This relates generally to electronic devices with displays and, more particularly, to displays such as organic light-emitting diode (OLED) displays.
Electronic devices often include displays. For example, cellular telephones and portable computers typically include displays for presenting image content to users. OLED displays have an array of display pixels based on light-emitting diodes. In this type of display, each display pixel includes a light-emitting diode and associated thin-film transistors for controlling application of data signals to the light-emitting diode to produce light. It can be challenging to design a satisfactory OLED display for an electronic device.
An electronic device may include a display having an array of display pixels. The display pixels may be organic light-emitting diode display pixels. Each display pixel may include at least an organic light-emitting diode (OLED) that emits light and associated thin-film transistors for controlling the operation of the pixel to help reduce temperature luminance sensitivity for the display.
In accordance with some embodiments, a display is provided that includes gate driver circuitry and an array of pixels coupled to the gate driver circuitry. At least one pixel in the array can include: a light-emitting diode having an anode terminal; a drive transistor coupled in series with the light-emitting diode, the drive transistor having a gate terminal, a first source-drain terminal, and a second source-drain terminal; a data loading transistor having a first source-drain terminal coupled to the gate terminal of the drive transistor, a second source-drain terminal coupled to a data line, and a gate terminal configured to receive a first scan signal from the gate driver circuitry; and a gate voltage setting transistor having a first source-drain terminal coupled to the gate terminal of the drive transistor, a second source-drain terminal configured to receive a reference voltage, and a gate terminal configured to receive a second scan signal from the gate driver circuitry. The gate driver circuitry can be configured to assert the second scan signal during a threshold voltage sampling phase and to assert the first scan signal during a data programming phase. The data programming phase can have a first duration, and the threshold voltage sampling phase can have a second duration that is greater than the first duration. The second duration can be at least five to twenty times longer than the first duration.
The at least one pixel can further include an anode reset transistor having a first source-drain terminal coupled to the anode terminal of the light-emitting diode, a second source-drain terminal configured to receive an anode reset voltage, and a gate terminal configured to receive a third scan signal from the gate driver circuitry. The at least one pixel can further include an initialization transistor having a first source-drain terminal coupled to the second source-drain terminal of the drive transistor, a second source-drain terminal configured to receive an initialization voltage, and a gate terminal configured to receive the third scan signal. The gate driver circuitry can be configured to assert the second scan signal and the third scan signal during an initialization phase. The at least one pixel can further include a first emission transistor coupled between a positive power supply line and the first source-drain terminal of the drive transistor and a second emission transistor coupled between the second source-drain terminal of the drive transistor and the anode terminal. The first and second emission transistors can have gate terminals configured to receive an emission signal from the gate driver circuitry, where the gate driver circuitry is configured to assert the emission signal during the threshold voltage sampling phase. All of the transistors within the at least one pixel can be semiconducting oxide transistors.
In accordance with some embodiments, a method of operating a display is provided. The display can include gate driver circuitry and an array of pixels each of which includes at least a light-emitting diode, a drive transistor, a data loading transistor, a gate voltage setting transistor, and a storage capacitor. The method can include: during a threshold voltage sampling phase, sampling a threshold voltage of the drive transistor onto the storage capacitor by asserting, with the gate driver circuitry, a second scan signal to activate the gate voltage setting transistor; and during a data programming phase, loading data onto the storage capacitor by asserting, with the gate driver circuitry, a first scan signal to activate the data loading transistor. The data programming phase can occur after the threshold voltage sampling phase during a data refresh operation. The threshold voltage sampling phase can have a duration that is at least ten to twenty times longer than the duration of the data programming phase.
The method can further include resetting an anode of the light-emitting diode by asserting, with the gate driver circuitry, a third scan signal to activate the anode reset transistor during an initialization phase. The method can further include applying a bias voltage to the drive transistor by asserting, with the gate driver circuitry, the third scan signal to activate the initialization transistor during the initialization phase. Each pixel can include one or two emission transistors. At least one of the emission transistors can be deactivated during the initialization phase and activated during the threshold voltage sampling phase.
