and the “255” value represents pixels that are located closest to a viewpoint (e.g., camera) in the “three dimensional” scene. In other examples, a depth map represents the distance between an object in a scene and the plane of the viewpoint. In some embodiments, the depth map includes information about the relative depth of various features of an object of interest in view of the depth camera (e.g., the relative depth of eyes, nose, mouth, ears of a user's face). In some embodiments, the depth map includes information that enables the electronic device to determine contours of the object of interest in a z direction. In some embodiments, the depth data has a second depth component (e.g., a second portion of depth data that encodes a spatial position of the background in the camera display region; a plurality of depth pixels that form a discrete portion of the depth map, such as a background), separate from the first depth component. The second depth aspect includes the representation of the background in the camera display region. In some embodiments, the first depth aspect and second depth aspect are used to determine a spatial relationship between the subject in the camera display region and the background in the camera display region. The electronic device optionally uses this spatial relationship to distinguish the subject from the background. This distinction can be exploited to, for example, apply different visual effects (e.g., visual effects having a depth component) to the subject and background.
In accordance with some embodiments, after modifying the visual characteristic of the one or more elements of the plurality elements in the first depth range and while displaying the image (e.g., 906) on the display (e.g., 902), the electronic device (e.g., 900) receives (1008) a second request (e.g., 905) to edit a second portion (e.g., 908a) of the image (e.g., an input instructing how the image is to be edited). In some examples, the electronic device receives input dragging a slider while a particular person is selected to apply a color filter to that person or increase/decrease saturation of that person.
In accordance with some embodiments, in response to receiving the second request to edit the second portion of the image, the electronic device (e.g., 900) modifies (1010), based on the depth information, visual characteristics of one or more second elements (e.g., a wall, a face, a location in space (e.g., where text is to be inserted)) of the plurality of elements in a second depth range without modifying visual characteristics of elements that are not in (e.g., that are outside of) the second depth range. Modifying visual characteristics in a selected depth range without modifying visual characteristics outside the selected depth range allows a user to edit an image more efficiently. Performing an optimized operation without requiring further user input enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In accordance with some embodiments, modifying the visual characteristics of the one or more elements in the first depth range includes modifying one or more of brightness, saturation, or contrast of the one or more elements without modifying the brightness, saturation, or contrast of elements not in the first depth range.
In accordance with some embodiments, after modifying the visual characteristics of the one or more elements, the electronic device (e.g., 900) displays an indication (e.g., 920) associated with the modification (e.g., outline or glowing effect around a modified element).
In accordance with some embodiments, modifying the visual characteristics of the one or more elements in the first depth range includes applying simulated lighting to the one or more elements (e.g., 908a) in the first depth range (e.g., as shown in
In accordance with some embodiments, the request to edit the portion of the image (e.g., 906) includes a touch input (e.g., 907) on a touch-sensitive surface. The level of simulated lighting applied to the one or more elements is based on one or more characteristics of the touch input (e.g., duration or characteristic intensity of the touch input changes the level of simulated lighting).
In accordance with some embodiments, the display (e.g., 902) is a touch-sensitive display and the request to edit the portion of the image includes a touch input (e.g., 907) on the touch-sensitive display corresponding to a location in the image. The simulated lighting is applied to the one or more elements based on the location of the touch input (e.g., the source of the simulated lighting appears to be at the location). In some embodiments, the source of the simulated lighting is moved to different locations by dragging the touch input to different locations of the display (e.g., as shown in
In accordance with some embodiments, the display (e.g., 902) is a touch-sensitive display and the request to edit the portion of the image includes a touch input (e.g., 909) on the touch-sensitive display with a characteristic intensity (e.g., the electronic device detects a touch input and the touch input has a characteristic intensity). The simulated lighting is applied to the one or more elements based on the characteristic intensity of the touch input. In some embodiments, the source of the simulated lighting appears to at a depth associated with the characteristic intensity of the touch input. In some embodiments, the source of the simulated lighting is moved to forward or backward in depth by changing the intensity of the touch input. In some embodiments, the amount of movement of the simulated light is determined based on the magnitude of the intensity of the touch input and/or the duration for which the intensity of the touch input is maintained at a particular level of intensity (e.g., the simulated light moves back farther as the intensity increases and/or as the intensity is maintained over a threshold intensity for a period of time and/or the simulated light moves forward as the intensity decreases and/or as the intensity is maintained below the threshold intensity for a period of time).
In accordance with some embodiments, the electronic device (e.g., 900) displays an indication (e.g., 914) (e.g., light or sun icon) of a one or more characteristics (e.g., location, intensity) of a simulated source of the simulated lighting. In some embodiments, the indication (e.g., 914) also indicates the brightness level of the simulated lighting (e.g., with the size of the icon, brightness of the icon, or additional visual elements). Displaying an indication of a simulated light source improves visual feedback by enabling a user to quickly and easily recognize location and brightness of the simulated light source. Providing improved visual feedback to the user enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In accordance with some embodiments, the simulated lighting corresponds to a predetermined lighting style (e.g., the simulated light source(s) for the simulated lighting changes location over time in a predefined pattern, the simulated light source(s) includes multiple simulated light sources at predefined locations, and/or additional filter effects are applied to the image).
In accordance with some embodiments, modifying the visual characteristics of the one or more elements in the first depth range includes inserting a graphical object (e.g., 910, 912, 916) (e.g., text) into the image at the first depth range. In some embodiments, the graphical object is displayed in front of elements at deeper depth and behind elements at shallower depths. In some embodiments, such as with video, the inserted graphical object optionally appears to remain stationary as the camera moves (e.g., inserted text appears to be fixed to a location in the image). Inserting a graphical object in a selected depth range allows a user to edit an image more efficiently. Performing an optimized operation without requiring further user input enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In accordance with some embodiments, the inserted graphical object (e.g., 910, 912) is obstructed by at least one element (e.g., 908a) not in the first depth range (e.g., the inserted graphical object appears behind an element at a shallower depth). In some embodiments, a second graphical object is inserted to appear in front of the element obstructing the other graphical object. For example, text is optionally inserted to appear behind and in front of a person in the image.
In accordance with some embodiments, simulated lighting is applied (e.g., by the electronic device 900) to the inserted graphical object (e.g., 910, 912, 916). In some examples, the lighting of the inserted graphical object is based on location(s) of light source(s) (real or simulated) in the image and relative positions of other elements in the image (e.g., other elements cast shadows on the inserted graphical object).
In accordance with some embodiments, simulated lighting applied to one or more elements in the image (e.g., 906) is affected by the inserted graphical object (e.g., 916) in the image. In some embodiments, the lighting of other elements in the image is modified based on light or shadows cast by the inserted graphical object. In some embodiments, the inserted graphical object is a source for simulated lighting (e.g., as shown in
In accordance with some embodiments, a simulated depth effect (e.g., a visual effect having a depth component) is applied (e.g., by electronic device 900) to the inserted graphical object. The simulated depth effect is associated with a focal plane of the first depth range such that the inserted graphical object (e.g., 910, 912, 916) appears with a similar focus as other elements in the first depth range (e.g., the inserted graphical object is visually modified to have a different degree of blurriness/sharpness, size, degree of brightness, degree of saturation, and/or degree of shape-distortion in order to simulate a depth effect, such as a bokeh effect). In some embodiments, the simulated depth effect is “simulated” in that the effect is generated (e.g., artificially generated) based on a manipulation of the underlying image data for the graphical object to create and apply the effect to the graphical object (e.g., as opposed to being a “natural” effect that is based on underlying data as originally captured via one or more cameras based on the optical properties of light passing through one or more lenses to reach the image sensor of the camera).
In accordance with some embodiments, the electronic device (e.g., 900) identifies an object (e.g., 908b) (e.g., a wall) in the image at the first depth range. The graphical object (e.g., 912) is inserted to align with a surface of the object in the image (e.g., inserted text is angled to appear on the surface of the wall).
In accordance with some embodiments, the electronic device (e.g., 900) includes an orientation sensor (e.g., accelerometer 168, gyroscope). The electronic device detects a change in orientation of the electronic device. The electronic device modifies a location of the inserted graphical object (e.g., 910, 916) relative to the other elements of the image based on the change in orientation (e.g., a parallax effect occurs when changing the viewing angle of the device).
Note that details of the processes described above with respect to method 1000 (e.g.,
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
As described above, one aspect of the present technology is the gathering and use of data available from various sources to display and edit images. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to recognize a person or subject within a displayed image. Accordingly, use of such personal information data enables users to more easily recognize the person or subject in the image. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of recognition of a person or subject within an image, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.
Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, images can be displayed or edited based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the device, or publicly available information.
This application claims priority to U.S. Provisional Application No. 62/739,131 filed Sep. 28, 2018, entitled “DISPLAYING AND EDITING IMAGES WITH DEPTH INFORMATION”, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4518237 | Mizokami | May 1985 | A |
4933702 | Komatsuzaki et al. | Jun 1990 | A |
5371846 | Bates | Dec 1994 | A |
5404316 | Klingler et al. | Apr 1995 | A |
5452414 | Rosendahl et al. | Sep 1995 | A |
5463443 | Tanaka et al. | Oct 1995 | A |
5533110 | Pinard et al. | Jul 1996 | A |
5557358 | Mukai et al. | Sep 1996 | A |
5615384 | Allard et al. | Mar 1997 | A |
5680323 | Barnard | Oct 1997 | A |
5680619 | Gudmundson et al. | Oct 1997 | A |
5808662 | Kinney et al. | Sep 1998 | A |
5825353 | Will | Oct 1998 | A |
5831616 | Lee | Nov 1998 | A |
5835094 | Ermel et al. | Nov 1998 | A |
5905492 | Straub et al. | May 1999 | A |
5929857 | Dinallo et al. | Jul 1999 | A |
5959624 | Johnston et al. | Sep 1999 | A |
6031529 | Migos et al. | Feb 2000 | A |
6061695 | Siivka et al. | May 2000 | A |
6081817 | Taguchi | Jun 2000 | A |
6091411 | Straub et al. | Jul 2000 | A |
6147687 | Wanderski | Nov 2000 | A |
6172948 | Keller et al. | Jan 2001 | B1 |
6205112 | Weidner | Mar 2001 | B1 |
6237010 | Hui et al. | May 2001 | B1 |
6262724 | Crow et al. | Jul 2001 | B1 |
6262769 | Anderson et al. | Jul 2001 | B1 |
6263346 | Rodriquez | Jul 2001 | B1 |
6268864 | Chen et al. | Jul 2001 | B1 |
6278466 | Chen | Aug 2001 | B1 |
6301586 | Yang et al. | Oct 2001 | B1 |
6356971 | Katz et al. | Mar 2002 | B1 |
6359837 | Tsukamoto | Mar 2002 | B1 |
6429896 | Aruga et al. | Aug 2002 | B1 |
6452609 | Katinsky et al. | Sep 2002 | B1 |
6522347 | Tsuji et al. | Feb 2003 | B1 |
6557017 | Venable | Apr 2003 | B1 |
6584480 | Ferrel et al. | Jun 2003 | B1 |
6621524 | Iijima et al. | Sep 2003 | B1 |
6677981 | Mancuso et al. | Jan 2004 | B1 |
6693869 | Ballantyne | Feb 2004 | B1 |
6784925 | Tomat et al. | Aug 2004 | B1 |
6809724 | Shiraishi et al. | Oct 2004 | B1 |
6809759 | Chiang | Oct 2004 | B1 |
6812881 | Mullaly et al. | Nov 2004 | B1 |
6819867 | Mayer et al. | Nov 2004 | B2 |
