The present invention generally relates to disposable absorbent articles such as diapers, pull-on diapers, training pants, sanitary napkins, wipes, bibs, incontinence briefs or inserts and the like. More specifically, the invention is directed to such absorbent articles that have one or more regions comprising an elastomeric component. Such components are used in the absorbent articles of the invention to provide the desired article shape and/or to impart the desired stress and strain properties for improved fit and comfort of the article on the wearer and/or for increased convenience of the user.
Disposable absorbent products, such as diapers, training pants, incontinence articles typically include stretchable materials, such as elastic strands, in the waist region and the cuff regions to provide a snug fit and a good seal of the article. Pant-type absorbent articles further include stretchable materials in the side portions for easy application and removal of the article and for sustained fit of the article. Stretchable materials have also been used in the ear portions of disposable diapers for adjustable fit of the article. However, it would be desirable to have materials with improved properties that better define directionality and intensity of the tensile forces provided by the contractive portions of the absorbent article. In this way, such desirable absorbent articles would have the ability to shape or size to the wearer for better fit and comfort, yet have the ability to maintain the required tension when on a wearer to achieve sustained fit and prevent sagging and/or drooping of the article. Absorbent articles of this kind would result in better fit in various areas of the absorbent article, e.g., the crotch or waist region of a diaper with resulting improvements in comfort. In the case of a diaper, better fit and comfort can also impart better functional performance such as reduced leakage since the diaper would better conform to the shape of a wearer. Such features have heretofore not been available for absorbent articles.
There are various approaches to providing desirable stretchable properties in targeted areas of absorbent articles. Stretchable materials may be strands, films or nonwoven fibrous webs made of elastomeric materials. Typically, such materials are stretchable in at least one, and possibly multiple, directions. However, because the films or webs are made entirely of elastomeric materials, they are relatively expensive, and they tend to have more drag on skin surface, resulting in discomfort to the wearer of the article. Sometimes, the stretchable strands or films are laminated to one or more layers of nonwoven webs. Since typical nonwoven webs typically are made of thermoplastic fibers, they have very limited stretchability and, the resulting laminates provide considerable resistance to stretch. It is necessary to reduce this resistance substantially in order to make functional stretch laminates. However, such materials do not have sufficient ability to shape, size or conform to the particularities of the wearer's anatomy upon application.
Other approaches to make stretchable materials are also known, such as stretch-bonded laminates and neck-bonded laminates. Stretch bonded laminates are made by stretching an elastic strand in the machine direction (MD), laminating it to a nonwoven substrate while it is in the stretched state, and releasing the applied tension so that the nonwoven gathers and takes on a puckered shape. Neck-bonded laminates are made by first stretching the nonwoven substrate in the machine direction such that it necks (i.e., reduces its CD dimension) then bonding CD oriented elastic strands to the substrate while the substrate is still in the stretched, necked state. This laminate will be stretchable in the CD, at least up to the original width of the nonwoven before it was necked. Combinations of stretch bonding and neck bonding have also been known to deliver stretch in both MD and CD directions. In these approaches, at least one of the components is in a tensioned (i.e., stretched) state when the components of the laminates are joined together. Again, these materials cannot be effectively used in absorbent articles to impart the desired sizing or shaping features desired by users and wearers of absorbent articles.
Zero strain stretch laminates are also known. The zero strain stretch laminates are made by bonding an elastomer to a nonwoven while both are in an unstrained state. The laminates are then incrementally stretched to impart the stretch properties. The incrementally stretched laminates are stretchable only to the extent afforded by the non-recovered (i.e., residual) extensibility of the laminate. For example, U.S. Pat. No. 5,156,793 discloses a method for incrementally stretching an elastomer-nonwoven laminate, in a non-uniform manner, to impart elasticity to the resulting laminate. These stretch laminates behave similar to the materials described previously in that they do not have sufficient ability to size or shape to the wearer.
However, in all the approaches above, the materials or laminates are made separately and then incorporated into the absorbent article. For example, the stretch laminates described herein may be cut into the appropriate size and shape, then attached to the desired location in the product in a process sometimes referred as the “cut-and-slip” process. Because of the different stretch properties required for different elements of the product, it is necessary to make a variety of laminates having different stretchability and cut the laminates to different sizes and shapes. Several cut-and-slip units may be needed to handle the different stretchability of the stretch laminates and to attach them to different locations of the product. As the number of cut-and-slip units and/or steps multiplies, the process quickly becomes cumbersome, complicated and expensive. These processes are suitable for modern day absorbent article manufacture and are desirable. However, it would also be desirable to have absorbent articles having the desired sizing and/or shaping properties, but which can be disposed in or on the absorbent article without the need for such complicated and expensive “cut-and-slip” processes.
One alternative to cut and slip processes used by the art is to print an elastomeric composition onto a substrate. Exemplary disclosures include U.S. Pat. No. 6,531,027 which discusses adhering components of an absorbent article using an adhesive printing process, PCT Application No. 03/039420 which discusses printing first and second elastomeric compositions onto a substrate where the compositions differ in at least one of the following properties: elasticity, melt viscosity, composition, shape, pattern, add-on level, and PCT Application No. WO 03/053308, which discusses printing an elastic adhesive onto an extendable substrate to provide a tensioning force during garment wear.
Based on the foregoing, it would be desirable to have absorbent articles with stretchable material having elastic properties such that it can be extended as desired but still retains the desired degree of elasticity to facilitate sustained fit on the wearer. It would also be desirable to have such a material that can be disposed easily on any specific area of the absorbent article, or component thereof in any desired amount. Additionally, it would be desirable to have such a material or composite having elastic properties that can be easily placed in discrete, spaced apart areas of the absorbent article or a component thereof via known deposition techniques such as printing (including gravure, offset, letterpress and screen techniques), extrusion coating, roll coating and the like.
The aforementioned needs in the art are met by the present invention which provides an absorbent article with a material that has elastic properties disposed in a predetermined pattern defining a stretch zone that provides desired elastic directionality and intensity to specific regions of the absorbent article. Such directionality and intensity is controlled by controlling the amount, placement and orientation of a thermoplastic elastomer that is disposed only on certain zones or regions of the absorbent article or a component thereof.
In accordance with one aspect of the invention, an absorbent article is provided that comprises a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core disposed between the topsheet and the backsheet. The article may also include additional features such as one or more ears or side panels, leg cuffs, and fastener components, elastic belts. In other aspects of the invention, the material used in the absorbent article is provided with one or more stretch zones where the stretch zones may comprise at least a portion of one or more of the features. In another embodiment of the invention a plurality of the stretch zones are assembled into an array thereof.