In accordance with some embodiments, a display pixel is provided that includes: a light-emitting diode having an anode terminal; a drive transistor coupled in series with the light-emitting diode, the drive transistor having a first source-drain terminal, a second source-drain terminal, and a gate terminal; a data loading transistor having a first source-drain terminal coupled to the gate terminal of the drive transistor, a second source-drain terminal coupled to a data line, and a gate terminal configured to receive a first scan signal; a gate voltage setting transistor having a first source-drain terminal coupled to the gate terminal of the drive transistor, a second source-drain terminal configured to receive a reference voltage, and a gate terminal configured to receive a second scan signal; an emission transistor coupled in series with the light-emitting diode and the drive transistor, the emission transistor having a gate terminal configured to receive an emission signal; and an anode reset transistor having a first source-drain terminal coupled to the anode terminal, a second source-drain terminal configured to receive a reset voltage, and a gate terminal configured to receive a third scan signal.
The display pixel can be operable in: (1) an initialization phase during which the gate voltage setting transistor and the anode reset transistor are activated; (2) a threshold voltage sampling phase during which the gate voltage setting transistor and the emission transistor are activated; and (3) a data programming phase during which the data loading transistor is activated. The threshold voltage sampling phase can have a duration selected to mitigate an amount by which the luminance varies as a function of temperature (i.e., to mitigate a temperature luminance sensitivity for the display).
An illustrative electronic device of the type that may be provided with a display is shown in
Input-output circuitry in device 10 such as input-output devices 12 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output devices 12 may include buttons, joysticks, scrolling wheels, touch pads, key pads, keyboards, microphones, speakers, tone generators, vibrators, cameras, sensors, light-emitting diodes and other status indicators, data ports, etc. A user can control the operation of device 10 by supplying commands through input-output devices 12 and may receive status information and other output from device 10 using the output resources of input-output devices 12.
Input-output devices 12 may include one or more displays such as display 14. Display 14 may be a touch screen display that includes a touch sensor for gathering touch input from a user or display 14 may be insensitive to touch. A touch sensor for display 14 may be based on an array of capacitive touch sensor electrodes, acoustic touch sensor structures, resistive touch components, force-based touch sensor structures, a light-based touch sensor, or other suitable touch sensor arrangements.
Control circuitry 16 may be used to run software on device 10 such as operating system code and applications. During operation of device 10, the software running on control circuitry 16 may display images on display 14 using an array of pixels in display 14. Device 10 may be a tablet computer, laptop computer, a desktop computer, a display, a cellular telephone, a media player, a wristwatch device or other wearable electronic equipment, or other suitable electronic device.
Display 14 may be an organic light-emitting diode display or may be a display based on other types of display technology. Configurations in which display 14 is an organic light-emitting diode (OLED) display are sometimes described herein as an example. This is, however, merely illustrative. Any suitable type of display may be used in device 10, if desired.
Display 14 may have a rectangular shape (i.e., display 14 may have a rectangular footprint and a rectangular peripheral edge that runs around the rectangular footprint) or may have other suitable shapes. Display 14 may be planar or may have a curved profile.
A top view of a portion of display 14 is shown in
Each pixel 22 may have a light-emitting diode 26 that emits light 24 under the control of a pixel control circuit formed from thin-film transistor circuitry such as thin-film transistors 28 and thin-film capacitors). Thin-film transistors 28 may be polysilicon thin-film transistors, semiconducting oxide thin-film transistors such as indium zinc gallium oxide transistors, or thin-film transistors formed from other semiconductors. Pixels 22 may contain light-emitting diodes of different colors (e.g., red, green, and blue) to provide display 14 with the ability to display color images.
Display driver circuitry 30 may be used to control the operation of pixels 22. The display driver circuitry 30 may be formed from integrated circuits, thin-film transistor circuits, or other suitable electronic circuitry. Display driver circuitry 30 of
To display the images on display pixels 22, display driver circuitry 30 may supply image data to data lines D (e.g., data lines that run down the columns of pixels 22) while issuing clock signals and other control signals to supporting display driver circuitry such as gate driver circuitry 34 over path 38. If desired, display driver circuitry 30 may also supply clock signals and other control signals to gate driver circuitry 34 on an opposing edge of display 14 (e.g., the gate driver circuitry may be formed on more than one side of the display pixel array).
Gate driver circuitry 34 (sometimes referred to as horizontal line control circuitry or row driver circuitry) may be implemented as part of an integrated circuit and/or may be implemented using thin-film transistor circuitry. Horizontal/row control lines G in display 14 may carry gate line signals (scan line control signals), emission enable control signals, and/or other horizontal control signals for controlling the pixels of each row. There may be any suitable number of horizontal control signals per row of pixels 22 (e.g., one or more row control lines, two or more row control lines, three or more row control lines, four or more row control lines, five or more row control lines, etc.).