6900840 | Schinner et al. | May 2005 | B1 |
6970859 | Brechner et al. | Nov 2005 | B1 |
7370016 | Hunter et al. | May 2008 | B1 |
7403643 | Tanculescu et al. | Jul 2008 | B2 |
7463304 | Murray | Dec 2008 | B2 |
7515178 | Fleischman et al. | Apr 2009 | B1 |
7583892 | Okumura | Sep 2009 | B2 |
8185839 | Jalon et al. | May 2012 | B2 |
8189087 | Misawa et al. | May 2012 | B2 |
8203640 | Kim et al. | Jun 2012 | B2 |
8295546 | Craig et al. | Oct 2012 | B2 |
8405680 | Cardoso Lopes et al. | Mar 2013 | B1 |
8423089 | Song et al. | Apr 2013 | B2 |
8493408 | Williamson et al. | Jul 2013 | B2 |
8624836 | Miller et al. | Jan 2014 | B1 |
8638371 | Laberge et al. | Jan 2014 | B2 |
8675084 | Bolton et al. | Mar 2014 | B2 |
8723988 | Thorn | May 2014 | B2 |
8736704 | Jasinski et al. | May 2014 | B2 |
8736716 | Prentice | May 2014 | B2 |
8742890 | Gocho | Jun 2014 | B2 |
8762895 | Mehta et al. | Jun 2014 | B2 |
8817158 | Saito | Aug 2014 | B2 |
8839111 | Geier et al. | Sep 2014 | B2 |
8885978 | Cote et al. | Nov 2014 | B2 |
8896652 | Ralston | Nov 2014 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9094576 | Karakotsios | Jul 2015 | B1 |
9153031 | El-Saban et al. | Oct 2015 | B2 |
9172866 | Ito et al. | Oct 2015 | B2 |
9207837 | Paretti et al. | Dec 2015 | B2 |
9223486 | Shin et al. | Dec 2015 | B2 |
9230241 | Singh et al. | Jan 2016 | B1 |
9230355 | Ahuja et al. | Jan 2016 | B1 |
9245177 | Perez | Jan 2016 | B2 |
9246961 | Walkin et al. | Jan 2016 | B2 |
9250797 | Roberts et al. | Feb 2016 | B2 |
9264660 | Petterson et al. | Feb 2016 | B1 |
9288476 | Sandrew et al. | Mar 2016 | B2 |
9298263 | Geisner et al. | Mar 2016 | B2 |
9313397 | Harris et al. | Apr 2016 | B2 |
9313401 | Frey et al. | Apr 2016 | B2 |
9325970 | Sakayori | Apr 2016 | B2 |
9342230 | Bastien et al. | May 2016 | B2 |
9349414 | Furment et al. | May 2016 | B1 |
9360671 | Zhou | Jun 2016 | B1 |
9423868 | Iwasaki | Aug 2016 | B2 |
9448708 | Bennett et al. | Sep 2016 | B1 |
9451144 | Dye et al. | Sep 2016 | B2 |
9467812 | Jung et al. | Oct 2016 | B2 |
9544563 | Chin | Jan 2017 | B1 |
9592428 | Binder | Mar 2017 | B2 |
9602559 | Barros et al. | Mar 2017 | B1 |
9609221 | Kim et al. | Mar 2017 | B2 |
9628416 | Henderson | Apr 2017 | B2 |
9667881 | Harris et al. | May 2017 | B2 |
9686497 | Terry | Jun 2017 | B1 |
9704250 | Shah et al. | Jul 2017 | B1 |
9716825 | Manzari et al. | Jul 2017 | B1 |
9767613 | Bedikian et al. | Sep 2017 | B1 |
9819912 | Maruta | Nov 2017 | B2 |
9942463 | Kuo | Apr 2018 | B2 |
9948589 | Gonnen et al. | Apr 2018 | B2 |
9973674 | Dye et al. | May 2018 | B2 |
10021294 | Kwon et al. | Jul 2018 | B2 |
10055887 | Gil et al. | Aug 2018 | B1 |
10091411 | Ha et al. | Oct 2018 | B2 |
10095385 | Walkin et al. | Oct 2018 | B2 |
10152222 | Ozawa et al. | Dec 2018 | B2 |
10176622 | Waggoner et al. | Jan 2019 | B1 |
10187587 | Hasinoff et al. | Jan 2019 | B2 |
10225463 | Yun et al. | Mar 2019 | B2 |
10230901 | Harris et al. | Mar 2019 | B2 |
10270983 | Van Os et al. | Apr 2019 | B1 |
10289265 | Kulkarni | May 2019 | B2 |
10297034 | Nash et al. | May 2019 | B2 |
10304231 | Saito | May 2019 | B2 |
10313652 | Falstrup et al. | Jun 2019 | B1 |
10326942 | Shabtay et al. | Jun 2019 | B2 |
10375313 | Van Os et al. | Aug 2019 | B1 |
10379719 | Scapel et al. | Aug 2019 | B2 |
10397469 | Yan et al. | Aug 2019 | B1 |
10397500 | Xu et al. | Aug 2019 | B1 |
10447908 | Lee et al. | Oct 2019 | B2 |
10467729 | Perera et al. | Nov 2019 | B1 |
10467775 | Waggoner et al. | Nov 2019 | B1 |
10521091 | Anzures et al. | Dec 2019 | B2 |
10521948 | Rickwald et al. | Dec 2019 | B2 |
10523879 | Dye et al. | Dec 2019 | B2 |
10574895 | Lee et al. | Feb 2020 | B2 |
10585551 | Lee et al. | Mar 2020 | B2 |
10614139 | Fujioka et al. | Apr 2020 | B2 |
10645294 | Manzari et al. | May 2020 | B1 |
10652470 | Manzari et al. | May 2020 | B1 |
10657695 | Chand et al. | May 2020 | B2 |
10659405 | Chang et al. | May 2020 | B1 |
10674072 | Manzari et al. | Jun 2020 | B1 |
10681282 | Manzari et al. | Jun 2020 | B1 |
10698575 | Walkin et al. | Jun 2020 | B2 |
10798035 | Lewis et al. | Oct 2020 | B2 |
10845968 | Scapel et al. | Nov 2020 | B2 |
10902661 | Mourkogiannis et al. | Jan 2021 | B1 |
10958850 | Kwak et al. | Mar 2021 | B2 |
11039074 | Manzari et al. | Jun 2021 | B1 |
11212449 | Manzari et al. | Dec 2021 | B1 |
20010005536 | Usami | Jun 2001 | A1 |
20020005907 | Alien | Jan 2002 | A1 |
20020070945 | Kage | Jun 2002 | A1 |
20020089540 | Geier et al. | Jul 2002 | A1 |
20020140803 | Gutta | Oct 2002 | A1 |
20020171737 | Tullis | Nov 2002 | A1 |
20030025802 | Mayer et al. | Feb 2003 | A1 |
20030043207 | Duarte | Mar 2003 | A1 |
20030107664 | Suzuki | Jun 2003 | A1 |
20030122930 | Schofield et al. | Jul 2003 | A1 |
20030174216 | Iguchi et al. | Sep 2003 | A1 |
20040041924 | White et al. | Mar 2004 | A1 |
20040061796 | Honda et al. | Apr 2004 | A1 |
20040090548 | Obrador | May 2004 | A1 |
20040095375 | Burmester et al. | May 2004 | A1 |
20040095473 | Park | May 2004 | A1 |
20040189861 | Tom | Sep 2004 | A1 |
20040201699 | Parulski et al. | Oct 2004 | A1 |
20050007382 | Schowtka | Jan 2005 | A1 |
20050134695 | Deshpande | Jun 2005 | A1 |
20050189419 | Igarashi et al. | Sep 2005 | A1 |
20050206981 | Hung | Sep 2005 | A1 |
20050237383 | Soga | Oct 2005 | A1 |
20050248660 | Stavely et al. | Nov 2005 | A1 |
20050270397 | Battles | Dec 2005 | A1 |
20060001650 | Robbins et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060033831 | Ejima et al. | Feb 2006 | A1 |
20060132482 | Oh et al. | Jun 2006 | A1 |
20060158730 | Kira | Jul 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060188173 | Zhang et al. | Aug 2006 | A1 |
20060209067 | Pellacini et al. | Sep 2006 | A1 |
20060228040 | Simon et al. | Oct 2006 | A1 |
20060233192 | Mihara | Oct 2006 | A1 |
20060275025 | Labaziewicz et al. | Dec 2006 | A1 |
20070024614 | Tam et al. | Feb 2007 | A1 |
20070025711 | Marcus | Feb 2007 | A1 |
20070025714 | Shiraki | Feb 2007 | A1 |
20070025723 | Baudisch et al. | Feb 2007 | A1 |
20070031062 | Pal et al. | Feb 2007 | A1 |
20070040810 | Dowe et al. | Feb 2007 | A1 |
20070097088 | Battles | May 2007 | A1 |
20070109417 | Hyttfors et al. | May 2007 | A1 |
20070113099 | Takikawa et al. | May 2007 | A1 |
20070120979 | Zhang et al. | May 2007 | A1 |
20070140675 | Yanagi | Jun 2007 | A1 |
20070153112 | Ueda et al. | Jul 2007 | A1 |
20070165103 | Arima et al. | Jul 2007 | A1 |
20070174774 | Lerman et al. | Jul 2007 | A1 |
20070228259 | Hohenberger | Oct 2007 | A1 |
20070254640 | Bliss | Nov 2007 | A1 |
20070257992 | Kato | Nov 2007 | A1 |
20070273769 | Takahashi | Nov 2007 | A1 |
20070291152 | Suekane et al. | Dec 2007 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080106601 | Matsuda | May 2008 | A1 |
20080129759 | Jeon et al. | Jun 2008 | A1 |
20080129825 | Deangelis et al. | Jun 2008 | A1 |
20080143840 | Corkum et al. | Jun 2008 | A1 |
20080192020 | Kang et al. | Aug 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080222530 | Lakshmanan et al. | Sep 2008 | A1 |
20080222558 | Cho et al. | Sep 2008 | A1 |
20080260347 | Widdowson | Oct 2008 | A1 |
20080284855 | Umeyama et al. | Nov 2008 | A1 |
20080297587 | Kurtz et al. | Dec 2008 | A1 |
20080298571 | Kurtz et al. | Dec 2008 | A1 |
20080309811 | Fujinawa et al. | Dec 2008 | A1 |
20090021576 | Linder et al. | Jan 2009 | A1 |
20090021600 | Watanabe | Jan 2009 | A1 |
20090022422 | Sorek et al. | Jan 2009 | A1 |
20090027515 | Maruyama et al. | Jan 2009 | A1 |
20090027539 | Kunou | Jan 2009 | A1 |
20090040332 | Yoshino et al. | Feb 2009 | A1 |
20090046097 | Franklin | Feb 2009 | A1 |
20090051783 | Kim et al. | Feb 2009 | A1 |
20090066817 | Sakamaki | Mar 2009 | A1 |
20090073285 | Terashima | Mar 2009 | A1 |
20090102918 | Sakamoto et al. | Apr 2009 | A1 |
20090102933 | Harris et al. | Apr 2009 | A1 |
20090109316 | Matsui | Apr 2009 | A1 |
20090144639 | Nims et al. | Jun 2009 | A1 |
20090167671 | Kerofsky | Jul 2009 | A1 |
20090167672 | Kerofsky | Jul 2009 | A1 |
20090175511 | Lee et al. | Jul 2009 | A1 |
20090244318 | Makii | Oct 2009 | A1 |
20090251484 | Zhao et al. | Oct 2009 | A1 |
20090315671 | Gocho | Dec 2009 | A1 |
20090319887 | Waltman et al. | Dec 2009 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100020222 | Jones et al. | Jan 2010 | A1 |
20100021141 | Yamashita et al. | Jan 2010 | A1 |
20100033615 | Mori | Feb 2010 | A1 |
20100039522 | Huang | Feb 2010 | A1 |
20100053342 | Hwang et al. | Mar 2010 | A1 |
20100066853 | Aoki et al. | Mar 2010 | A1 |
20100066889 | Ueda et al. | Mar 2010 | A1 |
20100066890 | Ueda et al. | Mar 2010 | A1 |
20100066895 | Ueda et al. | Mar 2010 | A1 |
20100093400 | Ju et al. | Apr 2010 | A1 |
20100097322 | Hu et al. | Apr 2010 | A1 |
20100123737 | Williamson et al. | May 2010 | A1 |
20100124941 | Cho | May 2010 | A1 |
20100153847 | Fama | Jun 2010 | A1 |
20100162160 | Stallings et al. | Jun 2010 | A1 |
20100164893 | Shin et al. | Jul 2010 | A1 |
20100171848 | Peters et al. | Jul 2010 | A1 |
20100188426 | Ohmori et al. | Jul 2010 | A1 |
20100194931 | Kawaguchi et al. | Aug 2010 | A1 |
20100208122 | Yumiki | Aug 2010 | A1 |
20100231735 | Burian et al. | Sep 2010 | A1 |
20100231777 | Shintani et al. | Sep 2010 | A1 |
20100232703 | Also | Sep 2010 | A1 |
20100232704 | Thorn | Sep 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100259645 | Kaplan et al. | Oct 2010 | A1 |
20100277470 | Margolis | Nov 2010 | A1 |
20100283743 | Coddington | Nov 2010 | A1 |
20100289825 | Shin et al. | Nov 2010 | A1 |
20100289910 | Kamshilin | Nov 2010 | A1 |
20100302280 | Szeliski et al. | Dec 2010 | A1 |
20100317410 | Song et al. | Dec 2010 | A1 |
20110008033 | Ichimiya | Jan 2011 | A1 |
20110013049 | Thorn | Jan 2011 | A1 |
20110016419 | Grosz et al. | Jan 2011 | A1 |
20110018970 | Wakabayashi | Jan 2011 | A1 |
20110019058 | Sakai et al. | Jan 2011 | A1 |
20110058052 | Bolton | Mar 2011 | A1 |
20110072394 | Victor | Mar 2011 | A1 |
20110074710 | Weeldreyer et al. | Mar 2011 | A1 |
20110074830 | Rapp et al. | Mar 2011 | A1 |
20110085016 | Kristiansen et al. | Apr 2011 | A1 |
20110109581 | Ozawa et al. | May 2011 | A1 |
20110115932 | Shin et al. | May 2011 | A1 |
20110138332 | Miyagawa | Jun 2011 | A1 |
20110157379 | Kimura | Jun 2011 | A1 |
20110167337 | Paley et al. | Jul 2011 | A1 |
20110176039 | Lo | Jul 2011 | A1 |
20110187879 | Ochiai | Aug 2011 | A1 |
20110191719 | Hinckley et al. | Aug 2011 | A1 |
20110199495 | Laberge et al. | Aug 2011 | A1 |
20110221755 | Geisner et al. | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110242369 | Misawa et al. | Oct 2011 | A1 |
20110249073 | Cranfill et al. | Oct 2011 | A1 |
20110249078 | Abuan et al. | Oct 2011 | A1 |
20110296163 | Abernethy et al. | Dec 2011 | A1 |
20110304632 | Evertt et al. | Dec 2011 | A1 |
20120002898 | Côté et al. | Jan 2012 | A1 |
20120011456 | Noda et al. | Jan 2012 | A1 |
20120026378 | Pang et al. | Feb 2012 | A1 |
20120056997 | Jang | Mar 2012 | A1 |
20120057064 | Gardiner et al. | Mar 2012 | A1 |
20120069028 | Bouguerra | Mar 2012 | A1 |
20120069206 | Hsieh | Mar 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120120277 | Tsai | May 2012 | A1 |
20120127346 | Sato et al. | May 2012 | A1 |
20120133797 | Sato et al. | May 2012 | A1 |
20120162242 | Amano et al. | Jun 2012 | A1 |
20120169776 | Rissa et al. | Jul 2012 | A1 |
20120188394 | Park et al. | Jul 2012 | A1 |
20120194559 | Lim | Aug 2012 | A1 |
20120206452 | Geisner et al. | Aug 2012 | A1 |
20120206621 | Chen et al. | Aug 2012 | A1 |
20120235990 | Yamaji | Sep 2012 | A1 |
20120243802 | Fintel et al. | Sep 2012 | A1 |
20120249853 | Kroiczyk et al. | Oct 2012 | A1 |
20120274830 | Kameyama et al. | Nov 2012 | A1 |
20120293611 | Lee | Nov 2012 | A1 |
20120309520 | Evertt et al. | Dec 2012 | A1 |
20120320141 | Bowen et al. | Dec 2012 | A1 |
20130009858 | Lacey | Jan 2013 | A1 |
20130010170 | Matsuzawa et al. | Jan 2013 | A1 |
20130038546 | Mineo | Feb 2013 | A1 |
20130038771 | Brunner et al. | Feb 2013 | A1 |
20130055087 | Flint | Feb 2013 | A1 |
20130055119 | Luong | Feb 2013 | A1 |
20130057472 | Dizac et al. | Mar 2013 | A1 |
20130076908 | Bratton et al. | Mar 2013 | A1 |
20130083222 | Matsuzawa et al. | Apr 2013 | A1 |
20130088413 | Raffle et al. | Apr 2013 | A1 |
20130091298 | Ozzie et al. | Apr 2013 | A1 |
20130093904 | Wagner | Apr 2013 | A1 |
20130101164 | Leclerc et al. | Apr 2013 | A1 |
20130135315 | Bares et al. | May 2013 | A1 |
20130141362 | Asanuma | Jun 2013 | A1 |
20130141513 | Setton et al. | Jun 2013 | A1 |
20130147933 | Kulas et al. | Jun 2013 | A1 |
20130155308 | Wu et al. | Jun 2013 | A1 |
20130159900 | Pendharkar | Jun 2013 | A1 |
20130165186 | Choi | Jun 2013 | A1 |
20130179831 | Izaki | Jul 2013 | A1 |
20130194378 | Brown | Aug 2013 | A1 |
20130201104 | Ptucha et al. | Aug 2013 | A1 |
20130201307 | Schloter et al. | Aug 2013 | A1 |
20130208136 | Takatsuka et al. | Aug 2013 | A1 |
20130210563 | Hollinger | Aug 2013 | A1 |
20130222663 | Rydenhag et al. | Aug 2013 | A1 |
20130239057 | Ubillos et al. | Sep 2013 | A1 |
20130246948 | Chen et al. | Sep 2013 | A1 |
20130265311 | Na et al. | Oct 2013 | A1 |
20130265467 | Matsuzawa | Oct 2013 | A1 |
20130278576 | Lee et al. | Oct 2013 | A1 |
20130286251 | Wood et al. | Oct 2013 | A1 |
20130290905 | Luvogt et al. | Oct 2013 | A1 |
20130329074 | Zhang et al. | Dec 2013 | A1 |
20130346916 | Williamson et al. | Dec 2013 | A1 |
20140007021 | Akiyama | Jan 2014 | A1 |
20140009639 | Lee | Jan 2014 | A1 |
20140022399 | Rashid | Jan 2014 | A1 |
20140028872 | Lee et al. | Jan 2014 | A1 |
20140028885 | Ma et al. | Jan 2014 | A1 |
20140033043 | Kashima | Jan 2014 | A1 |
20140033100 | Noda et al. | Jan 2014 | A1 |
20140037178 | Park | Feb 2014 | A1 |
20140043368 | Yu | Feb 2014 | A1 |
20140043517 | Yim et al. | Feb 2014 | A1 |
20140047389 | Aarabi | Feb 2014 | A1 |
20140049536 | Neuman et al. | Feb 2014 | A1 |
20140055554 | Du et al. | Feb 2014 | A1 |
20140063175 | Jafry et al. | Mar 2014 | A1 |
20140063313 | Choi et al. | Mar 2014 | A1 |
20140071061 | Lin et al. | Mar 2014 | A1 |
20140071325 | Kawahara et al. | Mar 2014 | A1 |
20140078371 | Kinoshita | Mar 2014 | A1 |
20140092272 | Choi | Apr 2014 | A1 |
20140095122 | Appleman et al. | Apr 2014 | A1 |
20140099994 | Bishop et al. | Apr 2014 | A1 |
20140104449 | Masarik et al. | Apr 2014 | A1 |