The term “disposable” is used herein to describe absorbent articles that generally are not intended to be laundered or otherwise restored or reused as an absorbent article (i.e., they are intended to be discarded after a single use and, preferably, to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
As used herein, the term “disposed” is used to mean that an element(s) is formed (joined and positioned) in a particular place or position as a unitary structure with other elements or as a separate element joined to another element.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
A “unitary” absorbent article refers to absorbent articles which are formed of separate parts united together to form a coordinated entity so that they do not require separate manipulative parts like a separate holder and liner.
As used herein, the term “diaper” refers to an absorbent article generally worn by infants and incontinent persons about the lower torso.
By “stretch”, it is meant that the material has the ability to extend beyond its original length in at least one dimension when subjected to a tensile force (i.e., tension) applied in the direction of that dimension. “Stretch” may be unidirectional, bi-directional, or multi-directional. The specific “stretch” properties of a material may vary along any of the stretch vectors. As used herein, stretch includes both plastic and elastic deformation.
The term “elastic” or “elastomeric” as used herein refers to any material that upon application of a biasing force, can stretch to an elongated length of at least about 125 percent of its relaxed, original length, without rupture or breakage, and upon release of the applied force, recovers at least about 40% of its elongation, preferably recovers at least 60% of its original length, most preferably recovers about 80% of its original length.
The term “inelastic” refers herein to any material that does not fall within the definition of “elastic” above.
As used herein, the term elastic resistance describes an elastic force that tends to resist an applied tensile force causing a material provided therewith to tend to contract to an untensioned configuration in response to a stretching force. Elastic resistance is conveniently measured using the method described in the TEST METHODS section below.
“Longitudinal” is a direction running parallel to the maximum linear dimension of the article and includes directions within ±45° of the longitudinal direction. The “lateral” or “transverse” direction is orthogonal to the longitudinal direction. The “Z-direction” is orthogonal to both the longitudinal and transverse directions. The “x-y plane” refers to the plane congruent with the longitudinal and transverse directions.
As used herein, the term “impermeable” generally refers to articles and/or elements that are substantially not penetrated by aqueous fluid through the entire Z-directional thickness thereof under a pressure of 1.0 kPa or less. Preferably, the impermeable article or element is not penetrated by aqueous fluid under pressures of 3.4 kPa or less. More preferably, the impermeable article or element is not penetrated by fluid under pressures of 6.8 kPa or less. An article or element that is not impermeable is permeable.
The term “substrate” as used herein refers to any material, including a film, an apertured film, a nonwoven web, a woven web, a foam or a combination thereof, or a cellulosic material including wood pulp, derivatized or modified cellulosic materials, and the like, having a single layer or multiple layers. The term “fibrous substrate” as used herein refers to a material comprised of a multiplicity of fibers that could be either a natural or synthetic material or any combination thereof, including, for example, nonwoven materials, woven materials, knitted materials, and any combinations thereof.
The term “nonwoven” as used herein refers to a fabric made from continuous filaments and/or discontinuous fibers. Nonwoven fabrics include those made by carding staple fibers, airlaying or wet laying staple fibers and via extrusion processes such as spunbonding and melt blowing. The nonwoven fabric can comprise one or more nonwoven layers, wherein each layer can include continuous filaments or discontinuous fibers. Nonwovens can also comprise bi-component fibers, which can have shell/core, side-by-side, or other known fiber structures.
By “stretch zone”, it is meant a portion of a region of an absorbent article having elastic stretch properties. A stretch zone may extend throughout an entire region or feature of the article, extend across multiple regions or features, or comprise merely a portion of, one or more regions or features of the article. A region or feature may also comprise an array of individual stretch zones.
The term “Line of Force” describes the pathway through a web material or structure comprising such web material that is substantially parallel to its surface, that connects two points, zones, or features in the material, and that carries most of the tension when tension is imposed between those two points, zones, or features. The term also applies to pluralities of pathways of close enough proximity, properties, and direction that they effectively behave as a single pathway. The shape, width, and stress/strain behavior of the pathway can be controlled by modifying the stress/strain properties of the material in the desired location and direction of the pathway to produce a higher effective modulus in the pathway compared to areas adjacent to the pathway. The proportion of the tension carried by the pathway depends on the difference in effective modulus between the pathway and the adjacent material. It should be understood that a line of force may be defined by any of the stretch element geometries disclosed herein.
In accordance with one aspect of the invention, an absorbent article is provided that comprises a liquid permeable topsheet, a liquid impermeable backsheet, and an absorbent core disposed between the topsheet and the backsheet. The article may also include one or more features such as, but not limited to, ears or side panels, leg cuffs, fastener components, and/or a belt. The absorbent article according to present invention is also provided with one or more stretch zones. In most cases such stretch zones will comprise at least a portion of the aforementioned features. In other aspects of the invention, the stretch zones comprise a substrate having an elastomeric composition disposed thereon. The elastomeric composition provides an elastic resistance to the stretch zone upon elongation of at least a portion of the stretch zone. In preferred embodiments of the present invention, the elastomeric composition is disposed on the substrate in a predetermined geometric pattern (i.e., shape and orientation) so as to provide such elastic resistance in a manner that enhances the performance of the feature. The pattern preferably allows the stretch zone to more efficiently carry anchoring loads and tensile forces induced by application of the article to the wearer and/or accommodate movement of the wearer, and/or the weight of the article or waste contents of the article than a typical non-patterned design.
Suitably, an absorbent article according to the present invention must comprise at least one stretch zone wherein the stretch zone comprises an elastomeric composition that is disposed on a substrate so as to at least partially penetrate the substrate. The area of a stretch zone comprises at least the portion of the substrate that is covered by the elastomeric composition. Typically, such stretch zones have the following properties: (1) an elastic resistance (i.e., the load at 25% strain) of at least about 0.05 N/cm, preferably from 0.05 N/cm to about 50 N/cm, more preferably from about 0.05 N/cm to about 40 N/cm, and most preferably from 0.25 N/cm to about 30 N/cm; (2) a percent set of less than about 15%, preferably less than about 12% and more preferably less than about 10%; and (3) a stress relaxation value of less than about 40%, preferably less than about 30%, and more preferably less than about 25%. Methods for measuring these properties are given in the TEST METHODS section below.