In practice, display pixel 22 may be subject to process, voltage, and temperature (PVT) variations. Due to such variations, transistor threshold voltages between different display pixels 22 can vary. Variations in the threshold voltage of the drive transistor can cause different display pixels 22 to produce amounts of light that do not match the desired image. In an effort to mitigate threshold voltage variations, display pixel 22 of the type shown in
The sampling current level Isample may affect a display's sensitivity to temperature. For example, a display's luminance can vary as a function of temperature. Such variation is defined herein as temperature luminance sensitivity. Experiments have shown that higher sampling current levels translate to greater temperature luminance sensitivity especially at low gray levels, whereas lower sampling current levels translate to lower temperature luminance sensitivity for low gray levels. Temperature luminance sensitivity may be defined as a percentage change in display luminance in response to a predetermined change in temperature. It is generally desirable to keep the temperature luminance sensitivity as close to zero as possible to minimize the display's sensitivity to temperature.
In accordance with an embodiment, sampling current Isample can be reduced by lengthening the duration of the Vt sampling phase.
In accordance with an embodiment,
A semiconducting oxide transistor is notably different than a silicon transistor (i.e., a transistor having a polysilicon channel region deposited using a low temperature process sometimes referred to as LTPS or low-temperature polysilicon). Semiconducting oxide transistors exhibit lower leakage than silicon transistors, so implementing at least some of the transistors within pixel 22 can help reduce flicker (e.g., by preventing current from leaking away from the gate terminal of drive transistor Tdrive).
If desired, at least some of the transistors within pixel 22 may be implemented as silicon transistors such that pixel 22 has a hybrid configuration that includes a combination of semiconducting oxide transistors and silicon transistors (e.g., n-type LTPS transistors or p-type LTPS transistors). In yet other suitable embodiments, pixel 22 may include additional initialization transistors for apply an initialization or reference voltage to one or more internal nodes within pixel 22. As another example, display pixel 22 may further include additional switching transistors (e.g., one or more additional semiconducting oxide transistors or silicon transistors) for applying one or more bias voltages for improving the performance or operation of pixel 22. Illustrative configurations in which pixel 22 includes only semiconducting oxide transistors and no silicon transistors may sometimes be described herein as an example.
Drive transistor Tdrive has a gate terminal G, a drain terminal D (sometimes referred to as a first source-drain terminal), and a source terminal S (sometimes referred to as a second source-drain terminal). Transistor Tdrive, emission control transistors Tem1 and Tem2, and light-emitting diode 26 are coupled in series between positive power supply line 500 and ground power supply line 502. Light-emitting diode 26 may have an associated diode capacitance Coled. Emission transistors Tem1 and Tem2 each have a gate terminal configured to receive a shared emission control signal EM. This example in which transistors Tem1 and Tem2 receive a common emission signal is merely illustrative. In other embodiments, transistors Tem1 and Tem2 can receive different emission control signals.
A positive power supply voltage VDDEL may be supplied to positive power supply terminal 500, whereas a ground power supply voltage VSSEL may be supplied to ground power supply terminal 502. Positive power supply voltage VDD may be 3 V, 4 V, 5 V, 6 V, 7 V, 2 to 8 V, greater than 6 V, greater than 8 V, greater than 10 V, greater than 12 V, 6-12 V, 12-20 V, or any suitable positive power supply voltage level. Ground power supply voltage VSSEL may be 0 V, −1 V, −2 V, −3 V, −4 V, −5 V, −6V, −7 V, less than 2 V, less than 1 V, less than 0 V, or any suitable ground or negative power supply voltage level. During emission phase, signals EM1 and EM2 are asserted to turn on transistors Tem1 and Tem2, which allows current to flow from drive transistor Tdrive to diode 26. The degree to which drive transistor Tdrive is turned on controls the amount of current flowing from terminal 500 to terminal 502 through diode 26 and therefore the amount of emitted light from display pixel 22.