20140108928 | Mumick | Apr 2014 | A1 |
20140118563 | Mehta et al. | May 2014 | A1 |
20140132735 | Lee et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140152886 | Morgan-Mar et al. | Jun 2014 | A1 |
20140160231 | Middleton et al. | Jun 2014 | A1 |
20140160304 | Galor et al. | Jun 2014 | A1 |
20140176469 | Lim | Jun 2014 | A1 |
20140176565 | Adeyoola et al. | Jun 2014 | A1 |
20140184524 | Schiefer et al. | Jul 2014 | A1 |
20140192212 | He et al. | Jul 2014 | A1 |
20140192233 | Kakkori et al. | Jul 2014 | A1 |
20140204229 | Leung | Jul 2014 | A1 |
20140218371 | Du et al. | Aug 2014 | A1 |
20140218599 | Nakamura | Aug 2014 | A1 |
20140232838 | Jorgensen et al. | Aug 2014 | A1 |
20140240471 | Srinivasa et al. | Aug 2014 | A1 |
20140240531 | Nakai et al. | Aug 2014 | A1 |
20140240577 | Masugi | Aug 2014 | A1 |
20140267126 | Berg et al. | Sep 2014 | A1 |
20140267867 | Lee et al. | Sep 2014 | A1 |
20140282223 | Bastien et al. | Sep 2014 | A1 |
20140285698 | Geiss | Sep 2014 | A1 |
20140300635 | Suzuki | Oct 2014 | A1 |
20140300779 | Yeo et al. | Oct 2014 | A1 |
20140310598 | Sprague et al. | Oct 2014 | A1 |
20140327639 | Papakipos et al. | Nov 2014 | A1 |
20140333671 | Phang et al. | Nov 2014 | A1 |
20140333824 | Xiu | Nov 2014 | A1 |
20140351753 | Shin et al. | Nov 2014 | A1 |
20140359438 | Matsuki | Dec 2014 | A1 |
20140362091 | Bouaziz et al. | Dec 2014 | A1 |
20140362274 | Christie et al. | Dec 2014 | A1 |
20140368601 | deCharms | Dec 2014 | A1 |
20140368719 | Kaneko et al. | Dec 2014 | A1 |
20140372856 | Radakovitz et al. | Dec 2014 | A1 |
20150022674 | Blair et al. | Jan 2015 | A1 |
20150033192 | Bohannon et al. | Jan 2015 | A1 |
20150035825 | Zhou et al. | Feb 2015 | A1 |
20150042852 | Lee et al. | Feb 2015 | A1 |
20150043806 | Karsch et al. | Feb 2015 | A1 |
20150049233 | Choi | Feb 2015 | A1 |
20150058754 | Rauh | Feb 2015 | A1 |
20150067513 | Zambetti et al. | Mar 2015 | A1 |
20150070362 | Hirai | Mar 2015 | A1 |
20150078621 | Choi et al. | Mar 2015 | A1 |
20150078726 | Shakib et al. | Mar 2015 | A1 |
20150085174 | Shabtay et al. | Mar 2015 | A1 |
20150092077 | Feder et al. | Apr 2015 | A1 |
20150109417 | Zimheld | Apr 2015 | A1 |
20150116353 | Miura et al. | Apr 2015 | A1 |
20150116448 | Gottlieb | Apr 2015 | A1 |
20150135109 | Zambetti et al. | May 2015 | A1 |
20150135234 | Hall | May 2015 | A1 |
20150138079 | Lannsjo | May 2015 | A1 |
20150145950 | Murphy et al. | May 2015 | A1 |
20150146079 | Kim | May 2015 | A1 |
20150149927 | Walkin et al. | May 2015 | A1 |
20150150141 | Szymanski et al. | May 2015 | A1 |
20150154448 | Murayama et al. | Jun 2015 | A1 |
20150172534 | Miyakawa et al. | Jun 2015 | A1 |
20150181135 | Shimosato | Jun 2015 | A1 |
20150189138 | Xie et al. | Jul 2015 | A1 |
20150189162 | Kuo et al. | Jul 2015 | A1 |
20150194186 | Lee et al. | Jul 2015 | A1 |
20150208001 | Kaneko et al. | Jul 2015 | A1 |
20150212723 | Lim et al. | Jul 2015 | A1 |
20150220249 | Snibbe et al. | Aug 2015 | A1 |
20150248198 | Somlai-Fisher et al. | Sep 2015 | A1 |
20150248583 | Sugita et al. | Sep 2015 | A1 |
20150249775 | Jacumet | Sep 2015 | A1 |
20150249785 | Mehta et al. | Sep 2015 | A1 |
20150254855 | Patankar et al. | Sep 2015 | A1 |
20150256749 | Frey et al. | Sep 2015 | A1 |
20150264202 | Pawlowski | Sep 2015 | A1 |
20150271389 | Huang et al. | Sep 2015 | A1 |
20150277686 | Laforge et al. | Oct 2015 | A1 |
20150286724 | Knaapen et al. | Oct 2015 | A1 |
20150289104 | Jung et al. | Oct 2015 | A1 |
20150297185 | Mander et al. | Oct 2015 | A1 |
20150301731 | Okamoto et al. | Oct 2015 | A1 |
20150310583 | Hume et al. | Oct 2015 | A1 |
20150312182 | Langholz | Oct 2015 | A1 |
20150312184 | Langholz et al. | Oct 2015 | A1 |
20150312185 | Langholz | Oct 2015 | A1 |
20150334075 | Wang et al. | Nov 2015 | A1 |
20150334291 | Cho et al. | Nov 2015 | A1 |
20150341536 | Huang et al. | Nov 2015 | A1 |
20150350141 | Yang et al. | Dec 2015 | A1 |
20150350533 | Harris et al. | Dec 2015 | A1 |
20150350535 | Voss | Dec 2015 | A1 |
20150362998 | Park et al. | Dec 2015 | A1 |
20150370458 | Chen | Dec 2015 | A1 |
20160012567 | Siddiqui et al. | Jan 2016 | A1 |
20160026371 | Lu | Jan 2016 | A1 |
20160044236 | Matsuzawa et al. | Feb 2016 | A1 |
20160048598 | Fujioka et al. | Feb 2016 | A1 |
20160048599 | Fujioka et al. | Feb 2016 | A1 |
20160048725 | Holz et al. | Feb 2016 | A1 |
20160048903 | Fujioka et al. | Feb 2016 | A1 |
20160050169 | Ben Atar et al. | Feb 2016 | A1 |
20160050351 | Lee et al. | Feb 2016 | A1 |
20160050446 | Fujioka et al. | Feb 2016 | A1 |
20160065832 | Kim et al. | Mar 2016 | A1 |
20160065861 | Steinberg et al. | Mar 2016 | A1 |
20160077725 | Maeda | Mar 2016 | A1 |
20160080639 | Choi et al. | Mar 2016 | A1 |
20160080657 | Chou et al. | Mar 2016 | A1 |
20160088280 | Sadi et al. | Mar 2016 | A1 |
20160092035 | Crocker et al. | Mar 2016 | A1 |
20160117829 | Yoon et al. | Apr 2016 | A1 |
20160127636 | Ito et al. | May 2016 | A1 |
20160132200 | Walkin et al. | May 2016 | A1 |
20160132201 | Shaw et al. | May 2016 | A1 |
20160142649 | Yim | May 2016 | A1 |
20160148384 | Bud et al. | May 2016 | A1 |
20160162039 | Eilat et al. | Jun 2016 | A1 |
20160163084 | Corazza et al. | Jun 2016 | A1 |
20160173869 | Wang et al. | Jun 2016 | A1 |
20160188181 | Smith | Jun 2016 | A1 |
20160212319 | Harris et al. | Jul 2016 | A1 |
20160217601 | Tsuda et al. | Jul 2016 | A1 |
20160219217 | Williams et al. | Jul 2016 | A1 |
20160225175 | Kim et al. | Aug 2016 | A1 |
20160226926 | Singh et al. | Aug 2016 | A1 |
20160227016 | Kim et al. | Aug 2016 | A1 |
20160241777 | Rav-acha et al. | Aug 2016 | A1 |
20160241793 | Ravirala et al. | Aug 2016 | A1 |
20160247309 | Li et al. | Aug 2016 | A1 |
20160255268 | Kang et al. | Sep 2016 | A1 |
20160259413 | Anzures | Sep 2016 | A1 |
20160259497 | Foss et al. | Sep 2016 | A1 |
20160259498 | Foss et al. | Sep 2016 | A1 |
20160259499 | Kocienda et al. | Sep 2016 | A1 |
20160259518 | King et al. | Sep 2016 | A1 |
20160259519 | Foss et al. | Sep 2016 | A1 |
20160259527 | Kocienda et al. | Sep 2016 | A1 |
20160259528 | Foss et al. | Sep 2016 | A1 |
20160267067 | Mays et al. | Sep 2016 | A1 |
20160283097 | Voss | Sep 2016 | A1 |
20160284123 | Hare et al. | Sep 2016 | A1 |
20160307324 | Nakada et al. | Oct 2016 | A1 |
20160316147 | Bernstein et al. | Oct 2016 | A1 |
20160337570 | Tan et al. | Nov 2016 | A1 |
20160337582 | Shimauchi et al. | Nov 2016 | A1 |
20160353030 | Gao | Dec 2016 | A1 |
20160357353 | Miura et al. | Dec 2016 | A1 |
20160357387 | Penha et al. | Dec 2016 | A1 |
20160360097 | Penha et al. | Dec 2016 | A1 |
20160360116 | Penha et al. | Dec 2016 | A1 |
20160366323 | Chan | Dec 2016 | A1 |
20160366344 | Pan et al. | Dec 2016 | A1 |
20160370974 | Stenneth | Dec 2016 | A1 |
20160373631 | Kocienda et al. | Dec 2016 | A1 |
20160373650 | Kim et al. | Dec 2016 | A1 |
20170006210 | Dye et al. | Jan 2017 | A1 |
20170011773 | Lee | Jan 2017 | A1 |
20170013179 | Kang et al. | Jan 2017 | A1 |
20170018289 | Morgenstern | Jan 2017 | A1 |
20170019604 | Kim et al. | Jan 2017 | A1 |
20170024872 | Olsson et al. | Jan 2017 | A1 |
20170026565 | Hong et al. | Jan 2017 | A1 |
20170034449 | Eum et al. | Feb 2017 | A1 |
20170039686 | Miura et al. | Feb 2017 | A1 |
20170041549 | Kim et al. | Feb 2017 | A1 |
20170041677 | Anderson et al. | Feb 2017 | A1 |
20170046065 | Zeng et al. | Feb 2017 | A1 |
20170048450 | Lee et al. | Feb 2017 | A1 |
20170048461 | Lee et al. | Feb 2017 | A1 |
20170048494 | Boyle et al. | Feb 2017 | A1 |
20170054960 | Chien et al. | Feb 2017 | A1 |
20170061635 | Oberheu et al. | Mar 2017 | A1 |
20170094019 | Ahmed et al. | Mar 2017 | A1 |
20170109912 | Lee et al. | Apr 2017 | A1 |
20170111616 | Li et al. | Apr 2017 | A1 |
26176111567 | Piia | Apr 2017 | |
20170178287 | Anderson | Jun 2017 | A1 |
20170186162 | Mihic et al. | Jun 2017 | A1 |
20170220212 | Yang et al. | Aug 2017 | A1 |
20170230576 | Sparks et al. | Aug 2017 | A1 |
20170230585 | Nash et al. | Aug 2017 | A1 |
20170237888 | Harris et al. | Aug 2017 | A1 |
20170243389 | Wild et al. | Aug 2017 | A1 |
20170244896 | Chien et al. | Aug 2017 | A1 |
20170244897 | Jung et al. | Aug 2017 | A1 |
20170257559 | Stricker | Sep 2017 | A1 |
20170257596 | Murata et al. | Sep 2017 | A1 |
20170264817 | Yan et al. | Sep 2017 | A1 |
20170272654 | Poindexter, Jr. | Sep 2017 | A1 |
20170285764 | Kim et al. | Oct 2017 | A1 |
20170287220 | Khalid et al. | Oct 2017 | A1 |
20170302840 | Hasinoff et al. | Oct 2017 | A1 |
20170315772 | Lee et al. | Nov 2017 | A1 |
20170324784 | Taine et al. | Nov 2017 | A1 |
20170336926 | Chaudhri et al. | Nov 2017 | A1 |
20170336928 | Chaudhri | Nov 2017 | A1 |
20170336961 | Heo et al. | Nov 2017 | A1 |
20170352379 | Oh et al. | Dec 2017 | A1 |
20170354888 | Benedetto et al. | Dec 2017 | A1 |
20170358071 | Yamaoka et al. | Dec 2017 | A1 |
20170359504 | Manzari et al. | Dec 2017 | A1 |
20170359505 | Manzari et al. | Dec 2017 | A1 |
20170359506 | Manzari et al. | Dec 2017 | A1 |
20170366729 | Itoh | Dec 2017 | A1 |
20180007315 | Kim et al. | Jan 2018 | A1 |
20180021684 | Benedetto | Jan 2018 | A1 |
20180035031 | Kwak et al. | Feb 2018 | A1 |
20180047200 | O'hara et al. | Feb 2018 | A1 |
20180077332 | Shimura et al. | Mar 2018 | A1 |
20180091728 | Brown et al. | Mar 2018 | A1 |
20180091732 | Wilson et al. | Mar 2018 | A1 |
20180095649 | Valdivia et al. | Apr 2018 | A1 |
20180096487 | Nash et al. | Apr 2018 | A1 |
20180109722 | Laroia | Apr 2018 | A1 |
20180113577 | Burns et al. | Apr 2018 | A1 |
20180114543 | Novikoff | Apr 2018 | A1 |
20180120661 | Kilgore et al. | May 2018 | A1 |
20180124299 | Brook | May 2018 | A1 |
20180129224 | Hur | May 2018 | A1 |
20180131876 | Bernstein et al. | May 2018 | A1 |
20180131878 | Charlton et al. | May 2018 | A1 |
20180146132 | Manzari | May 2018 | A1 |
20180152611 | Li et al. | May 2018 | A1 |
20180184061 | Kitsunai et al. | Jun 2018 | A1 |
20180191944 | Carbonell et al. | Jul 2018 | A1 |
20180198985 | Ishitsuka | Jul 2018 | A1 |
20180199025 | Holzer et al. | Jul 2018 | A1 |
20180227479 | Parameswaran et al. | Aug 2018 | A1 |
20180227482 | Holzer et al. | Aug 2018 | A1 |
20180227505 | Baltz et al. | Aug 2018 | A1 |
20180234608 | Sudo et al. | Aug 2018 | A1 |
20180262677 | Dye et al. | Sep 2018 | A1 |
20180267703 | Kamimaru | Sep 2018 | A1 |
20180270420 | Lee et al. | Sep 2018 | A1 |
20180278823 | Horesh | Sep 2018 | A1 |
20180284979 | Choi et al. | Oct 2018 | A1 |
20180288310 | Goldenberg | Oct 2018 | A1 |
20180302551 | Yamajo et al. | Oct 2018 | A1 |
20180302568 | Kim et al. | Oct 2018 | A1 |
20180308282 | Yokoi | Oct 2018 | A1 |
20180335927 | Anzures et al. | Nov 2018 | A1 |
20180335929 | Scapel et al. | Nov 2018 | A1 |
20180335930 | Scapel et al. | Nov 2018 | A1 |
20180336715 | Rickwald et al. | Nov 2018 | A1 |
20180349008 | Manzari | Dec 2018 | A1 |
20180352165 | Zhen et al. | Dec 2018 | A1 |
20180376122 | Park et al. | Dec 2018 | A1 |
20190007589 | Kadambala et al. | Jan 2019 | A1 |
20190028650 | Bernstein et al. | Jan 2019 | A1 |
20190029513 | Gunnerson et al. | Jan 2019 | A1 |
20190051032 | Chu et al. | Feb 2019 | A1 |
20190082097 | Manzari et al. | Mar 2019 | A1 |
20190089873 | Misawa et al. | Mar 2019 | A1 |
20190114740 | Ogino et al. | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190138259 | Bagaria et al. | May 2019 | A1 |
20190149706 | Rivard et al. | May 2019 | A1 |
20190174054 | Srivastava et al. | Jun 2019 | A1 |
20190199926 | An et al. | Jun 2019 | A1 |
20190205861 | Bace | Jul 2019 | A1 |
20190206031 | Kim et al. | Jul 2019 | A1 |
20190222769 | Srivastava et al. | Jul 2019 | A1 |
20190235743 | Ono | Aug 2019 | A1 |
20190250812 | Davydov et al. | Aug 2019 | A1 |
20190253619 | Davydov et al. | Aug 2019 | A1 |
20190289201 | Nishimura et al. | Sep 2019 | A1 |
20190318538 | Li et al. | Oct 2019 | A1 |
20190342507 | Dye et al. | Nov 2019 | A1 |
20190379821 | Kobayashi et al. | Dec 2019 | A1 |
20190379837 | Kim et al. | Dec 2019 | A1 |
20200045245 | Van Os et al. | Feb 2020 | A1 |
20200053288 | Kim et al. | Feb 2020 | A1 |
20200059605 | Liu et al. | Feb 2020 | A1 |
20200068121 | Wang | Feb 2020 | A1 |
20200082599 | Manzari | Mar 2020 | A1 |
20200106952 | Missig et al. | Apr 2020 | A1 |
20200128191 | Sun et al. | Apr 2020 | A1 |
20200142577 | Manzari et al. | May 2020 | A1 |
20200204725 | Li | Jun 2020 | A1 |
20200221020 | Manzari et al. | Jul 2020 | A1 |
20200234508 | Shaburov et al. | Jul 2020 | A1 |
20200236278 | Yeung et al. | Jul 2020 | A1 |
20200244879 | Hohjoh | Jul 2020 | A1 |
20200285806 | Radakovitz et al. | Sep 2020 | A1 |
20200285851 | Lin et al. | Sep 2020 | A1 |
20200336660 | Dong et al. | Oct 2020 | A1 |
20200336674 | Bernstein et al. | Oct 2020 | A1 |
20200358963 | Manzari et al. | Nov 2020 | A1 |
20200380768 | Harris et al. | Dec 2020 | A1 |
20200380781 | Barlier et al. | Dec 2020 | A1 |
20200410763 | Hare et al. | Dec 2020 | A1 |
20200412975 | Al Majid et al. | Dec 2020 | A1 |
20210005003 | Chong et al. | Jan 2021 | A1 |
20210058351 | Viklund et al. | Feb 2021 | A1 |
20210065448 | Goodrich et al. | Mar 2021 | A1 |
20210065454 | Goodrich et al. | Mar 2021 | A1 |
20210096703 | Anzures et al. | Apr 2021 | A1 |
20210099568 | DePue et al. | Apr 2021 | A1 |
20210099761 | Zhang | Apr 2021 | A1 |
20210146838 | Goseberg et al. | May 2021 | A1 |
20210152505 | Baldwin et al. | May 2021 | A1 |
20210168108 | Antmen et al. | Jun 2021 | A1 |
20210195093 | Manzari et al. | Jun 2021 | A1 |
20210264656 | Barlier et al. | Aug 2021 | A1 |
20210318798 | Manzari et al. | Oct 2021 | A1 |
20210373750 | Manzari et al. | Dec 2021 | A1 |
20210397338 | Davydov et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2013368443 | Mar 2016 | AU |
2017100683 | Jan 2018 | AU |
2015297035 | Jun 2018 | AU |
2729392 | Aug 2011 | CA |
2965700 | May 2016 | CA |
2729392 | May 2017 | CA |
1437365 | Aug 2003 | CN |
1705346 | Dec 2005 | CN |
101068311 | Nov 2007 | CN |
101243383 | Aug 2008 | CN |
101282422 | Oct 2008 | CN |
101310519 | Nov 2008 | CN |
101364031 | Feb 2009 | CN |
101388965 | Mar 2009 | CN |
101427574 | May 2009 | CN |
101576996 | Nov 2009 | CN |
101778220 | Jul 2010 | CN |
101883213 | Nov 2010 | CN |
102075727 | May 2011 | CN |
102084327 | Jun 2011 | CN |
102088554 | Jun 2011 | CN |
102272700 | Dec 2011 | CN |
102428655 | Apr 2012 | CN |
102457661 | May 2012 | CN |
102474560 | May 2012 | CN |