In some embodiments an absorbent article may comprise stretch zones that are associated so as to provide an array thereof. Such an array may be disposed on only one region or feature of the absorbent article or may extend across two or more regions or features. The array can comprise intersecting or non-intersecting stretch zones. Also, the stretch zones in the array can either be parallel to one another or form a non-zero angle with respect to each other. When the stretch zones in an array are non-intersecting, individual stretch zones are cut off and their properties may be measured. However, when the stretch zones intersect within an array, it is not possible to separate individual stretch zones. In such cases, the array should be sampled and evaluated as described in the TEST METHODS section below.
Suitable elastomeric compositions comprise thermoplastic elastomers selected from the group consisting of styrenic block copolymers, metallocene-catalyzed polyolefins, polyesters, polyurethanes, polyether amides, and combinations thereof. Suitable styrenic block copolymers may be diblock, triblock, tetrablock, or other multi-block copolymers having at least one styrenic block. Exemplary styrenic block copolymers include styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene/butylenes-styrene, styrene-ethylene/propylene-styrene, and the like. Commercially available styrenic block copolymers include KRATON® from the Shell Chemical Company of Houston, Tex.; SEPTON® from Kuraray America, Inc. of New York, N.Y.; and VECTOR® from Dexco Chemical Company of Houston, Tex. Commercially available metallocene-catalyzed polyolefins include EXXPOL® and EXACT® from Exxon Chemical Company of Baytown, Tex.; AFFINITY® and ENGAGE® from Dow Chemical Company of Midland, Mich. Commercially available polyurethanes include ESTANE® from Noveon, Inc., Cleveland, Ohio. Commercial available polyether amides include PEBAX® from Atofina Chemicals of Philadelphia, Pa. Commercially available polyesters include HYTREL® from E.I. DuPont de Nemours Co., of Wilmington, Del.
The elastomeric composition may further comprise processing aids and/or processing oils to adjust the melt viscosity of the compositions to the desired range. They include the conventional processing oils, such as mineral oil, as well as other petroleum-derived oils and waxes, such as paraffinic oil, naphthenic oil, petrolatum, microcrystalline wax, paraffin or isoparaffin wax. Synthetic waxes, such as Fischer-Tropsch wax; natural waxes, such as spermaceti, carnauba, ozokerite, beeswax, candelilla, paraffin, ceresin, esparto, ouricuri, rezowax, and other known mined and mineral waxes, are also suitable for use herein. Olefinic or diene oligomers and low molecular weight polymers may also be used herein. The oligomers may be polypropylenes, polybutylenes, hydrogenated isoprenes, hydrogenated butadienes, or the like having a weight average molecular weight between about 350 and about 8000.
In an important aspect of the present invention, the elastomeric composition is substantially tackifier free. Tackifiers are well known in the adhesive arts as a component that is added to an adhesive composition so as to increase the adhesive properties (e.g., peel force) thereof. This provides important benefits because, in addition to increasing tack of an adhesive material, a tackifier acts as a plasticizer for any polymers in the composition with a resulting reduction in tensile properties due to the presence of the tackifier. Preferred embodiments of the elastomeric composition have a very low peel force with a standard substrate (304 stainless steel a #2B finish from Mc Master Carr of Cleveland, Ohio) using the method described in copending U.S. Pat. Application Ser. No. 60/557,272, entitled “Letterpress Application of Elastomeric Compositions”, filed in the names of Desai, et al. on Mar. 29, 2004 (P&G Case No. 9592P). Suitable elastomeric compositions have a peel force of less than about 3 N/cm, more preferably, less than about 2 N/cm, even more preferably, less than about 1 N/cm, and most preferably, less than about 0.8 N/cm when evaluated using the method described in the aforementioned application.
In one embodiment, a phase change solvent can be incorporated into the elastomeric composition to lower its melt viscosity, rendering the composition processable at a temperature of 175° C. or lower, without substantially compromising the elastic and mechanical properties of the composition. Detailed disclosure of the phase change solvents can be found in U.S. patent application Ser. No. 10/429,432. Alternatively, the elastomeric composition may also comprise low molecular weight elastomers and/or elastomeric precursors of the above thermoplastic elastomers, and optionally crosslinkers, or combinations thereof. The weight average molecular weight of the low molecular weight elastomers or elastomeric precursors is between about 45,000 and about 150,000.
Suitable elastomeric compositions for use herein are elastic without further treatment and they do not include any volatile solvents whose boiling point is below 150° C.
In certain embodiments the elastomeric composition may include precursor components that are activated by a post treatment step after the elastomeric composition has been deposited onto the substrate, so as to improve or enhance its elasticity and other properties including strength, modulus, and the like. For example, the thermoplastic elastomers described in U.S. patent application Ser. No. 10/610,605, filed in the name of Ashraf, et al. on Jul. 1, 2003 that comprise an elastomeric block copolymer having least one hard block and at least one soft block, a macro photoinitiator, a processing oil, and optionally, a thermoplastic polymer and/or a crosslinking agent contain such precursor components. Typically, post-treatments include drying, crosslinking, curing or polymerizing via chemical, thermal, radiation means (e.g., ultraviolet radiation or electron beam radiation), and combinations thereof.
In certain preferred embodiments, a stretch zone or an array of stretch zones may comprise more than one elastomeric composition. In such embodiments the first composition will have at least one of: a greater elastic resistance than any of the other elastomeric composition disposed onto the stretch zone or array of stretch zones, a reduced set when compared to any of the other of the elastomeric compositions disposed onto the stretch zone or array of stretch zones and a reduced stress relaxation. Alternatively, certain portions of an array of stretch zones may comprise a first elastomeric composition and other portions may comprise one or more different compositions.
The substrate provides a continuous medium for deposition of the elastomeric composition and contributes at least a portion of the ultimate strength of a stretch zone. A continuous medium is important, for example for embodiments where the embodiment comprises an array having spaced apart stretch zones. In certain embodiments (e.g., as provided by a fibrous substrate), the substrate can further provide a soft, cloth-like feel to the skin for better wearer comfort. Suitable substrate materials include but are not limited to: films, apertured films, foams, knitted fabric, woven fibrous webs or nonwoven fibrous webs as are known in the art. In some embodiments, the substrates are extensible nonwoven webs made of polyolefin fibers or filaments, such as polyethylene, or polypropylene. The substrate material may be elastic or inelastic, extensible or inextensible, stretchable or non-stretchable. Preferred substrates have a 3-dimensional morphology (i.e., via spacing between fibers, projections, holes, etc.) that facilitates the penetration of the thermoplastic elastomer into the substrate as described below.