In the example of
Transistor Tini may have a first source-drain terminal coupled to the source terminal of Tdrive, a second source-drain terminal configured to receive an initialization voltage Vini via an initialization voltage line (e.g., a column line carrying initialization voltage Vini), and a gate terminal configured to receive a third scan control signal SC3. Transistor Tar may have a first source-drain terminal coupled to the anode terminal of diode 26 (sometimes referred to as the anode electrode), a second source-drain terminal configured to receive an anode reset voltage via an anode reset voltage line (e.g., a column line carrying anode reset voltage Var), and a gate terminal configured to receive third scan control signal SC3). Diode 26 has a cathode terminal (sometimes referred to as the cathode electrode) coupled to VSSEL ground power supply line 502 (sometimes referred to as the common power supply line).
Voltages Var and Vini can sometimes be referred to collectively as reset voltages. Thus, transistors Tar and Vini can sometimes be referred to collectively as reset transistors or initialization transistors. Voltages Var and Vini may be a fixed voltage level that is less than VDDEL, equal to VSSEL, or some other intermediate voltage level between VSSEL and VDDEL. If desired, voltages Var and Vini can be adjustable voltages that are dynamically varied during the operation of pixel 22. In certain embodiments, voltage Var can be equal to voltage Vini. In other embodiments, voltage Var can be different than voltage Vini. Scan control signals SCAN1, SCAN2, and SCAN3 (sometimes referred to as scan signals) may be provided over row control lines (see lines G in
In certain situations, the drive transistor threshold voltage Vt can vary, such as when display 14 is transitioning from a black image to a white image or when transitioning from one gray level to another. This shifting in Vt (sometimes referred to herein as thin-film transistor “hysteresis”) can cause a reduction in luminance, which is otherwise known as “first frame dimming.” For example, the saturation current Ids waveform as a function of Vgs of the drive transistor for a black frame might be slightly offset from the target Ids waveform as a function of Vgs of the drive transistor for a white frame. To help mitigate this offset, a suitable bias voltage may be directly applied to a terminal of the drive transistor during non-emission phases. In the example of
At time t2, emission signal EM is asserted (e.g., driven high) to turn on transistors Tem1 and Tem2. Turning on transistor Tem1 drives the drain terminal of transistor Tdrive up to VDDEL, which will result in the source terminal of transistor Tdrive to charge up to one Vt below the Vref level at the gate of transistor Tdrive. In other words, the source terminal of transistor Tdrive will charge up to (Vref−Vt). Since transistor Tem2 is also turned on during this time, the OLED anode terminal will likewise be charged up to (Vref−Vt). Thus, the voltage sampled across storage capacitor during this time will be equal to (Vref−[Vref−Vt]), which is equal to Vt. At time t3, emission signal EM is deasserted (e.g., driven low). This time period from t2 to t3 during which Vt is sampled across storage capacitor Cst is referred to as the Vt sampling phase.
At time t4, scan signal SCAN1 is pulsed high to turn on transistor Tdata. Activating transistor Tdata drives the gate terminal of transistor Tdrive to data voltage Vdata corresponding to a new data signal value for pixel 22. Since transistors Tem2 and Tar are both turned off at this time, the anode terminal is a high impedance node so capacitor Cst cannot discharge (e.g., the voltage across capacitor Cst will remain equal to Vt even though the drive transistor gate terminal will be driven to a new Vdata level). This time period during which transistor Tdata is activated to load in data voltage Vdata is referred to as the data programming phase. If desired, emission signal EM can optionally be asserted through the data programming phase to allow a current that is proportional to Vdata to flow through emission transistors Tem1 and Tem2 during the period from t3 to t5 (see alternate waveform 590).
At time t5, emission signal EM is asserted to begin the emission phase during which diode 26 can emit an amount of light that is proportional to voltage Vdata. During the emission phase, the resulting Vgs of transistor Tdrive will be equal to [Vdata−(Vref−Vt)]. Since the final emission current is proportional to Vgs minus Vt, the emission current will be independent of Vt since (Vgs−Vt) will be equal to (Vdata−Vref+Vt−Vt), where Vt cancels out. This type of operating scheme where the drive transistor threshold voltage is internally sampled and canceled out in this way is sometimes referred to as in-pixel threshold voltage compensation. The time period from t1 to t5, which includes the initialization phase, Vt sampling phase, and data programming phase, is sometimes referred to as a data refresh period.