102567953 | Jul 2012 | CN |
202309894 | Jul 2012 | CN |
202330968 | Jul 2012 | CN |
103051837 | Apr 2013 | CN |
103051841 | Apr 2013 | CN |
103297719 | Sep 2013 | CN |
103309602 | Sep 2013 | CN |
103324329 | Sep 2013 | CN |
103491298 | Jan 2014 | CN |
103685925 | Mar 2014 | CN |
103702039 | Apr 2014 | CN |
103777742 | May 2014 | CN |
103916582 | Jul 2014 | CN |
103947190 | Jul 2014 | CN |
103970472 | Aug 2014 | CN |
104270597 | Jan 2015 | CN |
104346080 | Feb 2015 | CN |
104423946 | Mar 2015 | CN |
104461288 | Mar 2015 | CN |
104754203 | Jul 2015 | CN |
104813322 | Jul 2015 | CN |
104836947 | Aug 2015 | CN |
104952063 | Sep 2015 | CN |
105138259 | Dec 2015 | CN |
105190511 | Dec 2015 | CN |
105229571 | Jan 2016 | CN |
105474163 | Apr 2016 | CN |
105493138 | Apr 2016 | CN |
105589637 | May 2016 | CN |
105611215 | May 2016 | CN |
105620393 | Jun 2016 | CN |
105630290 | Jun 2016 | CN |
105653031 | Jun 2016 | CN |
105765967 | Jul 2016 | CN |
105981372 | Sep 2016 | CN |
105991915 | Oct 2016 | CN |
106067947 | Nov 2016 | CN |
106161956 | Nov 2016 | CN |
106210184 | Dec 2016 | CN |
106210550 | Dec 2016 | CN |
106257909 | Dec 2016 | CN |
106303280 | Jan 2017 | CN |
106303690 | Jan 2017 | CN |
106341611 | Jan 2017 | CN |
106375662 | Feb 2017 | CN |
106412214 | Feb 2017 | CN |
106412412 | Feb 2017 | CN |
106412445 | Feb 2017 | CN |
106445219 | Feb 2017 | CN |
106791377 | May 2017 | CN |
106921829 | Jul 2017 | CN |
107077274 | Aug 2017 | CN |
107079141 | Aug 2017 | CN |
107533356 | Jan 2018 | CN |
107566721 | Jan 2018 | CN |
107580693 | Jan 2018 | CN |
107770448 | Mar 2018 | CN |
107800945 | Mar 2018 | CN |
107820011 | Mar 2018 | CN |
107924113 | Apr 2018 | CN |
108353126 | Jul 2018 | CN |
108391053 | Aug 2018 | CN |
108513070 | Sep 2018 | CN |
108668083 | Oct 2018 | CN |
108848308 | Nov 2018 | CN |
108886569 | Nov 2018 | CN |
109005366 | Dec 2018 | CN |
109061985 | Dec 2018 | CN |
109496425 | Mar 2019 | CN |
109639970 | Apr 2019 | CN |
109644229 | Apr 2019 | CN |
201670753 | Jan 2018 | DK |
201670755 | Jan 2018 | DK |
201670627 | Feb 2018 | DK |
0651543 | May 1995 | EP |
0651543 | Dec 1997 | EP |
1278099 | Jan 2003 | EP |
1592212 | Nov 2005 | EP |
1953663 | Aug 2008 | EP |
0651543 | Sep 2008 | EP |
1981262 | Oct 2008 | EP |
2194508 | Jun 2010 | EP |
2430766 | Mar 2012 | EP |
2454872 | May 2012 | EP |
2482179 | Aug 2012 | EP |
2487613 | Aug 2012 | EP |
2487913 | Aug 2012 | EP |
2430766 | Dec 2012 | EP |
2579572 | Apr 2013 | EP |
2627073 | Aug 2013 | EP |
2640060 | Sep 2013 | EP |
2682855 | Jan 2014 | EP |
2950198 | Dec 2015 | EP |
2966855 | Jan 2016 | EP |
2972677 | Jan 2016 | EP |
2430766 | Mar 2016 | EP |
3008575 | Apr 2016 | EP |
3012732 | Apr 2016 | EP |
3026636 | Jun 2016 | EP |
3033837 | Jun 2016 | EP |
3051525 | Aug 2016 | EP |
3107065 | Dec 2016 | EP |
3033837 | Mar 2017 | EP |
3209012 | Aug 2017 | EP |
3211587 | Aug 2017 | EP |
2194508 | Dec 2017 | EP |
3333544 | Jun 2018 | EP |
2556665 | Aug 2018 | EP |
3033837 | Oct 2018 | EP |
3393119 | Oct 2018 | EP |
3135028 | Jan 2019 | EP |
3457680 | Mar 2019 | EP |
3008575 | Jul 2019 | EP |
3633975 | Apr 2020 | EP |
2515797 | Jan 2015 | GB |
2519363 | Apr 2015 | GB |
2523670 | Sep 2015 | GB |
2-179078 | Jul 1990 | JP |
9-116792 | May 1997 | JP |
11-355617 | Dec 1999 | JP |
2000-207549 | Jul 2000 | JP |
2000-244905 | Sep 2000 | JP |
2001-298649 | Oct 2001 | JP |
2003-8964 | Jan 2003 | JP |
2003-18438 | Jan 2003 | JP |
2003-32597 | Jan 2003 | JP |
2003-241293 | Aug 2003 | JP |
2004-15595 | Jan 2004 | JP |
2004-135074 | Apr 2004 | JP |
2005-31466 | Feb 2005 | JP |
2005-191641 | Jul 2005 | JP |
3872041 | Jan 2007 | JP |
2007-28211 | Feb 2007 | JP |
2007-124398 | May 2007 | JP |
2008-66978 | Mar 2008 | JP |
2008-104069 | May 2008 | JP |
2008-236534 | Oct 2008 | JP |
2009-105919 | May 2009 | JP |
2009-212899 | Sep 2009 | JP |
2009-545256 | Dec 2009 | JP |
2010-119147 | May 2010 | JP |
2010-160581 | Jul 2010 | JP |
2010-182023 | Aug 2010 | JP |
2010-268052 | Nov 2010 | JP |
2011-87167 | Apr 2011 | JP |
2011-91570 | May 2011 | JP |
2011-124864 | Jun 2011 | JP |
2011-211552 | Oct 2011 | JP |
2012-79302 | Apr 2012 | JP |
2012-89973 | May 2012 | JP |
2012-124608 | Jun 2012 | JP |
2012-147379 | Aug 2012 | JP |
2013-70303 | Apr 2013 | JP |
2013-106289 | May 2013 | JP |
2013-546238 | Dec 2013 | JP |
2014-23083 | Feb 2014 | JP |
2014-60501 | Apr 2014 | JP |
2014-212415 | Nov 2014 | JP |
2015-1716 | Jan 2015 | JP |
2015-5255 | Jan 2015 | JP |
2015-22716 | Feb 2015 | JP |
2015-50713 | Mar 2015 | JP |
2015-76717 | Apr 2015 | JP |
2015-146619 | Aug 2015 | JP |
2015-149095 | Aug 2015 | JP |
2015-180987 | Oct 2015 | JP |
2015-201839 | Nov 2015 | JP |
2016-66978 | Apr 2016 | JP |
2016-72965 | May 2016 | JP |
2016-129315 | Jul 2016 | JP |
2017-34474 | Feb 2017 | JP |
2019-62556 | Apr 2019 | JP |
2019-145108 | Aug 2019 | JP |
10-2012-0004928 | Jan 2012 | KR |
10-2012-0025872 | Mar 2012 | KR |
10-2012-0048397 | May 2012 | KR |
10-2012-0057696 | Jun 2012 | KR |
10-2012-0093322 | Aug 2012 | KR |
10-2013-0033445 | Apr 2013 | KR |
10-1341095 | Dec 2013 | KR |
10-1343591 | Dec 2013 | KR |
10-2014-0049850 | Apr 2014 | KR |
10-2014-0062801 | May 2014 | KR |
10-2015-0014290 | Feb 2015 | KR |
10-2015-0024899 | Mar 2015 | KR |
10-2016-0016910 | Feb 2016 | KR |
10-2016-0019145 | Feb 2016 | KR |
10-2016-0020791 | Feb 2016 | KR |
10-2016-0075583 | Jun 2016 | KR |
10-1674959 | Nov 2016 | KR |
10-2017-0123125 | Nov 2017 | KR |
10-2017-0135975 | Dec 2017 | KR |
10-2018-0017227 | Feb 2018 | KR |
10-2018-0037076 | Apr 2018 | KR |
10-2018-0095331 | Aug 2018 | KR |
10-2018-0108847 | Oct 2018 | KR |
10-2018-0137610 | Dec 2018 | KR |
10-2019-0034248 | Apr 2019 | KR |
199939307 | Aug 1999 | WO |
200063766 | Oct 2000 | WO |
2005043892 | May 2005 | WO |
2007126707 | Nov 2007 | WO |
2008014301 | Jan 2008 | WO |
2008025120 | Mar 2008 | WO |
2009076974 | Jun 2009 | WO |
2010059426 | May 2010 | WO |
2010077048 | Jul 2010 | WO |
2010102678 | Sep 2010 | WO |
2010077048 | Oct 2010 | WO |
2010131869 | Nov 2010 | WO |
2010134275 | Nov 2010 | WO |
2011007264 | Jan 2011 | WO |
2010131869 | Feb 2011 | WO |
2010059426 | May 2011 | WO |
2012001947 | Jan 2012 | WO |
2012006251 | Jan 2012 | WO |
2012051720 | Apr 2012 | WO |
2013082325 | Jun 2013 | WO |
2013152453 | Oct 2013 | WO |
2013152454 | Oct 2013 | WO |
2013189058 | Dec 2013 | WO |
2014066115 | May 2014 | WO |
2014105276 | Jul 2014 | WO |
2014159779 | Oct 2014 | WO |
2014160819 | Oct 2014 | WO |
2014165141 | Oct 2014 | WO |
2014200734 | Dec 2014 | WO |
2014200798 | Dec 2014 | WO |
2015023044 | Feb 2015 | WO |
2015037211 | Mar 2015 | WO |
2015080744 | Jun 2015 | WO |
2015085042 | Jun 2015 | WO |
2015112868 | Jul 2015 | WO |
2014200798 | Aug 2015 | WO |
2015144209 | Oct 2015 | WO |
2015166684 | Nov 2015 | WO |
2015183438 | Dec 2015 | WO |
2015187494 | Dec 2015 | WO |
2015190666 | Dec 2015 | WO |
2016028806 | Feb 2016 | WO |
2016028807 | Feb 2016 | WO |
2016028808 | Feb 2016 | WO |
2016028809 | Feb 2016 | WO |
2016064435 | Apr 2016 | WO |
2016073804 | May 2016 | WO |
2016073804 | Jul 2016 | WO |
2016145129 | Sep 2016 | WO |
2016172619 | Oct 2016 | WO |
2016204936 | Dec 2016 | WO |
2017058834 | Apr 2017 | WO |
2017153771 | Sep 2017 | WO |
2017201326 | Nov 2017 | WO |
2017218193 | Dec 2017 | WO |
2018006053 | Jan 2018 | WO |
2018048838 | Mar 2018 | WO |
2018049430 | Mar 2018 | WO |
2018057268 | Mar 2018 | WO |
2018099037 | Jun 2018 | WO |
2018159864 | Sep 2018 | WO |
2018212802 | Nov 2018 | WO |
Entry |
---|
Decision to Grant received for Japanese Patent Application No. 2018-243463, dated Aug. 17, 2020, 2 pages (1 page of English Translation and 1 page of Official Copy). |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/017363, dated Aug. 20, 2020, 9 pages. |
Office Action received for Australian Patent Application No. 2020101043, dated Aug. 14, 2020, 5 pages. |
Office Action received for Chinese Patent Application No. 201911219525.3, dated Jul. 10, 2020, 7 pages (1 page of English Translation and 6 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201970601, dated Aug. 13, 2020, 3 pages. |
Office Action received for Japanese Patent Application No. 2018-182607, dated Jul. 20, 2020, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/995,040, dated Nov. 24, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/144,629, dated Nov. 23, 2020, 3 pages. |
Certificate of Examination received for Australian Patent Application No. 2020100720, dated Nov. 11, 2020, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/024067, dated Nov. 19, 2020, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/031643, dated Nov. 2, 2020, 34 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-0143726, dated Nov. 10, 2020, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Australian Patent Application No. 2020101043, dated Oct. 30, 2020, 4 pages. |
Office Action received for Danish Patent Application No. PA201770719, dated Nov. 16, 2020, 5 pages. |
Office Action received for Danish Patent Application No. PA201970603, dated Nov. 4, 2020, 3 pages. |
Result of Consultation received for European Patent Application No. 19204230.7, dated Nov. 16, 2020, 3 pages. |
Clover Juli, “Moment Pro Camera App for iOS Gains Zebra Striping for Displaying Over and Underexposed Areas”, Online Available at: https://web.archive.org/web/20190502081353/https://www.macrumors.com/2019/05/01/momentcamera-app-zebra-striping-and-more/, May 1, 2019, 8 pages. |
Decision to Refuse received for European Patent Application No. 19724959.2, dated Jun. 22, 2021, 13 pages. |
IMAGESPACETV, “Olympus OM-D E-M1 Mark II—Highlights & Shadows with Gavin Hoey”, Online available at: https://www.youtube.com/watch?v=goEhh1n--hQ, Aug. 3, 2018, 3 pages. |
Intention to Grant received for European Patent Application No. 17809168.2, dated Jun. 25, 2021, 8 pages. |
Office Action received for Australian Patent Application No. 2020239717, dated Jun. 23, 2021, 7 pages. |
Office Action received for Australian Patent Application No. 2020260413, dated Jun. 24, 2021, 2 pages. |
Office Action received for Danish Patent Application No. PA201770719, dated Jun. 30, 2021, 3 pages. |
“Procamera Capture the Moment”, Online Available at: http://www.procamera-app.com/procamera_manual/ProCamera_Manual_EN.pdf, Apr. 21, 2016, 63 pages. |
Final Office Action received for U.S. Appl. No. 15/995,040, dated Oct. 17, 2019, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/024067, dated Oct. 9, 2019, 18 pages. |
Notice of Allowance received for Brazilian Patent Application No. 112018074765-3, dated Oct. 8, 2019, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/191,117, dated Oct. 29, 2019, 9 pages. |
Office Action received for Australian Patent Application No. 2019100794, dated Oct. 3, 2019, 4 pages. |
Office Action received for Chinese Patent Application No. 201710657424.9, dated Sep. 17, 2019, 23 pages (11 pages of English Translation and 12 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,396, dated Jan. 30, 2020, 2 pages. |
Office Action received for Danish Patent Application No. PA201770563, dated Jan. 28, 2020, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201811512767.7, dated Jul. 27, 2020, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201870368, dated Oct. 1, 2019, 6 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 17184710.6, mailed on Sep. 17, 2019, 7 pages. |
Certificate of Examination received for Australian Patent Application No. 2020100189, dated May 12, 2020, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201710657424.9, dated May 8, 2020, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Chinese Patent Application No. 201811446867.4, dated May 6, 2020, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2019-7027042, dated May 13, 2020, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Decision to Grant received for Danish Patent Application No. PA201970603, dated May 21, 2021, 2 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 18704732.9, mailed on Jun. 2, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Jun. 1, 2021, 10 pages. |
Office Action received for Chinese Patent Application No. 202010600151.6, dated Apr. 29, 2021, 11 pages (5 pages of English Translation and 6 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2020-184471, dated May 10, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 19204230.7, mailed on May 25, 2021, 10 pages. |
Advisory Action received for U.S. Appl. No. 16/144,629, dated Dec. 13, 2019, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/271,583 dated Mar. 2, 2020, 3 pages. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 17184710.6, dated Feb. 19, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/191,117, dated Feb. 28, 2020, 2 pages. |
Extended European Search Report received for European Patent Application No. 19204230.7, dated Feb. 21, 2020, 7 pages. |
Final Office Action received for U.S. Appl. No. 16/144,629, dated Sep. 18, 2019, 22 pages. |
Intention to Grant received for European Patent Application No. 18176890.4, dated Feb. 28, 2020, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/049101, dated Dec. 16, 2019, 26 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2019/049101, dated Oct. 24, 2019, 17 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 19724959.2, mailed on Feb. 25, 2020, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,629, dated Mar. 29, 2019, 18 pages. |
Office Action received for Chinese Patent Application No. 201780002533.5, dated Feb. 3, 2020, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201870623, dated Jan. 30, 2020, 2 pages. |
Office Action received for Danish Patent Application No. PA201870623, dated Jul. 12, 2019, 4 pages. |
Office Action received for European Patent Application No. 18183054.8, dated Feb. 24, 2020, 6 pages. |
PreAppeal Review Report received for Japanese Patent Application No. 2018-225131, mailed on Jan. 24, 2020, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
PreAppeal Review Report received for Japanese Patent Application No. 2018-545502, mailed on Jan. 24, 2020, 8 pages (3 pages of English Translation and 5 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 17184710.6, dated Feb. 21, 2020, 6 pages. |