Suitable elastomeric compositions are preferably applied to the substrate in a fluid or fluid-like state capable of effecting at least partial penetration into the substrate Such partial penetration must be sufficient so as to provide attachment between the resulting elastomeric composition and the substrate such that the composite remains intact through subsequent process steps, shipment and the article wear cycle. Preferably, the elastomeric composition penetrates only enough to provide the desired integrity during subsequent processing and use of the article. For example, if the substrate is a fibrous substrate, it is believed that elastomeric composition penetration to a depth of about one or two fiber diameters is sufficient to provide such integrity. Means to accomplish sufficient penetration of the substrate of the thermoplastic elastomer upon deposition onto the substrate includes, among other mechanisms, absorption of the elastomer into the substrate matrix, penetration through all or a portion of the thickness of the substrate, engulfing or entrapment of 3-dimensional protrusions from the substrate (i.e., entanglement between the substrate and the composition), penetration of holes in the substrate, wetting of a 3-dimensional surface of the substrate, and the like.
To facilitate such partial penetration, the elastomeric composition suitably has a melt viscosity from about 1 to about 1000 Pa·s at 175° C., 5% strain and a shear rate of 1 s1 according to the method disclosed in published US Pat. Application No. 2003/0091807A1. Preferably, the melt viscosity is between about 5 and about 500 Pa·s, and more preferably from about 10 to about 400 Pa·s. Such elastomeric compositions are suitable for use in application processes that operate at a lower viscosity and/or lower temperature than are typical melt extrusion and/or fiber spinning processes.
The elastomeric composition may be applied to a stretch zone to achieve a total add-on level of from about 5 to about 200 g/m2, preferably from about 20 to about 150 g/m2, and more preferably from about 50 to about 100 g/m2.
An array of stretch zones may have open areas not covered by the elastomeric composition ranging from about 5% to about 90% of the total surface area of the region, preferably from about 10% to about 60%, and more preferably from about 20% to about 40%. As will be recognized, the required open area depends on the specifics or the region or feature where the array is disposed. The selective deposition of elastomeric compositions preferably uses less of the materials than would otherwise be required by the conventional lamination technology using films or sheets. The fibrous substrate in combination with the selective deposition of the elastomeric composition can provide the resulting composite with lower basis weight and higher breathability than a laminate containing a fibrous web layer and a film or sheet layer.
As will be recognized, the stretch zones described herein may also be used in combination with stretch features described in the art (Such stretch features include, but are not limited to an elasticized waist, an elasticized belt, an ear, a side panel, a leg cuff, or a fastener component. See below for a discussion of such features in the section—Diaper Component Description Applicable to All Embodiments of Present Invention). As will be recognized, combining the stretch zones of the present invention with stretch features from the art may provide benefits that neither approach could provide by itself. For example, an elastomeric film could be used to provide a first level of elastic resistance to a stretch feature formed using an elastomeric, breathable three dimensional composite material as described in U.S. Pat. No. 6,303,208 and portions of the stretch feature could further comprise stretch zones of the present invention to enhance the elastic resistance in predefined positions on the stretch feature. Similar structures can also be made by replacing the elastomeric film with one or more elastomeric strands or fibers and providing stretch zones according to the present invention thereto.
Referring to
The diaper 10 also may comprise one or more ears or side panels 34, 36, 38 and 40 disposed generally laterally outboard of the side edges 20, 22 in the front waist region 26 and/or rear waist region 24. In closable diaper 10 at least one fastener element 42 is disposed on one or more of side panels 34 and 36 and is adapted to be secured to at least a portion of the longitudinally opposing front side panels 38 and 40, or a portion of the outer surface of the front waist region 26 or a component thereof. An accompanying fastener element 44 is shown in a folded back configuration to expose the mechanical fasteners 46, which shown as hooks for a hook-and-loop fastening systems commercially available from 3M or Velcro Industries. The fastener element 44 may be capable of engaging loop material embodied in a landing zone 27 located on the outer surface of the diaper 10.
Any one or more of regions 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 or 44 may comprise a stretch zone or array of stretch zones as may be required to provide the desired elasticity in accordance with the present invention. In this way, the diaper 10 may preferably be configured to adapt to the specific wearer's anatomy upon application and to maintain coordination with the wearer's anatomy during wear (i.e., the fit should remain the same with minimal sagging, achieving sustained fit.). Any region of the diaper 10 may include a stretch zone or array of stretch zones. The front waist region 26 and/or the rear waist region 24 and/or side panel regions 34, 36, 38 and/or 40 preferably include at least one stretch zone of thermoplastic elastomer in order to accommodate a wider range of wearer waist dimensions (i.e., provide a wider fit range) and/or to provide sufficient tension around the waist circumference of the wearer. This provides sufficient normal force to the wearer's skin so as to anchor the diaper 10 with respect to the wearer's anatomy, thereby providing sustained fit.
Each stretch zone may have continuous or discontinuous properties in any direction wherein the varying properties include chemical composition, elasticity, extensibility, maximum elongation, other stress/strain properties, vectors or angles, basis weight, geometry, dimensions, 3-dimensional morphology, visual distinctiveness, and the like. A stretch zone may have continuous properties (e.g., because the elastomeric composition, substrate material, treatment, etc.) has relatively homogeneous properties. Alternatively, stretch zones may have discontinuous properties due to provision of non-homogeneous properties thereto. An array may comprise stretch zones having the same or different properties. Suitable stretch zone arrays include a plurality of straight or curved lines or bands, rectilinear shapes, curvilinear shapes, other regular or irregular geometric shapes, and combinations thereof which will be described in more detail hereinafter. Two stretch zones may be longitudinally separated or adjacent, laterally separated or adjacent, or the stretch zones may be at least partially overlapping in such arrays. Within an array, the individual stretch zones may vary in property, geometry, relative orientation, spacing, or elasticity or extensibility. In certain embodiments, at least a portion of at least one stretch zone may be visually distinct. Stretch zones may be combined with other elastic, extensible, or inextensible materials, such as films, webs, strands, and the like to form laminates.
An exemplary diaper chassis comprising arrays of stretch zones is diaper chassis 250 as is shown in
Reference is now made to
Pant 370 may include stretch zones to impart the desired elastic properties so that it can be donned easily and sustain better fit and comfort. Similar to the diaper 10, stretch zones may be included anywhere on the pant 370.