To minimize a display's sensitivity to temperature variations, the Vt sampling phase duration can be extended, which reduces the sampling current level. Decoupling the Vt sampling phase from the data programming phase allows the Vt sampling phase duration to be lengthened independently from the data programming phase duration, which is typically limited to one row time as set by the performance requirements of the display. In some embodiments, the Vt sampling phase duration (i.e., the time period from t2 to t3) can be ten to twenty times longer than the data programming phase duration (i.e., the pulse width of SCAN1). In general, the Vt sampling phase duration can be at least 2 times, 5 times, 2-5 times, 10 times, 5-10 times, 10-20 times, or more than 20 times longer than the data programming phase duration. The duration of the Vt sampling phase can also be dynamically adjusted depending on the degree to which display temperature luminance sensitivity needs to be suppressed. In general, a longer Vt sampling phase duration would reduce the temperature luminance sensitivity.
In some embodiments, display 14 that includes pixels 22 may optionally be configured to support low refresh rate operation. Operating display 14 using a relatively low refresh rate (e.g., a refresh rate of 1 Hz, 2 Hz, 1-10 Hz, less than 30 Hz, less than 60 Hz, or other low rate) may be suitable for applications outputting content that is static or nearly static and/or for applications that require minimal power consumption.
As shown in
The example of
The embodiment of
Capacitor Cst has a first terminal coupled to the gate terminal of transistor Tdrive and has a second terminal coupled to the source terminal of transistor Tdrive. Capacitor Cboost has a first terminal coupled to the source terminal of transistor Tdrive and a second terminal coupled to voltage Vdc. Voltage Vdc can be shorted to VDDEL, VSSEL, Vref, Var, Vini, or other available/existing voltage within pixel 22. The structure and function of the remainder of pixel 22 of
At time t2, only emission signal EM1 is asserted (e.g., driven high) to turn on transistor Tem1 while transistor Tem2 remains off. Turning on transistor Tem1 drives the drain terminal of transistor Tdrive up to VDDEL, which will result in the source terminal of transistor Tdrive to charge up to one Vt below the Vref level at the gate of transistor Tdrive. In other words, the source terminal of transistor Tdrive will charge up to (Vref−Vt) during the Vt sampling phase from time t2 to t3. Since transistor Tem2 is turned off during this time, any potential noise injected onto VSSEL and the OLED anode terminal will be isolated from the drive transistor source terminal.
At time t4, scan signal SCAN1 is pulsed high to turn on transistor Tdata. Activating transistor Tdata drives the gate terminal of transistor Tdrive to data voltage Vdata corresponding to a new data signal value for pixel 22. Since transistors Tem2 and Tar are both turned off at this time, the anode terminal is a high impedance node so capacitor Cst cannot discharge (e.g., the voltage across capacitor Cst will remain equal to Vt even though the drive transistor gate terminal will be driven to a new Vdata level). This time period during which transistor Tdata is activated to load in data voltage Vdata is referred to as the data programming phase. If desired, emission signal EM1 can optionally be asserted through the data programming phase to allow a current that is proportional to Vdata to flow through at least emission transistor Tem1 during the period from t3 to t5 (see alternate waveform 890).
At time t5, emission signal EM is asserted to begin the emission phase during which diode 26 can emit an amount of light that is proportional to voltage Vdata. During the emission phase, the resulting Vgs of transistor Tdrive will be equal to [Vdata−(Vref−Vt)]. Since the final emission current is proportional to Vgs minus Vt, the emission current will be independent of Vt since (Vgs−Vt) will be equal to (Vdata−Vref+Vt−Vt), where Vt cancels out to complete the in-pixel threshold voltage canceling operation. As described above in connection with
Pixel 22 of
The embodiment of pixel 22 in
To help alleviate such design constraint, the order of transistors Tem1 and Tdrive can be swapped (see, e.g.,
Capacitor Cst has a first terminal coupled to the gate terminal of transistor Tdrive and has a second terminal coupled to the source terminal of transistor Tem1. Capacitor Cboost has a first terminal coupled to the source terminal of transistor Tem1 and a second terminal coupled to voltage Vdc. Voltage Vdc can be shorted to VDDEL, VSSEL, Vref, Var, Vini, or other available/existing voltage within pixel 22. Because the location of transistors Tdrive and Tem1 are now swapped, transistors Tem2 and Tini are now directly coupled to the source terminal of transistor Tem1.