Result of Consultation received for European Patent Application No. 17184710.6, dated Feb. 28, 2020, 3 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870623, dated Dec. 20, 2018, 8 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/144,629, dated Jul. 2, 2020, 5 pages. |
Decision to Grant received for European Patent Application No. 18176890.4, dated Jul. 9, 2020, 3 pages. |
Final Office Action received for U.S. Appl. No. 16/528,941, dated Jul. 13, 2020, 15 pages. |
Johnson Dave, “What is the Clips app on an iPhone?': How to use your iPhone's free video-editing app, and make custom videos for social media”, Available online at: https://www.businessinsider.com/what-is-clips-on-iphone?IR=T, Oct. 26, 2019, 14 pages. |
Office Action received for Australian Patent Application No. 2019213341, dated Jun. 30, 2020, 6 pages. |
Office Action received for Australian Patent Application No. 2020100720, dated Jul. 9, 2020, 7 pages. |
Office Action received for European Patent Application No. 16784025.5, dated Jul. 17, 2020, 6 pages. |
OSXDAILY, “How to Zoom the Camera on iPhone”, Available Online at: https://osxdaily.com/2012/04/18/zoom-camera-iphone/, Apr. 18, 2012, 6 pages. |
Peckham James, “What is Apple Clips? Plus we teach you how to use it”, Available online at: https://www.techradar.com/how-to/what-is-apple-clips-and-how-to-use-it, Jul. 20, 2017, 11 pages. |
Ritchie Rene, “Clips app: The ultimate guide”, Available online at: https://www.imore.com/clips, May 13, 2017, 16 pages. |
Schiffhauer Alexander, “See the Light with Night Sight”, Available online at: https://www.blog.google/products/pixel/see-light-night-sight, Nov. 14, 2018, 6 pages. |
European Search Report received for European Patent Application No. 21163791.3, dated May 6, 2021, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/825,879, dated May 5, 2021, 12 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7021870, dated Apr. 26, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/271,583, dated May 10, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/840,719, dated Apr. 30, 2021, 13 pages. |
Office Action received for European Patent Application No. 21157252.4, dated Apr. 23, 2021, 8 pages. |
Office Action received for Indian Patent Application No. 202018006172, dated May 5, 2021, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/840,719, dated May 14, 2021, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 16/528,941, dated May 19, 2021, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/599,433, dated May 14, 2021, 11 pages. |
Office Action received for European Patent Application No. 20210373.5, dated May 10, 2021, 9 pages. |
Decision on Appeal received for Japanese Patent Application No. 2018-225131, mailed on Mar. 11, 2021, 5 pages (4 pages of English Translation and 1 page of Official Copy). |
Decision on Appeal received for Japanese Patent Application No. 2018-545502, mailed on Mar. 25, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/049101, dated Mar. 25, 2021, 17 pages. |
Notice of Allowance received for Chinese Patent Application No. 201910864074.2, dated Mar. 10, 2021, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 202010287953.6, dated Mar. 18, 2021, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010287950.2, dated Feb. 20, 2021, 22 pages (10 pages of English Translation and 12 pages of Official Copy). |
Office Action received for Indian Patent Application No. 201917053025, dated Mar. 19, 2021, 7 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Mar. 29, 2021, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/528,941, dated Jan. 30, 2020, 14 pages. |
Office Action received for Australian Patent Application No. 2020100189, dated Apr. 1, 2020, 3 pages. |
Certificate of Examination received for Australian Patent Application No. 2020101043, dated Dec. 22, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 18183054.8, dated Jan. 21, 2021, 3 pages. |
Intention to Grant received for Danish Patent Application No. PA201970603, dated Jan. 13, 2021, 2 pages. |
Intention to Grant received for European Patent Application No. 18209460.7, dated Jan. 15, 2021, 8 pages. |
Office Action received for European Patent Application No. 20206196.6, dated Jan. 13, 2021, 10 pages. |
Office Action received for European Patent Application No. 20206197.4, dated Jan. 12, 2021, 9 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010287961.0, dated Mar. 9, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 202010287975.2, dated Mar. 1, 2021, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010218168.5, dated Feb. 9, 2021, 21 pages (9 pages of English Translation and 12 pages of Official Copy). |
Office Action received for Indian Patent Application No. 201814036470, dated Feb. 26, 2021, 7 pages. |
Office Action received for Korean Patent Application No. 10-2021-0022053, dated Mar. 1, 2021, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Mar. 9, 2021, 21 pages. |
European Search Report received for European Patent Application No. 20206197.4, dated Nov. 30, 2020, 4 pages. |
Examiner Initiated-Interview Summary received for U.S. Appl. No. 16/528,941, dated Dec. 1, 2020, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/528,941, dated Dec. 7, 2020, 15 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019266049, dated Nov. 24, 2020, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2019-7027042, dated Nov. 26, 2020, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2020-0155924, dated Nov. 23, 2020, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/271,583, dated Dec. 9, 2020, 6 pages. |
Office Action received for Chinese Patent Application No. 201910692978.1, dated Nov. 4, 2020, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-7021870, dated Nov. 11, 2020, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-7031855, dated Nov. 24, 2020, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
AstroVideo, “AstroVideo enables you to use a low-cost, low-light video camera to capture astronomical images”, Available online at: https://www.coaa.co.uk/astrovideo.htm, Retrieved on: Nov. 18, 2019, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,097, dated Nov. 8, 2019, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/191,117, dated Nov. 20, 2019, 2 pages. |
Gibson, Andrew'S., “Aspect Ratio: What it is and Why it Matters”, Retrieved from: https://web.archive.org/web/20190331225429/https:/digital-photography-school.com/aspect-ratio-what-it-is-and-why-it-matters/, Mar. 31, 2019, 10 pages. |
Hernández, Carlos, “Lens Blur in the New Google Camera App” Available online at: https://research.googleblog.com/2014/04/lens-blur-in-new-google-camera-app.html, Apr. 16, 2014, 6 pages. |
ILUVTRADING, “Galaxy S10 / S10+ How to Use Bright Night Mode for Photos (Super Night Mode)”, Online Available at: https://www.youtube.com/watch?v=SfZ7Us1S1Mk, Mar. 11, 2019, 4 pages. |
ILUVTRADING, “Super Bright Night Mode: Samsung Galaxy S1O vs. Huawei P30 Pro (Review/How to/Explained)”, Online Available at: https://www.youtube.com/watch?v=d4r3PWioY4Y, Apr. 26, 2019, 4 pages. |
KK World, “Redmi Note 7 Pro Night Camera Test | Night Photography with Night Sight & Mode”, Online Available at: https://www.youtube.com/watch?v=3EKJGBjX3PY, Mar. 26, 2019, 4 pages. |
Office Action received for Chinese Patent Application No. 201780002533.5, dated Sep. 26, 2019, 21 pages (9 pages of English Translation and 12 pages of Official Copy). |
Shaw et al., “Skills for Closeups Photography”, Watson-Guptill Publications, Nov. 1999, 5 pages (Official Copy Only) {See Communication under 37 CFR § 1.98(a) (3)}. |
shiftdelete.net, “Oppo Reno 10× Zoom on Inceleme—Huawei P30 Pro'ya rakip mi geliyor?”, Available online at: https://www.youtube.com/watch?v=ev2wlUzldrg, Apr. 24, 2019, 2 pages. |
“Sony Xperia XZ3 Camera Review—The Colors, Duke, The Colors!”, Android Headlines—Android News & Tech News, Available online at: https://www.youtube.com/watch?v=mwpYXzVWOgw, Nov. 3, 2018, 3 pages. |
Sony, “User Guide, Xperia XZ3, H8416/H9436/H9493” Sony Mobile Communications Inc., Retrieved from: https://www-support-downloads.sonymobile.com/h8416/userguide_EN_H8416-H9436-H9493_2_Android9.0.pdf, 2018, 121 pages. |
The Nitpicker, “Sony Xperia | In-depth Preview”, Available online at: https://www.youtube.com/watch?v=TGCKxBuiO5c, Oct. 7, 2018, 3 pages. |
XEETECHCARE, “Samsung Galaxy S10—Super Night Mode & Ultra Fast Charging!”, Online Available at: htips://www.youtube.com/watch?v=3bguV4FX6aA, Mar. 28, 2019, 4 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/528,941, dated Nov. 10, 2020, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/733,718, dated Nov. 2, 2020, 4 pages. |
Intention to Grant received for European Patent Application No. 18183054.8, dated Nov. 5, 2020, 6 pages. |
Office Action received for Chinese Patent Application No. 201910864074.2, dated Sep. 23, 2020, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201970592, dated Oct. 26, 2020, 5 pages. |
Office Action received for European Patent Application 17809168.2, dated Oct. 8, 2020, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/191,117, dated Dec. 9, 2019, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/271,583, dated Nov. 29, 2019, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/582,595, dated Nov. 26, 2019, 17 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,396, dated Nov. 27, 2019, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,044, dated Dec. 11, 2019, 15 pages. |
European Search Report received for European Patent Application No. 20206196.6, dated Dec. 8, 2020, 4 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/031643, dated Dec. 2, 2020, 33 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020267151, dated Dec. 9, 2020, 3 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/017363, dated Aug. 12, 2019, 12 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2019/017363, dated Jun. 17, 2019, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/995,040, dated May 16, 2019, 24 pages. |
Notice of Allowance received for U.S. Appl. No. 15/728,147, dated Aug. 19, 2019, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,097, dated Aug. 29, 2019, 23 pages. |
Office Action received for Chinese Patent Application No. 201810566134.8, dated Aug. 13, 2019, 14 pages (8 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201870366, dated Aug. 22, 2019, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/271,583, dated Jul. 14, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/995,040, dated Jul. 27, 2020, 4 pages. |
Intention to Grant received for Danish Patent Application No. PA201970601, dated Sep. 21, 2020, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/031643, dated Sep. 9, 2020, 30 pages. |
Notice of Allowance received for Chinese Patent Application No. 201911219525.3, dated Sep. 29, 2020, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Australian Patent Application No. 2020201969, dated Sep. 25, 2020, 5 pages. |
Office Action received for European Patent Application No. 19204230.7, dated Sep. 28, 2020, 6 pages. |
Result of Consultation received for European Patent Application No. 19204230.7, dated Sep. 24, 2020, 5 pages. |
Advisory Action received for U.S. Appl. No. 16/144,629, dated Jan. 6, 2021, 10 pages. |
Office Action received for Australian Patent Application No. 2020277216, dated Dec. 17, 2020, 5 pages. |
Office Action received for Chinese Patent Application No. 202010287961.0, dated Dec. 30, 2020, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010287975.2, dated Dec. 30, 2020, 17 pages (9 pages of English Translation and 8 pages of Official Copy). |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 17184710.6, mailed Mar. 9, 2020, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,629, dated Mar. 13, 2020, 24 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/599,433, dated Apr. 20, 2021, 7 pages. |
European Search Report received for European Patent Application No. 20210373.5, dated Apr. 13, 2021, 4 pages. |
European Search Report received for European Patent Application No. 21157252.4, dated Apr. 16, 2021, 4 pages. |
Intention to Grant received for Danish Patent Application No. PA201970593, dated Apr. 13, 2021, 2 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020201969, dated Mar. 26, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020277216, dated Mar. 15, 2021, 3 pages. |
Office Action received for European Patent Application No. 20168009.7, dated Apr. 20, 2021, 6 pages. |
Office Action received for Japanese Patent Application No. 2020-193703, dated Apr. 19, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Notice of Acceptance received for Australian Patent Application No. 2021254567, dated Nov. 17, 2021, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010601484.0, dated Nov. 23, 2021, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-0022053, dated Nov. 23, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for European Patent Application No. 20210373.5, dated Dec. 9, 2021, 7 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/190,879, dated Oct. 26, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/599,433, dated Oct. 14, 2021, 3 pages. |
Decision to Grant received for European Patent Application No. 17809168.2, dated Oct. 21, 2021, 3 pages. |
Decision to Grant received for Japanese Patent Application No. 2019-203399, dated Oct. 20, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/034304, dated Oct. 11, 2021, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/190,879, dated Oct. 13, 2021, 10 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020260413, dated Oct. 14, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Oct. 20, 2021, 24 pages. |
Office Action received for Indian Patent Application No. 201818045872, dated Oct. 13, 2021, 7 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/599,433, dated Aug. 13, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Aug. 18, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/825,879, dated Aug. 13, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Aug. 10, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Aug. 13, 2021, 2 pages. |
Decision to Grant received for Japanese Patent Application No. 2020-193703, dated Aug. 10, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/528,941, dated Aug. 10, 2021, 5 pages. |