Belt structures (not shown) may also comprise the stretch zones of the present invention. One such alternative structure comprises the ear and/or side panel and at least a portion of the waist functionality. In another alternative belt structure, a belt completely encircling a wearer's waist (i.e., a 360 degree belt) may be formed, for example, by depositing one or more laterally oriented stretch zones (or an array thereof) adjacent the front and rear waist edges 365, 369 so as to form a band of tension about the wearer's waist. Such stretch zones could also comprise those shown in
Reference is made to
Referring to
Additional exemplary embodiments of the invention are shown in
Alternatively, one or more, but not all, of stretch zones 618, 620 may comprise an elastomeric composition that differs from the composition used to form the remainder of the stretch zones 618, 620. For example, referring to
Alternatively, an array of linear stretch zones 618 or curved stretch zones 620 or both may comprise a spiral or an overlapping or entangled configuration, for example a cross hatch array. Suitable stretch zone shapes (not shown) include rectangles, circles, ellipses, diamonds, triangles, parallelograms, trapezoids, wedges or other sections of circles or ellipses, other polygons, or other irregular enclosed shapes.
One particularly preferred embodiment of an array of stretch zones is shown in
In one embodiment of side panel 619 shown in
Referring to
In certain preferred embodiments, at least one of the side panel stretch zones 736 may be aligned with the end of the outer leg cuff elastics 740, 742 in order to provide an effective extension of the leg cuff elastic, thereby encircling a wearer's leg with a combination of stretch zone 736 and 740, 742 shown in
In other preferred embodiments, at least one of the waist regions adjacent rear waist end 735 or front waist end 737 is also provided with one or more waist stretch zones 744, 745, 746, 747. In such embodiments the waist stretch zones 744, 745, 746, 747 may be aligned with the ear stretch zones 734 that are disposed adjacent to the rear waist end 735 so as to provide a substantially continuous line of force encircling a wearer's waist. Depending on the design of diaper 730, such a line of force may follow the low motion zone of a wearer (see below) or be juxtaposed with another portion of a wearer's anatomy while encircling the waist.
Regardless of the specific construction, composition, or geometry, or stretch properties of the side panel 732, the stretch zones 734 and 736 in the waist and thigh portions are preferably capable of substantially independent action with respect to one another. Certain embodiments may include an additional side panel stretch zone (not shown) functioning as a transition between the leg and thigh portions, i.e., a “transition zone”. The transition zone may have distinctly different stretch properties (or even not be elastic at all) than either the leg or waist zones and functions to decouple or separate the deformations caused by the leg and waist panels, allowing them to act independently without interaction with each other. In embodiments comprising a side panel transition zone, the transition zone may be substantially extensible to further promote independent action between the waist and thigh zones of the side panel, while still providing sufficient stretch to accommodate the relative movements of the waist and thigh zones while being worn by a wearer, helping to control buckling and/or folding of the transition region.
Referring to
In certain preferred embodiments as shown in the partial plan view of diaper 830 in
In embodiments comprising an array 850 of stretch zones 854 at or near the waist end 835 of diaper 830 and extending through multiple regions of the back waist and crotch of the article, the remaining area of the waist end 835 may have either a lower elastic resistance, may be primarily extensible, or may comprise areas with either property. In any case, this waist end 835 area (i.e., the area not including the stretch zones 850 or 854) may be a low-tension zone.
Referring again to
Typically, stretch zones 854 exhibit an elastic resistance of at least about 0.05 N/cm when strained to 25% elongation. Preferably, stretch zone 854 exhibits an elastic resistance of between about 0.05 N/cm and about 50 N/cm when strained to 25% elongation, more preferably between 0.1 N/cm and about 40 N/cm and most preferably between 1 N/cm and about 30 N/cm. Preferably, stretch zones 854 experience less than about 40% force relaxation and less than about 15% set. Typically, stretch zones 854 will have a maximum elongation of at least about 25%, preferably between about 50% and about 300%. Typically, stretch zones 862 exhibit an elastic resistance of at least about 0.05 N/m when strained to 25% elongation. Preferably, the stretch zones 862 exhibits an elastic resistance of between about 0.1 N/cm and about 8 N/cm when strained to 25% elongation. Preferably, stretch zones 862 experience less than about 40% force relaxation and less than about 15% set. Typically, stretch zones 862 may have a maximum elongation of at least about 25%, preferably between about 50% and about 200%. Additionally, stretch zones 868 and 870 may exhibit a lower resistive force upon elongation than either stretch zones 854 and 862 at a given extension. Typically, the ratio of elastic resistance of stretch zone 854 to stretch zone 868 or 870 is at least 1.25:1, preferably at least 1.5:1, and most preferably between about 2.0:1 and 6.0:1. Regardless of the stretch properties of the individual stretch zones 854, 862, 68 and 870, the overall tension of the side panels 832 and 833 region when extended to 25% is preferably less than 20 N, and the force relaxation is less than 40%.
Referring to
While the buttocks region 974 located in the back waist region in proximity to the crotch region 976 as shown on diaper 910 may comprise either elastic or extensible portions, or a combination thereof, in preferred embodiments, the buttocks region 974 may be provided with a pattern of thermoplastic elastomer so as to provide a low level of elastic resistance to a stretch zone therein causing the buttocks region 974 to better conform to a wearer's anatomy so as to accommodate the largest wearer circumference (i.e., the buttocks), including the volume of the absorbent core 950, allowing the buttocks region 974 to have a lower on-wearer tension than the rear waist end 916 region. The buttocks region 974 may have stretch zones with extensibility that allows for a smoother geometric transition from the constricted crotch region 976 between the wearer's legs to the side panels 934 and 936 which may have stretch zones similar to those described in
Referring to
Referring to
The available strain of the array 1104 in the machine direction is less than about 100%, preferably less than about 50% and more preferably less than about 25%. For the whole diaper, the maximum extension in the machine direction at a load of 5 N is less than about 20 cm, preferably less than about 10 cm, and more preferably less than about 5 cm. Preferably, the area of greatest extensibility is substantially aligned with and overlapping the longitudinal centerline 1112. In another embodiment, array 1104 can be replaced by an individual stretch zone (not shown) providing an equivalent elastic resistance. Preferably, the area of greatest extensibility is substantially aligned with and overlapping the longitudinal centerline 1112. In another embodiment, array 1104 can be replaced by an individual stretch zone (not shown) providing an equivalent elastic resistance. Alternatively, array 1104 may also comprise stretch zones laterally outboard of and at an angle to the longitudinal centerline 1112 and diverging toward the front corners of diaper 1110 as shown by arrows 1108 and 1109 in
Referring to
In yet another embodiment of the present invention, the stretch zones described herein can also be provided to a topsheet. For example, diaper 1310 is shown in
Diaper Component Description Applicable to All Embodiments of Present Invention
All of the embodiments in
Exemplary breathable materials may include materials such as woven webs, nonwoven webs, composite materials such as film-coated nonwoven webs, microporous films such as manufactured by Mitsui Toatsu Co., of Japan under the designation ESPOIR NO and by Exxon Chemical Co., of Bay City, Tex., under the designation EXXAIRE, and monolithic films such as manufactured by Clopay Corporation, Cincinnati, Ohio under the name HYTREL blend P18-3097 Some breathable composite materials are described in greater detail in U.S. Pat. Nos. 6,187,696; 5,938,648; 5,865,823; and 5,571,096.