The structure and function of the remainder of pixel 22 of
In the embodiment of
The embodiment of
At time t2, only emission signal EM1 is asserted (e.g., driven high) to turn on transistor Tem1 while transistor Tem2 is off Turning on transistor Tem1 drives the drain terminal of transistor Tdrive up to VDDEL, which will result in the source terminal of transistor Tdrive to charge up to one Vt below the Vref level at the gate of transistor Tdrive. In other words, the source terminal of transistor Tdrive will charge up to (Vref−Vt) during the Vt sampling phase from time t2 to t3. Since transistor Tem2 is turned off during this time, any potential noise injected onto VSSEL and the OLED anode terminal will be isolated from the drive transistor source terminal.
At time t4, scan signal SCAN1 is pulsed high to turn on transistor Tdata during the data programming phase. Activating transistor Tdata drives the gate terminal of transistor Tdrive to data voltage Vdata corresponding to a new data signal value for pixel 22. Since transistors Tem2 and Tar are both turned off at this time, the anode terminal is a high impedance node so capacitor Cst cannot discharge (e.g., the voltage across capacitor Cst will remain equal to Vt even though the drive transistor gate terminal will be driven to a new Vdata level). If desired, emission signal EM1 can optionally be asserted through the data programming phase to allow a current that is proportional to Vdata to flow through at least emission transistor Tem1 during the period from t3 to t5 (see alternate waveform 1190).
At time t5, emission signal EM is asserted to begin the emission phase during which diode 26 can emit an amount of light that is proportional to voltage Vdata. During the emission phase, the resulting Vgs of transistor Tdrive will be equal to [Vdata−(Vref−Vt)]. Since the final emission current is proportional to Vgs minus Vt, the emission current will be independent of Vt since (Vgs−Vt) will be equal to (Vdata−Vref+Vt−Vt), where Vt cancels out to complete the in-pixel threshold voltage canceling operation. As described above in connection with
Pixel 22 of
The embodiment of
During this time, there can be a short current path from VDDEL to Vini through transistors Tdrive and Tini. If Vini were to be conveyed on a row-wise routing line, such current from every single accessed pixel along a given row would produce a large IR drop. To help keep the IR drop to manageable levels, initialization voltage Vini may be routed to pixel 22 via a column-wise routing line so that only each initialization column line will only see one short current path when any given row is being accessed.
From time t2 to t3, only SCAN2 remains asserted. Since the drain terminal of transistor Tdrive is now directly connected to VDDEL, turning off SCAN3 at time t2 will allow the source terminal of transistor Tdrive to charge up to one Vt below the Vref level at the gate of transistor Tdrive. In other words, the source terminal of transistor Tdrive will charge up to (Vref−Vt) during the Vt sampling phase from time t2 to t3.
At time t4, scan signal SCAN1 is pulsed high to turn on transistor Tdata during the data programming phase. Activating transistor Tdata drives the gate terminal of transistor Tdrive to data voltage Vdata corresponding to a new data signal value for pixel 22. Since transistors Tem and Tini are both turned off at this time, capacitor Cst cannot discharge (e.g., the voltage across capacitor Cst will remain equal to Vt even though the drive transistor gate terminal will be driven to a new Vdata level). If desired, emission signal EM can optionally be asserted through the data programming phase to allow a current that is proportional to Vdata to flow through emission transistor Tem during the period from t3 to t5 (see alternate waveform 1490).
At time t5, emission signal EM is asserted to begin the emission phase during which diode 26 can emit an amount of light that is proportional to voltage Vdata. During the emission phase, the resulting Vgs of transistor Tdrive will be equal to [Vdata−(Vref−Vt)]. Since the final emission current is proportional to Vgs minus Vt, the emission current will be independent of Vt since (Vgs−Vt) will be equal to (Vdata−Vref+Vt−Vt), where Vt cancels out to complete the in-pixel threshold voltage canceling operation. As described above in connection with
Pixel 22 of
The embodiment of
During this time, there can be a short current path from VDDEL to Var through transistors Tdrive, Tem, and Tar. If Var were to be conveyed on a row-wise routing line, such current from every single accessed pixel along a given row would produce a large IR drop. To help keep the IR drop to manageable levels, anode reset voltage Var may be routed to pixel 22 via a column-wise routing line so that only each anode reset column line will only see one short current path when any given row is being accessed.
From time t2 to t3, only SCAN2 remains asserted. Since the drain terminal of transistor Tdrive is now directly connected to VDDEL, turning off SCAN3 at time t2 will allow the source terminal of transistor Tdrive to charge up to one Vt below the Vref level at the gate of transistor Tdrive. In other words, the source terminal of transistor Tdrive will charge up to (Vref−Vt) during the Vt sampling phase from time t2 to t3.