Office Action received for Chinese Patent Application No. 202010600197.8, dated Jul. 2, 2021, 14 pages (6 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-203399, dated Aug. 10, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Advisory Action received for U.S. Appl. No. 09/757,006, dated Apr. 11, 2006, 3 pages. |
Advisory Action received for U.S. Appl. No. 09/757,006, dated Feb. 11, 2005, 3 pages. |
Advisory Action received for U.S. Appl. No. 09/757,006, dated Jul. 6, 2004, 3 pages. |
Android Police, “Galaxy S9+ In-depth Camera Review”, See Especially 0:43-0:53; 1:13-1:25; 1:25-1:27; 5:11-5:38; 6:12-6:26, Available Online at https://www,youtube.com/watch?v=GZHYCdMCv-w, Apr. 19, 2018, 3 pages. |
Brett, “How to Create Your AR Emoji on the Galaxy S9 and S9+”, Available online at: https://www.youtube.com/watch?v=HHMdcBpC8MQ, Mar. 16, 2018, 5 pages. |
Certificate of Examination received for Australian Patent Application No. 2017100683, dated Jan. 16, 2018, 2 pages. |
Certificate of Examination received for Australian Patent Application No. 2019100420, dated Jul. 3, 2019, 2 pages. |
Channel Highway, “Virtual Makeover in Real-time and in Full 3d”, Available online at:—https://www.youtube.com/watch?v=NgUbBzb5qZg, Feb. 16, 2016, 1 page. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/641,251, dated Jun. 17, 2016, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/268,115, dated Apr. 13, 2018, 11 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/268,115, dated Mar. 21, 2018, 9 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/273,453, dated Dec. 21, 2017, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/273,453, dated Feb. 8, 2018, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/273,453, dated Nov. 27, 2017, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/273,503, dated Nov. 2, 2017, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/273,503, dated Nov. 24, 2017, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/858,175, dated Sep. 21, 2018, 2 pages. |
Dan, “Teaches Windows 98,”, 1998, pp. 281, 286, 503. |
Decision of Refusal received for Japanese Patent Application No. 2018-243463, dated Feb. 25, 2019, 8 pages (5 pages of English Translation and 3 pages of Official copy). |
Decision of Refusal received for Japanese Patent Application No. 2018-545502, dated Feb. 25, 2019, 11 pages (7 pages of English Translation and 4 pages of Official copy). |
Decision to Grant received for Danish Patent Application No. PA201570788, dated Jul. 10, 2017, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201570791, dated Jun. 7, 2017, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201670627, dated Nov. 29, 2018, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201670753, dated Mar. 6, 2019, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201670755, dated Mar. 6, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 12181460.2, dated Mar. 3, 2016, 2 pages. |
Decision to Grant received for European Patent Application No. 15712218.5, dated Jun. 7, 2018, 2 pages. |
Decision to Refuse received for European Patent Application No. 02708976.2, dated Mar. 10, 2014, 4 pages. |
Decision to Refuse received for Japanese Patent Application No. 2018-225131, dated Jul. 8, 2019, 6 pages (4 pages of English Translation and 2 pages of Official copy). |
Decision to Refuse received for Japanese Patent Application No. 2018-243463, dated Jul. 8, 2019, 5 pages (3 pages of English Translation and 2 pages of Official copy). |
Decision to Refuse received for Japanese Patent Application No. 2018-545502, dated Jul. 8, 2019, 5 pages (3 pages of English Translation and 2 pages of Official copy). |
Digital Trends, “Modiface Partners with Samsung to Bring AR Makeup to the Galaxy S9”, Available online at:—https://www.digitaltrends.com/mobile/modiface-samsung-partnership-ar-makeup-galaxy-s9/, 2018, 16 pages. |
European Search Report received for European Patent Application No. 12181460.2, dated Mar. 4, 2013, 8 pages. |
European Search Report received for European Patent Application No. 18209460.7, dated Mar. 15, 2019, 4 pages. |
European Search Report received for European Patent Application No. 18214698.5, dated Mar. 21, 2019, 5 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 09/757,006, mailed on Oct. 11, 2006, 13 pages. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 17184710.6, dated Nov. 28, 2017, 10 pages. |
Extended European Search Report received for European Patent Application No. 16784025.5, dated Apr. 16, 2018, 11 pages. |
Extended Search Report received for European Patent Application 17809168.2, dated Jun. 28, 2018, 9 pages. |
Fedko, Daria, “AR Hair Styles”, Online Available at https://www.youtube.com/watch?v=FrS6tHRbFE0, Jan. 24, 2017, 2 pages. |
Final Office Action received for U.S. Appl. No. 09/757,006, dated Dec. 2, 2005, 9 pages. |
Final Office Action received for U.S. Appl. No. 09/757,006, dated Feb. 11, 2004, 13 pages. |
Final Office Action received for U.S. Appl. No. 09/757,006, dated Oct. 22, 2004, 13 pages. |
Final Office Action received for U.S. Appl. No. 11/980,571, dated Aug. 18, 2011, 13 pages. |
Final Office Action received for U.S. Appl. No. 13/335,838, dated Feb. 27, 2017, 13 pages. |
Final Office Action received for U.S. Appl. No. 13/335,838, dated Jul. 15, 2016, 12 pages. |
Final Office Action received for U.S. Appl. No. 13/335,838, dated Oct. 8, 2015, 12 pages. |
Final Office Action received for U.S. Appl. No. 15/268,115, dated Oct. 11, 2017, 48 pages. |
Final Office Action received for U.S. Appl. No. 15/728,147, dated Aug. 29, 2018, 39 pages. |
Final Office Action received for U.S. Appl. No. 15/728,147, dated May 28, 2019, 45 pages. |
Final Office Action received for U.S. Appl. No. 16/143,396, dated Jun. 20, 2019, 14 pages. |
Franks Tech Help, “DSLR Camera Remote Control on Android Tablet, DSLR Dashboard, Nexus 10, Canon Camera, OTG Host Cable”, Available online at: https://www.youtube.com/watch?v=DD4dCVinreU, Dec. 10, 2013, 1 page. |
Fuji Film, “Taking Pictures Remotely: Free iphone/android App Fuji Film Camera Remote”, Available at <http://app.fujifilm-dsc.com/en/camera_remote/guide05.html>, Apr. 22, 2014, 3 pages. |
Gadgets Portal, “Galaxy J5 Prime Camera Review! (vs J7 Prime) 4k”, Available Online at:—https://www.youtube.com/watch?v=Rf2Gy8QmDqc, Oct. 24, 2016, 3 pages. |
Gavin's Gadgets, “Honor 10 Camera App Tutorial—How to Use All Modes +90 Photos Camera Showcase”, See Especially 2:58-4:32, Available Online at <https:/www.youtube.com/watch?v=M5XZwXJcK74>, May 26, 2018, 3 pages. |
GSM Arena, “Honor 10 Review—Page 5 Camera”, Available Online at <https://web.archive.org/web/20180823142417/https://www.gsmarena.com/honor_10-review-1771p5.php>, Aug. 23, 2018, 11 pages. |
Hall, Brent, “Samsung Galaxy Phones Pro Mode (s7/s8/s9/note 8/note 9): When, Why, & How to Use It”, See Especially 3:18-5:57, Available Online at <https://www.youtube.com/watch?v=KwPxGUDRkTg>, Jun. 19, 2018, 3 pages. |
HELPVIDEOSTV, “How to Use Snap Filters on Snapchat”, Retrieved from <https://www.youtube.com/watch?v=oR-7cIWPszU&feature=youtu.be>, Mar. 22, 2017, pp. 1-2. |
Huawei Mobile PH, “Huawei P10 Tips & Tricks: Compose Portraits with Wide Aperture (bokeh)”, Available Online at <https://www.youtube.com/watch?v=WM4yo5-hrrE>, Mar. 30, 2017, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201570788, dated Mar. 27, 2017, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201570791, dated Mar. 7, 2017, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201670627, dated Jun. 11, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201670753, dated Oct. 29, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201670755, dated Nov. 13, 2018, 2 pages. |
Intention to Grant received for European Patent Application No. 12181460.2 dated Sep. 22, 2015, 6 pages. |
Intention to Grant received for European Patent Application No. 15712218.5, dated Jan. 24, 2018, 7 pages. |
International Preliminary Report on Patentability and Written Opinion received for PCT Application No. PCT/US2016/029030, dated Nov. 2, 2017, 35 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2002/000483, completed on Mar. 17, 2003, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/019298, dated Mar. 16, 2017, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/035321, dated Dec. 27, 2018, 11 pages. |
International Search Report & Written Opinion received for PCT Patent Application No. PCT/US2016/029030, dated Aug. 5, 2016, 37 pages. |
International Search Report and Wrillen Opinion received for PCT Patent Application No. PCT/US2015/019298, dated Jul. 13, 2015, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/035321, dated Oct. 6, 2017, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/015591, dated Jun. 14, 2018, 14 pages. |
International Search Report received for PCT Patent Application No. PCT/US2002/000483, dated May 17, 2002, 1 page. |
Invitation to Pay Addition Fees received for PCT Patent Application No. PCT/US2017/035321, dated Aug. 17, 2017, 3 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2019/024067, dated Jul. 16, 2019, 13 pages. |
“Iphone User Guide for ios 4.2 and 4.3 Software”, Available at: https://manuals.info.apple.com/MANUALS/1000/MA1539/en_US/iPhone_iOS4_User_Guide.pdf, 2011, 274 pages. |
Kozak, Tadeusz, “When You're Video Chatting on Snapchat, How Do You Use Face Filters?”, Quora, Online Available at: https://www.quora.com/When-youre-video-chatting-on-Snapchat-how-do-you-use-face-filters, Apr. 29, 2018, 1 page. |
Lang, Brian, “How to Audio & Video Chat with Multiple Users at the Same Time in Groups”, Snapchat 101, Online Available at: <https://smartphones.gadgethacks.com/how-to/snapchal-101-audio-video-chat-with-multiple-users-same-time-groups-0184113/>, Apr. 17, 2018, 4 pages. |
MOBISCRUB, “Galaxy S4 Mini Camera Review”, Available Online at:—https://www.youtube.com/watch?v=KYKOydw8QT8, Aug. 10, 2013, 3 pages. |
MOBISCRUB, “Samsung Galaxy S5 Camera Review—HD Video”, Available Online on: —https://www.youtube.com/watch?v=BFgwDtNKMjg, Mar. 27, 2014, 3 pages. |
MODIFACECHANNEL, “Sephora 3d Augmented Reality Mirror”, Available Online at: https://www.youtube.com/watch?v=wwBO4PU9EXI, May 15, 2014, 1 page. |
“Nero5 Burning Rom Brief Instructions”, Ahead Software GMBH, Available at URL:http://www.liteonit.com/ODD/Zip/nero_eng.pdf, 2001, 34 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/335,838, dated Jan. 16, 2015, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/335,838, dated Mar. 24, 2016, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/335,838, dated Nov. 4, 2016, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/869,807, dated Dec. 2, 2016, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/136,323, dated Apr. 6, 2017, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/268,115, dated Apr. 13, 2017, 44 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/273,522, dated Nov. 30, 2016, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/273,544, dated May 25, 2017, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/728,147, dated Feb. 22, 2018, 20 pages. |
Nou-Final Office Action received for U.S. Appl. No. 15/728,147, dated Jan. 31, 2019, 41 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/863,369, dated Apr. 4, 2018, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/143,396, dated Jan. 7, 2019, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 09/757,006, dated May 20, 2005, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 09/757,006, dated Sep. 5, 2003, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/980,571, dated Dec. 23, 2010, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/980,571, dated Jun. 7, 2013, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/143,097, dated Feb. 28, 2019, 17 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016252993, dated Dec. 19, 2017, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017286130, dated Apr. 26, 2019, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201210308862.1, dated Jul. 7, 2016, 4 pages (2 pages of English Translation and 2 pages of Official copy). |
Notice of Allowance received for Chinese Patent Application No. 201580046237.6, dated Aug. 29, 2018, 4 pages (1 page of English Translation and 3 pages of Official copy). |
Notice of Allowance received for Chinese Patent Application No. 201680023520.1, dated Jun. 28, 2019, 2 pages (1 page of English Translation and 1 page of Official copy). |
Notice of Allowance received for Chinese Patent Application No. 201810664927.3, dated Jul. 19, 2019, 2 pages (1 page of English Translation and 1 page of Official copy). |
Notice of Allowance received for Japanese Patent Application No. 2018-171188, dated Jul. 16, 2019, 3 pages (1 page of English Translation and 2 pages of Official copy). |
Notice of Allowance received for Korean Patent Application No. 10-2018-7026743, dated Mar. 20, 2019, 7 pages (1 page of English Translation and 6 pages of Official copy). |
Notice of Allowance received for Korean Patent Application No. 10-2018-7028849, dated Feb. 1, 2019, 4 pages (1 page of English Translation and 3 pages of Official copy). |
Notice of Allowance received for Korean Patent Application No. 10-2018-7034780, dated Jun. 19, 2019, 4 pages (1 page of English Translation and 3 pages of Official copy). |
Notice of Allowance received for Korean Patent Application No. 10-2018-7036893, dated Jun. 12, 2019, 4 pages (1 page of English Translation and 3 pages of Official copy). |
Notice of Allowance received for Taiwanese Patent Application No. 104107328, dated Jun. 12, 2017, 3 pages (Official copy only) (See Communication under 37 CFR§ 1.98(a) (3)). |