The article may include a structural elastic-like film web is an extensible material that exhibits an elastic-like behavior in the direction of elongation without the use of added elastic materials and is described in more detail in U.S. Pat. No 5,518,801. In alternate embodiments, the backsheets may comprise elastomeric films, foams, strands, or combinations of these or other suitable materials with nonwovens or synthetic films.
Exemplary absorbent structures for use as the absorbent core are described in U.S. Pat. Nos. 4,610,678; 4,673,402; 4,834,735; 4,888,231; 5,137,537; 5,147,345; 5,342,338; 5,260,345; 5,387,207; and 5,625,222.
Suitable absorbent and nonabsorbent sublayers are described in European Patent Application No. EP 0 847 738 A1 and U.S. Pat. No. 5,941,864. Further, the sublayer, or any portion thereof, may include or be coated with a lotion or other known substances to add, enhance or change the performance or other characteristics of the element.
Some exemplary surface fastening systems are disclosed in U.S. Pat. Nos. 3,848,594; B1 4,662,875; 4,846,815; 4,894,060; 4,946,527; the herein before referenced U.S. Pat. Nos. 5,151,092; and 5,221,274. An exemplary interlocking fastening system is disclosed in U.S. Pat. No. 6,432,098. The fastening system may also: provide a means for holding the article in a disposal configuration as disclosed in U.S. Pat. No. 4,963,140; include primary and secondary fastening systems, as disclosed in U.S. Pat. No. 4,699,622; means to reduce shifting of overlapped portions or to improve fit as disclosed in U.S. Pat. No. 5,242,436; means to resist gapping at a wearer's belly as disclosed in U.S. Pat. Nos. 5,499,978 in 5,507,736 and in 5,591,152.
Suitable training pants and pull-on diapers are disclosed in U.S. Pat. Nos. 5,246,433; 5,569,234; 6,120,487; 6,120,489; 4,940,464; and 5,092,861.
Examples of diapers with elasticized side panels are disclosed in U.S. Pat. Nos. 4,857,067; 4,381,781; 4,938,753; the herein before referenced U.S. Pat. Nos. 5,151,092; 5,221,274; 5,669,897; 6,004,306, and the aforementioned U.S. Pat. No. 6,300,208.
U.S. Pat. No. 3,860,003 describes a disposable diaper which provides a contractible leg opening having a side flap and one or more elastic members to provide an elasticized leg cuff (a gasketting cuff). U.S. Pat. Nos. 4,808,178 and 4,909,803 describe disposable diapers having “stand-up” elasticized flaps (barrier cuffs) which improve the containment of the leg regions. U.S. Pat. Nos. 4,695,278 and 4,795,454 describe disposable diapers having dual cuffs, including gasketting cuffs and barrier cuffs.
Embodiments of the present invention may also include pockets for receiving and containing waste, spacers which provide voids for waste, barriers for limiting the movement of waste in the article, compartments or voids which accept and contain waste materials or any combinations thereof. Examples of pockets and spacers for use in absorbent products are described in U.S. Pat. Nos. 5,514,121; 5,171,236; 5,397,318; 5,540,671; 6,168,584; 5,306,266; and 5,997,520. Examples of compartments or voids are disclosed in U.S. Pat. Nos. 4,968,312; 4,990,147; 5,062,840; and 5,269,755. Examples of suitable transverse barriers are described in U.S. Pat. Nos. 5,554,142; 6,010,490; and 5,653,703. Examples of other structures especially suitable for management of low viscosity feces are disclosed in U.S. Pat. Nos. 5,941,864; 5,977,430 and 6,013,063.
The diaper 10 of
Hysteresis Test for Elastic Properties
Overview
This test measures: a) elastic resistance (load at 25% elongation), b) force relaxation, and c) percent set of an individual stretch zone or an array of stretch zones. The stretch zones can either be intersecting or non-intersecting. Non-intersecting stretch zones can be either parallel or non-parallel. Ideally, the sample dimension should be 2.54 cm wide×5.08 cm long, with the direction of stretch being the long dimension. Furthermore, ideally, the gage length should be 2.54 cm. Because of the variety of patterns that the stretch can be in, it is necessary to define different sample preparation procedures for different classes of stretch zones. Once a sample has been prepared, it is stretched according to a predefined regimen to provide data for property determination.
Apparatus
Cut a sample that is 2.54 cm wide by 5.08 cm long from within an individual stretch zone. If an individual stretch zone is smaller than these dimensions, the sample should comprise the entire stretch zone. Orient the sample in the jaws to ensure that the sample is stretched in the longitudinal direction of the stretch zone. If the force from an individual stretch zone is too small to measure on the tensile tester, several samples from identical stretch zones taken from multiple products can be pulled collectively in between the grips of the tensile tester, and the data normalized to an individual stretch zone. In the special case when all the stretch zones are uniformly spaced apart and parallel to one another, and also have the same dimensions and basis weight of elastomer, a 2.54 cm sample spanning multiple stretch zones can be tested. The load can then be normalized to an individual stretch zone by dividing the total force by the number of stretch zones.
(ii) Sample Preparation for Non-Linear, Non-Intersecting Stretch Zones
The sample dimensions are 6.3 mm width×5.08 cm length. The length is measured along the curved path. The width of the sample is small so that the curved stretch zone can be approximated as a linear stretch zone. The gage length in the tensile tester is set at 2.54 cm. As mentioned earlier, if it is not possible to obtain a sample of the above dimensions, then the sample dimensions can be decreased to the largest possible and the gage length adjusted according.