At time t4, scan signal SCAN1 is pulsed high to turn on transistor Tdata during the data programming phase. Activating transistor Tdata drives the gate terminal of transistor Tdrive to data voltage Vdata corresponding to a new data signal value for pixel 22. Since transistor Tem is turned off at this time, capacitor Cst cannot discharge (e.g., the voltage across capacitor Cst will remain equal to Vt even though the drive transistor gate terminal will be driven to a new Vdata level).
At time t5, emission signal EM is asserted to begin the emission phase during which diode 26 can emit an amount of light that is proportional to voltage Vdata. During the emission phase, the resulting Vgs of transistor Tdrive will be equal to [Vdata−(Vref−Vt)]. Since the final emission current is proportional to Vgs minus Vt, the emission current will be independent of Vt since (Vgs−Vt) will be equal to (Vdata−Vref+Vt−Vt), where Vt cancels out to complete the in-pixel threshold voltage canceling operation. As described above in connection with
Pixel 22 of
The embodiment of
From time t2 to t3, signals SCAN2 and EM are asserted. Asserting signal EM connects the drain terminal of transistor Tdrive to VDDEL. Since the drain terminal of transistor Tdrive is now directly connected to VDDEL, turning off SCAN3 at time t2 will allow the source terminal of transistor Tdrive to charge up to one Vt below the Vref level at the gate of transistor Tdrive. In other words, the source terminal of transistor Tdrive will charge up to (Vref−Vt) during the Vt sampling phase from time t2 to t3.
At time t4, scan signal SCAN1 is pulsed high to turn on transistor Tdata during the data programming phase. Activating transistor Tdata drives the gate terminal of transistor Tdrive to data voltage Vdata corresponding to a new data signal value for pixel 22. Since transistors Tar and Tem are turned off at this time, capacitor Cst cannot discharge (e.g., the voltage across capacitor Cst will remain equal to Vt even though the drive transistor gate terminal will be driven to a new Vdata level).
At time t5, emission signal EM is asserted to begin the emission phase during which diode 26 can emit an amount of light that is proportional to voltage Vdata. During the emission phase, the resulting Vgs of transistor Tdrive will be equal to [Vdata−(Vref−Vt)]. Since the final emission current is proportional to Vgs minus Vt, the emission current will be independent of Vt since (Vgs−Vt) will be equal to (Vdata−Vref+Vt−Vt), where Vt cancels out to complete the in-pixel threshold voltage canceling operation. As described above in connection with
Pixel 22 of
The foregoing is merely illustrative and various modifications can be made to the described embodiments. The foregoing embodiments may be implemented individually or in any combination.
This application claims the benefit of U.S. Provisional Patent Application No. 63/156,612, filed Mar. 4, 2021, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
8564507 | Jang et al. | Oct 2013 | B2 |
8593445 | Yamamoto et al. | Nov 2013 | B2 |
9153169 | Yamashita et al. | Oct 2015 | B2 |
9412799 | Chang et al. | Aug 2016 | B2 |
10134348 | Cote et al. | Nov 2018 | B2 |
10170049 | Ryu et al. | Jan 2019 | B2 |
10902778 | Kim et al. | Jan 2021 | B2 |
10964264 | Kim | Mar 2021 | B1 |
20050180083 | Takahara et al. | Aug 2005 | A1 |
20070080905 | Takahara | Apr 2007 | A1 |
20140327664 | Kanda | Nov 2014 | A1 |
20160379552 | Kim | Dec 2016 | A1 |
20170124941 | Na et al. | May 2017 | A1 |
20170148388 | Gai | May 2017 | A1 |
20180108295 | Ebisuno | Apr 2018 | A1 |
20180357964 | Shin et al. | Dec 2018 | A1 |
20190180688 | Yang | Jun 2019 | A1 |
20200226978 | Lin | Jul 2020 | A1 |
20200343276 | Sakata et al. | Oct 2020 | A1 |
20210049965 | Jeon | Feb 2021 | A1 |
20210312864 | Zheng | Oct 2021 | A1 |
20210351260 | Kim | Nov 2021 | A1 |
20210376041 | Lee | Dec 2021 | A1 |
20220208110 | Yu | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
111223447 | Jun 2020 | CN |
Number | Date | Country | |
---|---|---|---|
20220284860 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63156612 | Mar 2021 | US |