Notice of Allowance received for U.S. Appl. No. 11/980,571, dated May 9, 2014, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/335,838, dated Nov. 24, 2017, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/641,251, dated May 18, 2016, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 14/869,807, dated Jun. 21, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/869,807, dated Oct. 10, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/136,323, dated Feb. 28, 2018, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/136,323, dated Oct. 12, 2017, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/268,115, dated Mar. 7, 2018, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,453, dated Oct. 12, 2017, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,503, dated Aug. 14, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,522, dated Mar. 28, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,522, dated May 19, 2017, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,522, dated May 23, 2017, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,544, dated Mar. 13, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/273,544, dated Oct. 27, 2017, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/858,175, dated Jun. 1, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/858,175, dated Sep. 12, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/863,369, dated Jun. 28, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/975,581, dated Oct. 3, 2018, 25 pages. |
Notice of Allowance received for U.S. Appl. No. 16/110,514, dated Apr. 29, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/110,514, dated Mar. 13, 2019, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,201, dated Feb. 8, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,201, dated Nov. 28, 2018, 14 pages. |
Office Action received for Australian Patent Application No. 2017100683, dated Sep. 20, 2017, 3 pages. |
Office Action received for Australian Patent Application No. 2017100684, dated Jan. 24, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2017100684, dated Oct. 5, 2017, 4 pages. |
Office Action received for Australian Patent Application No. 2017286130, dated Jan. 21, 2019, 4 pages. |
Office Action received for Chinese Patent Application No. 201210308862.1, dated Apr. 23, 2015, 10 pages (3 pages of English Translation and 7 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201210308862.1, dated Jan. 26, 2016, 8 pages (3 pages of English Translation and 5 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201580046237.6, dated Feb. 6, 2018, 10 pages (5 pages of English Translation and 5 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201680023520.1, dated Jan. 3, 2019, 10 pages (5 pages of English Translation and 5 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201780002533.5, dated Apr. 25, 2019, 17 pages (7 pages of English Translation and 10 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201810664927.3, dated Mar. 28, 2019, 11 pages (5 pages of English Translation and 6 pages of Official copy). |
Office Action received for Danish Patent Application No. PA201570788, dated Apr. 8, 2016, 11 pages. |
Office Action received for Danish Patent Application No. PA201570788, dated Sep. 13, 2016, 3 pages. |
Office Action received for Danish Patent Application No. PA201570791, dated Apr. 6, 2016, 12 pages. |
Office Action received for Danish Patent Application No. PA201570791, dated Sep. 6, 2016, 4 pages. |
Office Action received for Danish Patent Application No. PA201670627, dated Apr. 5, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201670627, dated Nov. 6, 2017, 2 pages. |
Office Action received for Danish Patent Application No. PA201670627, dated Oct. 11, 2016, 8 pages. |
Office Action received for Danish Patent Application No. PA201670753, dated Dec. 20, 2016, 7 pages. |
Office Action received for Danish Patent Application No. PA201670753, dated Jul. 5, 2017, 4 pages. |
Office Action received for Danish Patent Application No. PA201670753, dated Mar. 23, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201670755, dated Apr. 6, 2017, 5 pages. |
Office Action received for Danish Patent Application No. PA201670755, dated Apr. 20, 2018, 2 pages. |
Office Action received for Danish Patent Application No. PA201670755, dated Dec. 22, 2016, 6 pages. |
Office Action received for Danish Patent Application No. PA201670755, dated Oct. 20, 2017, 4 pages. |
Office Action received for Danish Patent Application No. PA201770563, dated Aug. 13, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201770563, dated Jun. 28, 2019, 5 pages. |
Office Action received for Danish Patent Application No. PA201770719, dated Aug. 14, 2018, 6 pages. |
Office Action received for Danish Patent Application No. PA201770719, dated Feb. 19, 2019, 4 pages. |
Office Action received for Danish Patent Application No. PA201870366, dated Dec. 12, 2018, 3 pages. |
Office Action received for Danish Patent Application No. PA201870367, dated Dec. 20, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201870368, dated Dec. 20, 2018, 5 pages. |
Office Action received for European Patent Application No. 02708976.2, dated Jan. 11, 2011, 7 pages. |
Office Action received for European Patent Application No. 02708976.2, dated Mar. 18, 2010, 6 pages. |
Office Action received for European Patent Application No. 12181460.2, dated Jan. 16, 2014, 6 pages. |
Office Action received for European Patent Application No. 15712218.5, dated Aug. 3, 2017, 4 pages. |
Office Action received for European Patent Application No. 17184710.6, dated Dec. 21, 2018, 7 pages. |
Office Action received for European Patent Application No. 18176890.4, dated Oct. 16, 2018, 8 pages. |
Office Action received for European Patent Application No. 18183054.8, dated Nov. 16, 2018, 8 pages. |
Office Action received for European Patent Application No. 18209460.7, dated Apr. 10, 2019, 7 pages. |
Office Action received for European Patent Application No. 18214698.5, dated Apr. 2, 2019, 8 pages. |
Office Action received for Japanese Patent Application No. 2018-225131, dated Mar. 4, 2019, 10 pages (6 pages of English Translation and 4 pages of Official copy). |
Office Action received for Korean Patent Application No. 10-2018-7026743, dated Jan. 17, 2019, 5 pages (2 pages of English Translation and 3 pages of Official copy). |
Office Action received for Korean Patent Application No. 10-2018-7034780, dated Apr. 4, 2019, 11 pages (5 pages of English Translation and 6 pages of Official copy). |
Office Action received for Korean Patent Application No. 10-2018-7036893, dated Apr. 9, 2019, 6 pages (2 pages of English Translation and 4 pages of Official copy). |
Office Action received for Taiwanese Patent Application No. 104107328, dated Dec. 28, 2016, 4 pages (1 page of Search Report and 3 pages of Official copy). |
Paine, Steve, “Samsung Galaxy Camera Detailed Overview—User Interface”, Retrieved from: https://www.youtube.com/watch?v=td8UYSySulo&feature=youtu.be, Sep. 18, 2012, pp. 1-2. |
PC World, “How to Make AR Emojis on the Samsung Galaxy S9”, You Tube, Available Online: https://www.youtube.com/watch?v=8wQICfulkz0, Feb. 25, 2018, 2 pages. |
PHONEARENA, “Sony Xperia Z5 Camera App and UI Overview”, Retrieved from https://www.youtube.com/watch?v=UtDzdTsmkfU&feature=youtu.be, Sep. 8, 2015, pp. 1-3. |
Playmemories Camera Apps, “Playmemories Camera Apps Help Guide”, available at: https://www.playmemoriescameraapps.com/portal/manual/IS9104-NPIA09014_00-F00002/en/index.html, 2012, 3 pages. |
“Remote Shot for Smartwatch 2”, Available online at:—https://play.google.com/store/apps/details?id=net.watea.sw2.rshot&h1=en, Nov. 21, 2017, 3 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201770563, dated Oct. 10, 2017, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870366, dated Aug. 27, 2018, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870367, dated Aug. 27, 2018, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870368, dated Sep. 6, 2018, 7 pages. |
Search Report received for Danish Patent Application No. PA201770719, dated Oct. 17, 2017, 9 pages. |
Smart Reviews, “Honor10 Ai Camera's In-Depth Review”, See Especially 2:37-2:48; 6:39-6:49, Available Online at https://www.youtube.com/watch?v=oKFqRvxeDBQ, May 31, 2018, 2 pages. |
Snapchat Lenses, “How to Get All Snapchat Lenses Face Effect Filter on Android”, Retrieved from: https://www.youtube.com/watch?v=0PfnF1RInfw&feature=youtu.be, Sep. 21, 2015, pp. 1-2. |
Summons to Attend Oral Proceedings received for European Patent Application No. 02708976.2, mailed on Sep. 24, 2013, 9 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/136,323, dated Jan. 31, 2018, 6 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/863,369, dated Aug. 8, 2018, 4 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/143,201, dated Dec. 13, 2018, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/143,201, dated Dec. 19, 2018, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/143,201, dated Jan. 10, 2019, 2 pages. |
Supplementary European Search Report received for European Patent Application No. 02708976.2, dated Mar. 11, 2009, 3 pages. |
Supplementary European Search Report received for European Patent Application No. 18176890.4, dated Sep. 20, 2018, 4 pages. |
Supplementary European Search Report received for European Patent Application No. 18183054.8, dated Oct. 11, 2018, 4 pages. |
Tech, Smith, “Snagit 11 Snagit 11.4 Help”, Available at: http://assets.techsmith.com/Downloads/ua-tutorials-snagit-11/Snagit_11.pdf, Jan. 2014, 2 pages. |
TECHSMITH, “Snagit ® 11 Snagit 11.4 Help”, available at http://assets.techsmith.com/Downloads/ua-tutorials-snagit-11/Snagit_11.pdf, Jan. 2014, 146 pages. |
TECHTAG, “Samsung J5 Prime Camera Review | True Review”, Available online at:—https://www.youtube.com/watch?v=a_p906ai6PQ, Oct. 26, 2016, 3 pages. |
TECHTAG, “Samsung J7 Prime Camera Review (technical Camera)”, Available Online at:—https://www.youtube.com/watch?v=AJPcLP8GpFQ, Oct. 4, 2016, 3 pages. |
Travel Tech Sports Channel, “New Whatsapp Update—voice Message Recording Made Easy-want to Record Long Voice Messages”, Available Online at: https://www.youtube.com/watch?v=SEviqgsAdUk, Nov. 30, 2017, 13 pages. |
VICKGEEK, “Canon 80d Live View Tutorial | Enhance Your Image Quality”, Available online at: —https://www.youtube.com/watch?v=JGNCiy6W19c, Sep. 27, 2016, 3 pages. |
Vivo India, “Bokeh Mode | Vivo V9”, Available Online at <https://www.youtube.com/watch?v=B5AIHhH5Rxs>, Mar. 25, 2018, 3 pages. |
Wong, Richard, “Huawei Smartphone (p20/p10/p9, mate 10/9) Wide Aperture Mode Demo”, Available Online at https://www.youtube.com/watch?v=eLY3LsZGDPA, May 7, 2017, 2 pages. |
Xiao et al., “Expanding the Input Expressivity of Smartwatches with Mechanical Pan, Twist, Tilt and Click”, 14th Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 26, 2014, pp. 193-196. |
XPERIA Blog, “Action Camera Extension Gives Smartwatch/Smartband Owners Ability to Control Sony Wireless Cameras”, Available at http://www.xperiablog.net/2014/06/13/action-camera-extension-gives-smartwatchsmartband-owners-ability-to-control-sony-wireless-cameras/, Jun. 13, 2014, 10 pages. |
X-TECH, “Test Make up via Slick Augmented Reality Mirror Without Putting It on”, Available Online at: http://x-tech.am/test-make-up-via-slick-augmented-reality-mirror-without-putting-it-on/, Nov. 29, 2014, 5 pages. |
[B612] Addition of facial recognition bear/cat stamps and AR background function having moving sparkles or hearts, URL, htpps://apptopi.jp/2017/0I/22/b612, Jan. 22, 2017, 11 pages, Official copy only (See Communication under 37 CFR § 1.98(a) (3)). |
Non-Final Office Action received for U.S. Appl. No. 15/995,040, dated Apr. 15, 2020, 19 pages. |
Notice of Allowance received for Chinese Patent Application No. 201810566134.8, dated Apr. 7, 2020, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-182607, dated Apr. 6, 2020, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 16/825,879, dated Sep. 15, 2021, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201970593, dated Sep. 7, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010218168.5, dated Aug. 25, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 202010287958.9, dated Aug. 27, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for European Patent Application No. 18704732.9, dated Sep. 7, 2021, 10 pages. |
Office Action received for European Patent Application No. 20206197.4, dated Aug. 27, 2021, 6 pages. |
Decision to Grant received for Danish Patent Application No. PA201970601, dated Feb. 3, 2021, 2 pages. |
NEUROTECHNOLOGY,“Sentimask SDK”, Available at: https://www.neurotechnology.com/sentimask.html, Apr. 22, 2018, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/599,433, dated Jan. 28, 2021, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Feb. 5, 2021, 14 pages. |
Office Action received for Chinese Patent Application No. 202010287953.6, dated Jan. 14, 2021, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010287958.9, dated Jan. 5, 2021, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201970593, dated Feb. 2, 2021, 2 pages. |
Office Action received for Korean Patent Application No. 10-2021-7000954, dated Jan. 28, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Pre-Appeal Review Report received for Japanese Patent Application No. 2018-182607, mailed on Jan. 21, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 19724959.2, mailed on Feb. 1, 2021,9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/995,040, dated Dec. 23, 2019, 5 pages. |
Certificate of Examination received for Australian Patent Application No. 2019100794, mailed on Dec. 19, 2019, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/015591, dated Dec. 19, 2019, 10 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018279787, dated Dec. 10, 2019, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/825,879, dated Jul. 23, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Jul. 28, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7019525, dated Jul. 13, 2021, 5 pages (1 page of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/271,583, dated Jul. 23, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Jul. 29, 2021, 26 pages. |
Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Jul. 23, 2021, 8 pages. |
Office Action received for Korean Patent Application No. 10-2021-7020693, dated Jul. 14, 2021, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Decision to Grant received for Japanese Patent Application No. 2020-070418, dated Feb. 8, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201910692978.1, dated Feb. 4, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201911202668.3, dated Feb. 4, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2021/034304, dated Aug. 20, 2021, 16 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010600151.6, dated Aug. 13, 2021, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-7000954, dated Aug. 18, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Australian Patent Application No. 2021103004, dated Aug. 12, 2021, 5 pages. |