(iii) Sample Preparation for an Array of Intersecting Stretch Zones
The test sample is 2.54 cm wide×5.08 cm long. If the array is smaller than these dimensions, the sample should comprise the entire array. The array needs to be pulled in the direction close to the direction of maximum stretch. This can generally be determined by pulling the sample in several directions (e.g., CD, MD and 45 degrees to CD). If such a direction is not easily discernible, the default direction of pull is the cross machine direction.
Method
The hysteresis is measured under standard laboratory conditions (25° C.±2° C. and relative humidity of about 50%±2.0%).
The procedure for determining hysteresis of an elastomeric member involves the following steps:
The hysteresis test specifically involves the following steps:
This is intended to determine the Available Strain of a sample. The Available Strain is the point at which there is an inflection in the force—elongation curve, beyond which point there is a rapid increase in the amount of force required to elongate the sample further. An exemplary force (F (N/cm))-elongation (E (%)) curve is shown as
Method
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a divisional of U.S. application Ser. No. 11/077,779, filed Mar. 11, 2005, now abandoned which claims the benefit of U.S. Provisional Application No. 60/557,288, filed Mar. 29, 2004, the substances of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2413970 | Hawley, Jr. | Jan 1947 | A |
2866459 | Sobelson | Dec 1958 | A |
3848594 | Buell | Nov 1974 | A |
3860003 | Buell | Jan 1975 | A |
4322467 | Heimbach et al. | Mar 1982 | A |
4342314 | Radel et al. | Aug 1982 | A |
4515595 | Kievit et al. | May 1985 | A |
4610678 | Weisman et al. | Sep 1986 | A |
4618384 | Sabee | Oct 1986 | A |
4662875 | Hirotsu et al. | May 1987 | A |
4673402 | Weisman et al. | Jun 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4699622 | Toussant et al. | Oct 1987 | A |
4705584 | Lauchenauer | Nov 1987 | A |
4834735 | Alemany et al. | May 1989 | A |
4846815 | Scripps | Jul 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4892536 | DesMarais et al. | Jan 1990 | A |
4894060 | Nestegard | Jan 1990 | A |
4910064 | Sabee | Mar 1990 | A |
4940464 | Van Gompel et al. | Jul 1990 | A |
4946527 | Battrell | Aug 1990 | A |
4963140 | Robertson et al. | Oct 1990 | A |
4990147 | Freeland | Feb 1991 | A |
5037416 | Allen et al. | Aug 1991 | A |
5055103 | Nomura et al. | Oct 1991 | A |
5057097 | Gesp | Oct 1991 | A |
5092861 | Nomura et al. | Mar 1992 | A |
5137537 | Herron et al. | Aug 1992 | A |
5147345 | Young et al. | Sep 1992 | A |
5151092 | Buell | Sep 1992 | A |
5156793 | Buell et al. | Oct 1992 | A |
5167897 | Weber et al. | Dec 1992 | A |
5217798 | Brady et al. | Jun 1993 | A |
5221274 | Buell | Jun 1993 | A |
5236430 | Bridges | Aug 1993 | A |
5242436 | Weil et al. | Sep 1993 | A |
5246433 | Hasse et al. | Sep 1993 | A |
5260345 | DesMarais et al. | Nov 1993 | A |
5269775 | Freeland et al. | Dec 1993 | A |
5302454 | Cecchin et al. | Apr 1994 | A |
5330598 | Erdman et al. | Jul 1994 | A |
5342338 | Roe | Aug 1994 | A |
5358500 | Lavon et al. | Oct 1994 | A |
5368584 | Clear et al. | Nov 1994 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5397316 | LaVon et al. | Mar 1995 | A |
5447508 | Numano et al. | Sep 1995 | A |
H1517 | Erickson et al. | Feb 1996 | H |
5499978 | Buell et al. | Mar 1996 | A |
5507736 | Clear et al. | Apr 1996 | A |
5518801 | Chappell et al. | May 1996 | A |
5531729 | Coles et al. | Jul 1996 | A |
5542942 | Kline et al. | Aug 1996 | A |
5547736 | Simon et al. | Aug 1996 | A |
5554143 | Roe et al. | Sep 1996 | A |
5554144 | Roe et al. | Sep 1996 | A |
5554145 | Roe et al. | Sep 1996 | A |
5556394 | Roe et al. | Sep 1996 | A |
5569232 | Roe et al. | Oct 1996 | A |
5569234 | Buell et al. | Oct 1996 | A |
5571096 | Dobrin et al. | Nov 1996 | A |
5575783 | Clear et al. | Nov 1996 | A |
5580411 | Nease et al. | Dec 1996 | A |
5591152 | Buell et al. | Jan 1997 | A |
5594080 | Waymouth et al. | Jan 1997 | A |
5650214 | Anderson et al. | Jul 1997 | A |
5650222 | DesMarais et al. | Jul 1997 | A |
5662758 | Hamilton et al. | Sep 1997 | A |
5669897 | Lavon et al. | Sep 1997 | A |
5671678 | Bolte et al. | Sep 1997 | A |
5705013 | Nease et al. | Jan 1998 | A |
5749865 | Yamamoto et al. | May 1998 | A |
5749866 | Roe et al. | May 1998 | A |
H1750 | Dobrin | Sep 1998 | H |
5865823 | Curro | Feb 1999 | A |
5871607 | Hamilton et al. | Feb 1999 | A |
5876391 | Roe et al. | Mar 1999 | A |
5897545 | Kline et al. | Apr 1999 | A |
5904673 | Roe et al. | May 1999 | A |
5910224 | Morman | Jun 1999 | A |
5916663 | Chappell et al. | Jun 1999 | A |
5957908 | Kline et al. | Sep 1999 | A |
5997521 | Robles et al. | Dec 1999 | A |
6004306 | Robles et al. | Dec 1999 | A |
6050985 | Lavon et al. | Apr 2000 | A |
6107537 | Elder et al. | Aug 2000 | A |