Office Action received for Chinese Patent Application No. 202010287950.2, dated Aug. 10, 2021, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202011480411.7, dated Aug. 2, 2021, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-7022663, dated Aug. 17, 2021, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 16/733,718, dated Nov. 17, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/190,879, dated Nov. 19, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 16784025.5, dated Nov. 11, 2021, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/031643, dated Nov. 18, 2021, 27 pages. |
Office Action received for Danish Patent Application No. PA201770719, dated Nov. 16, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/584,100, dated Feb. 19, 2020, 3 pages. |
Applicant-Initiated interview Summary received for U.S. Appl. No. 16/586,344, dated Feb. 27, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/582,595, dated Apr. 7, 2020, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/582,595, dated Apr. 22, 2020, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,020, dated Mar. 24, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,044, dated Apr. 16, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,044, dated Jan. 29, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,044, dated Mar. 4, 2020. 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,100, dated Feb. 21, 2020, 9 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,693, dated Feb. 21, 2020, 15 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,693, dated Mar. 4, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,693, dated Mar. 20, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/586,314, dated Apr. 8, 2020, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/586,314, dated Mar. 4, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/586,344, dated Apr. 7, 2020, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/586,344, dated Jan. 23, 2020, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/586,344, dated Mar. 17, 2020, 4 pages. |
Intention to Grant received for European Patent Application No. 18214698.5, dated Apr. 21, 2020, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/271,583, dated May 6, 2020, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,020, dated Nov. 14, 2019, 9 pages. |
Notice of Allowance received for Chinese Patent Application No. 201780002533.5, dated Apr. 14, 2020, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2019-7035478, dated Apr. 24, 2020, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/582,595, dated Mar. 20, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,020, dated Apr. 1, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,020, dated Feb. 28, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,044, dated Mar. 30, 2020, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,044, dated Nov. 14, 2019, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,100, dated Apr. 8, 2020, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,100, dated Jan. 14, 2020, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,693, dated Jan. 15, 2020, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,693, dated May 4, 2020, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 16/586,314, dated Apr. 1, 2020, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/586,314, dated Jan. 9, 2020, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/586,344, dated Dec. 16, 2019, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 16/586,344, dated Mar. 27, 2020, 12 pages. |
Office Action received for Danish Patent Application No. PA201970592, dated Mar. 2, 2020, 5 pages. |
Office Action received for Danish Patent Application No. PA201970593, dated Apr. 16, 2020, 2 pages. |
Office Action received for Danish Patent Application No. PA201970593, dated Mar. 10, 2020, 4 pages. |
Office Action received for Danish Patent Application No. PA201970595, dated Mar. 10, 2020, 4 pages. |
Office Action received for Danish Patent Application No. PA201970600, dated Mar. 9, 2020, 5 pages. |
Office Action received for Danish Patent Application No. PA201970601, dated Jan. 31, 2020, 3 pages. |
Office Action received for Danish Patent Application No. PA201970601, dated Nov. 11, 2019, 8 pages. |
Office Action received for Danish Patent Application No. PA201970605, dated Mar. 10, 2020, 5 pages. |
Office Action received for European Patent Application No. 18209460.7, dated Apr. 21, 2020, 5 pages. |
Office Action received for European Patent Application No. 19724959.2, dated Apr. 23, 2020, 10 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970592, dated Nov. 7, 2019, 8 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970593, dated Oct. 29, 2019, 10 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970595, dated Nov. 8, 2019, 16 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970600, dated Nov. 5, 2019, 11 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970603, dated Nov. 15, 2019, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970605, dated Nov. 12, 2019, 10 pages. |
Decision to Grant received for European Patent Application No. 18214698.5, dated Sep. 10, 2020, 3 pages. |
Extended European Search Report received for European Patent Application No. 20168009.7, dated Sep. 11, 2020, 12 pages. |
Final Office Action received for U.S. Appl. No. 16/144,629, dated Sep. 11, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/733,718, dated Sep. 16, 2020, 25 pages. |
Office Action received for Chinese Patent Application No. 201811446867.4, dated Sep. 8, 2020, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Telleen et al., “Synthetic Shutter Speed Imaging”, University of California, Santa Cruz, vol. 26, No. 3, 2007, 8 pages. |
Tico et al., “Robust method of digital 1-15 image stabilization”, Nokia Research Center, ISCCSP, Malta, Mar. 12-14, 2008, pp. 316-321. |
Certificate of Examination received for Australian Patent Application No. 2020104220, dated Apr. 1, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 18209460.7, dated Apr. 9, 2021, 2 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021201167, dated Mar. 15, 2021, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-0052618, dated Mar. 23, 2021, 5 pages (2 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2020-7031855, dated Mar. 22, 2021, 5 pages (1 page of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/271,583, dated Apr. 14, 2021, 6 pages. |
Office Action received for Australian Patent Application No. 2019218241, dated Apr. 1, 2021, 3 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 19724959.2, mailed on Mar. 31, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/840,719, dated Jul. 8, 2021, 8 pages. |
Decision to Grant received for Japanese Patent Application No. 2020-184470, dated Jul. 1, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Decision to Grant received for Japanese Patent Application No. 2020-184471, dated Jul. 1, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Decision to Grant received for Japanese Patent Application No. 2021-051385, dated Jul. 8, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 16/144,629, dated Jul. 21, 2021, 21 pages. |
Feng et al., “3D Direct Human-Computer Interface Paradigm Based on Free Hand Tracking”, Chinese Journal of Computers, vol. 37, No. 6, Jun. 30, 2014, 15 pages (Official copy only) (See Communication under 37 CFR § 1.98(a) (3)). |
Intention to Grant received for European Patent Application No. 16784025.5, dated Jul. 15, 2021, 8 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021203210, dated Jul. 9, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/825,879, dated Jul. 13, 2021, 9 pages. |
Office Action received for Chinese Patent Application No. 202010601484.0, dated Jun. 3, 2021, 13 pages (6 pages of English Translation and 7 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/027,317, dated Dec. 21, 2020, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Jun. 14, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/027,484, dated May 14, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/027,484, dated May 28, 2021, 5 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 15/995,040, dated Jun. 23, 2021, 31 pages. |
Intention to Grant received for Danish Patent Application No. PA202070611, dated May 5, 2021, 2 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 19724959.2, mailed on Jun. 14, 2021, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/027,317, dated Nov. 17, 2020, 17 pages. |
Notice of Allowance received for U.S. Appl. No. 17/027,317, dated Apr. 12, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/027,317, dated Jan. 13, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/027,484, dated May 3, 2021, 11 pages. |
Office Action received for Danish Patent Application No. PA202070611, dated Dec. 22, 2020, 7 pages. |
Office Action received for European Patent Application No. 21163791.3, dated Jun. 2, 2021, 8 pages. |
Office Action received for Japanese Patent Application No. 2020-184470, dated May 10, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201811446867.4, dated Dec. 31, 2019, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201811512767.7, dated Dec. 20, 2019, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201770719, dated Jan. 17, 2020, 4 pages. |
Office Action received for European Patent Application 17809168.2, dated Jan. 7, 2020, 5 pages. |
Office Action received for Korean Patent Application No. 10-2019-7035478, dated Jan. 17, 2020, 17 pages (9 pages of English Translation and 8 pages of Official Copy). |
“Nikon Digital Camera D7200 User's Manual”, Online available at: https://download.nikonimglib.com/archive3/dbHI400jWws903mGr6q98a4k8F90/D7200UM_SG(En)05.pdf, 2005, 416 pages. |
Notice of Allowance received for U.S. Appl. No. 16/599,433, dated Oct. 4, 2021, 13 pages. |
Office Action received for Australian Patent Application No. 2020239717, dated Sep. 28, 2021, 6 pages. |
Office Action received for Indian Patent Application No. 201817024430, dated Sep. 27, 2021, 8 pages. |
Office Action received for Japanese Patent Application No. 2020-542592, dated Sep. 21, 2021, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Certificate of Examination received for Australian Patent Application No. 2021103004, dated Sep. 13, 2021, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/825,879, dated Sep. 28, 2021, 8 pages. |
Office Action received for European Patent Application No. 20168009.7, dated Sep. 13, 2021, 8 pages. |
Office Action received for Japanese Patent Application No. 2018-182607, dated Sep. 8, 2021, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201910692978.1, dated Apr. 3, 2020, 19 pages (8 pages of English Translation and 11 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/835,651, dated Nov. 10, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/190,879, dated Nov. 10, 2021, 8 pages. |
Office Action received for Japanese Patent Application No. 2019-566087, dated Oct. 18, 2021, 10 pages (6 pages of English Translation and 4 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/528,941, dated Jun. 19, 2020, 3 pages. |
Decision to Refuse received for European Patent Application No. 17184710.6, dated Jun. 16, 2020, 9 pages. |
Office Action received for Chinese Patent Application No. 201811512767.7, dated Jun. 4, 2020, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 19724959.2, dated Sep. 4, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/220,596, dated Aug. 18, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/220,596, dated Nov. 4, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/220,596, dated Nov. 18, 2021, 27 pages. |
Decision on Appeal received for U.S. Appl. No. 15/995,040, dated Dec. 29, 2021, 14 pages. |
Examiner-Initiated Interview Summary received for U.S. Appl. No. 17/220,596, dated Oct. 7, 2021, 2 pages. |
Extended European Search Report received for European Patent Application No. 21202358.4, dated Dec. 6, 2021, 8 pages. |
King, Julie A., “How to Check the Exposure Meter on Your Nikon D5500”, Online available at: https://www.dummies.com/article/home-auto-hobbies/photography/how-to-check-the-exposuremeter-on-your-nikon-d5500-142677, Mar. 26, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/220,596, dated Jun. 10, 2021, 31 pages. |
Notice of Allowance received for U.S. Appl. No. 17/220,596, dated Oct. 21, 2021, 43 pages. |
Office Action received for Australian Patent Application No. 2020239717, dated Dec. 15, 2021, 6 pages. |
Office Action received for Chinese Patent Application No. 202010287950.2, dated Nov. 19, 2021, 8 pages (5 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Indian Patent Application No. 202014041530, dated Dec. 8, 2021, 7 pages. |
Office Action received for Korean Patent Application No. 10-2021-7036337, dated Dec. 8, 2021, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Whitacre, Michele, “Photography 101 | Exposure Meter”, Online available at: https://web.archive.org/web/20160223055834/http://www.michelewhitacrephotographyblog.com, Feb. 23, 2016, 4 pages. |
Final Office Action received for U.S. Appl. No. 15/995,040, dated Sep. 2, 2020, 21 pages. |
Final Office Action received for U.S. Appl. No. 16/271,583, dated Aug. 26, 2020, 18 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019213341, dated Aug. 25, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2020100720, dated Sep. 1, 2020, 5 pages. |
Office Action received for Chinese Patent Application No. 201911202668.3, dated Aug. 4, 2020, 13 pages (7 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-225131, dated Aug. 17, 2020, 21 pages (6 pages of English Translation and 15 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-545502, dated Aug. 17, 2020, 14 pages (6 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-070418, dated Aug. 3, 2020, 22 pages (14 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-0052618, dated Aug. 18, 2020, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Number | Date | Country | |
---|---|---|---|
20200105003 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62739131 | Sep 2018 | US |