6120487 | Ashton | Sep 2000 | A |
6120489 | Johnson et al. | Sep 2000 | A |
6132409 | Vogt et al. | Oct 2000 | A |
6168584 | Allen et al. | Jan 2001 | B1 |
6193701 | Van Gompel et al. | Feb 2001 | B1 |
6193918 | McGuire et al. | Feb 2001 | B1 |
6245050 | Odorzynski et al. | Jun 2001 | B1 |
6303208 | Pelkie | Oct 2001 | B1 |
6313372 | Suzuki | Nov 2001 | B1 |
6325787 | Roe et al. | Dec 2001 | B1 |
6429352 | Herrlein et al. | Aug 2002 | B1 |
6432098 | Kline et al. | Aug 2002 | B1 |
6436512 | Kauschke et al. | Aug 2002 | B1 |
6448464 | Akin et al. | Sep 2002 | B1 |
6465073 | Morman et al. | Oct 2002 | B1 |
6478785 | Ashton et al. | Nov 2002 | B1 |
6495229 | Carte et al. | Dec 2002 | B1 |
6503236 | Uitenbroek et al. | Jan 2003 | B1 |
6531025 | Lender et al. | Mar 2003 | B1 |
6531027 | Lender et al. | Mar 2003 | B1 |
6552245 | Roessler et al. | Apr 2003 | B1 |
6585713 | LeMahieu et al. | Jul 2003 | B1 |
6623468 | Shimoe | Sep 2003 | B2 |
6677038 | Topolkaraev et al. | Jan 2004 | B1 |
6680265 | Smith et al. | Jan 2004 | B1 |
6682514 | Brunner | Jan 2004 | B1 |
6686303 | Haynes et al. | Feb 2004 | B1 |
6703537 | Roe et al. | Mar 2004 | B1 |
6827806 | Uitenbroek et al. | Dec 2004 | B2 |
6833179 | May et al. | Dec 2004 | B2 |
6875710 | Eaton et al. | Apr 2005 | B2 |
6878647 | Rezai et al. | Apr 2005 | B1 |
6896843 | Topolkaraev et al. | May 2005 | B2 |
6939334 | Odorzynski et al. | Sep 2005 | B2 |
6994761 | Klemp et al. | Feb 2006 | B2 |
7345004 | Zenker et al. | Mar 2008 | B2 |
20020002021 | May et al. | Jan 2002 | A1 |
20020007164 | Boggs et al. | Jan 2002 | A1 |
20020009940 | May et al. | Jan 2002 | A1 |
20020128617 | Roe et al. | Sep 2002 | A1 |
20020180097 | Giachetto et al. | Dec 2002 | A1 |
20030083635 | Gibbs | May 2003 | A1 |
20030084996 | Alberg et al. | May 2003 | A1 |
20030087059 | Jackson et al. | May 2003 | A1 |
20030087098 | Eaton et al. | May 2003 | A1 |
20030088220 | Molander et al. | May 2003 | A1 |
20030088228 | Desai et al. | May 2003 | A1 |
20030091807 | Desai et al. | May 2003 | A1 |
20030109842 | Louis et al. | Jun 2003 | A1 |
20030153894 | Gibbs et al. | Aug 2003 | A1 |
20030204017 | Stevens et al. | Oct 2003 | A1 |
20030216707 | Johansson | Nov 2003 | A1 |
20030233082 | Kline et al. | Dec 2003 | A1 |
20040010241 | Sanders et al. | Jan 2004 | A1 |
20040019139 | Hanke et al. | Jan 2004 | A1 |
20040024109 | Hamersky et al. | Feb 2004 | A1 |
20040044323 | Roessler et al. | Mar 2004 | A1 |
20040049836 | Ashraf et al. | Mar 2004 | A1 |
20040073188 | Mitsui et al. | Apr 2004 | A1 |
20040078018 | Gompel et al. | Apr 2004 | A1 |
20040087235 | Morman et al. | May 2004 | A1 |
20040106723 | Yang et al. | Jun 2004 | A1 |
20040110442 | Rhim et al. | Jun 2004 | A1 |
20040122408 | Potnis et al. | Jun 2004 | A1 |
20040122409 | Thomas et al. | Jun 2004 | A1 |
20040126579 | Creagan | Jul 2004 | A1 |
20040127128 | Thomas | Jul 2004 | A1 |
20040127131 | Potnis | Jul 2004 | A1 |
20040127881 | Stevens et al. | Jul 2004 | A1 |
20040134596 | Rosati et al. | Jul 2004 | A1 |
20040142110 | Branca et al. | Jul 2004 | A1 |
20040186453 | Shimada et al. | Sep 2004 | A1 |
20050142339 | Price | Jun 2005 | A1 |
20050211368 | McGuire et al. | Sep 2005 | A1 |
20050215963 | Autran et al. | Sep 2005 | A1 |
20050215970 | Kline et al. | Sep 2005 | A1 |
20050215972 | Roe et al. | Sep 2005 | A1 |
20050215973 | Roe et al. | Sep 2005 | A1 |
20060032578 | Schneider | Feb 2006 | A1 |
20060035055 | Schneider et al. | Feb 2006 | A1 |
20080103473 | Roe et al. | May 2008 | A1 |
20080147036 | Roe et al. | Jun 2008 | A1 |
20080262457 | Roe et al. | Oct 2008 | A1 |
20090192480 | Roe et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
19516037 | Nov 1996 | DE |
0 472 942 | Sep 1995 | EP |
0 745 433 | Dec 1996 | EP |
1 081 672 | Mar 2001 | EP |
1 184 012 | Mar 2002 | EP |
1 197 195 | Apr 2002 | EP |
04-371148 | Dec 1992 | JP |
07 089012 | Aug 1995 | JP |
10 53963 | Feb 1998 | JP |
2001-157690 | Jun 2001 | JP |
WO 9401507 | Jan 1994 | WO |
WO 9516746 | Jun 1995 | WO |
WO 9624485 | Aug 1996 | WO |
WO 9747264 | Dec 1997 | WO |
WO 0127373 | Apr 2001 | WO |
WO 03037237 | May 2003 | WO |
WO 03039421 | May 2003 | WO |
WO 2007103097 | Sep 2007 | WO |
Entry |
---|
Greg Hearn, Multistrand Elastics' Role In Diaper Performance, Nonwovens World, Apr.-May 2003, pp. 63-68. |
European Search Report, dated Feb. 17, 2009, Appl. No./Pat. No. 08101562.0-2124 / 1964534. |
European Search Report, dated Feb. 23, 2009, Appl. No./Pat. No. 08101561.2-2124 / 1964533. |
Madkour, TM and Mark, JE, Simulations on crystallization in stereoblock poly(propylene). Idealized structures showing the effects of atactic block length, Macromol. Theory Simul. 7, 69-77 (1998). |
Number | Date | Country | |
---|---|---|---|
20080091160 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60557288 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11077779 | Mar 2005 | US |
Child | 11953349 | US |