In recent years populations in many developed countries have shifted toward middle-aged and older demographic groups. These demographic groups represent markets with relatively increased demands for products and services addressed to concerns associated with aging.
One such concern is adult urinary incontinence. Urinary incontinence can result from or be exacerbated by a variety of health conditions, or even normal experiences such as childbearing.
Disposable absorbent pants for persons suffering from urinary incontinence have been marketed for a number of years. These products have traditionally been very similar to disposable baby diapers or disposable children's training pants, the main difference being size. One design type is known as the “belted” or “balloon” type pant, which is formed of a broad belt that encircles the wearer's waist and lower torso, bridged by a structure that connects front and rear belt portions through the wearer's crotch area. The crotch structure includes an absorbent structure designed to receive, contain and retain urine until the time the pant is changed. The belt is typically formed of a stretch laminate material.
Due to their design and method of manufacture, the products may visually resemble a disposable baby diaper or training pant, rather than an ordinary undergarment. The crotch structure may tend to be bulky as a result of the presence of absorbent materials. The structure may have the appearance of a mass-produced disposable article, like a disposable child diaper. The belt structure, typically formed of a stretch laminate material, may also have a bulky, mass-produced, diaper-like appearance.
This unfortunate resemblance has been a source of anxiety and discomfort for users. The bulk may cause outer clothing to fit poorly, or make it visibly obvious that an absorbent undergarment is being worn. Many users may be unhappy using products that may be associated with aging and loss of control of bodily functions.
In these circumstances, any improvement to traditional designs and materials for adult incontinence pants, that is efficient for manufacturing while providing an appearance and feel more closely resembling those of an ordinary undergarment, may provide competitive advantages to the manufacturer thereof.
“Cross direction” (CD)—with respect to the making of a nonwoven web material, the nonwoven material itself, a laminate thereof, or an article in which the material is a component, refers to the direction along the material substantially perpendicular to the direction of forward travel of the material through the manufacturing line in which the material and/or article is manufactured.
Throughout the present description, a material or composite of materials is considered to be “elastic” or “elastomeric” if, when a biasing force is applied to the material, the material or composite can be extended to an elongated length of at least 150% of its original relaxed length (i.e. can extend at least 50%), without rupture or breakage which substantially damages the material or composite, and when the force is removed from the material or composite, the material or composite recovers at least 40% of such elongation. In various examples, when the force is removed from an elastically extensible material, the material or composite may recover at least 60% or even at least 80% of its elongation.
The “stretch direction” of a stretch laminate is the direction along which the laminate will most readily undergo elastic stretch and contraction. In a stretch laminate in which one or more elastic members are incorporated into the laminate while in a pre-strained condition, the stretch direction is the direction along which the elastic member(s) are pre-strained. The “trans-stretch direction” of a stretch laminate is the direction perpendicular to the stretch direction.
“Film” means a skin-like or membrane-like layer of material formed of one or more polymers, which does not have a form consisting predominately of a web-like structure of consolidated polymer fibers and/or other fibers.
“Lateral”—with respect to a pant and its wearer, refers to the direction generally perpendicular with the wearer's standing height, or the horizontal direction when the wearer is standing.
For purposes herein, the length (L) and width (W) of a bond shape are the trans-stretch direction and stretch direction (SD) dimensions, respectively, of a rectangle having the least possible area while entirely circumscribing the bond shape, and having two of its sides aligned parallel with the stretch direction SD.
“Longitudinal”—with respect to a pant and its wearer, refers to the direction generally parallel with the wearer's standing height, or the vertical direction when the wearer is standing. “Longitudinal” is also the direction generally parallel to a line extending from the midpoint of the front waist edge to the midpoint of the rear waist edge.
“Machine direction” (MD)—with respect to the making of a nonwoven web material, the nonwoven material itself, or a laminate thereof, refers to the direction along the material or laminate substantially parallel to the direction of forward travel of the material or laminate through the manufacturing line in which the material or laminate is manufactured.
“Machine direction bias,” with respect to the fibers forming a nonwoven web, means that a majority of the fibers, as situated in the web and unstretched, have lengths with machine direction vector components that are greater than their cross direction vector components.
A “nonwoven” is a manufactured sheet or web of directionally or randomly oriented fibers which are first formed into a batt and then consolidated and bonded together by friction, cohesion, adhesion or one or more patterns of bonds and bond impressions created through localized compression and/or application of pressure, heat, ultrasonic or heating energy, or a combination thereof. The term does not include fabrics which are woven, knitted, or stitch-bonded with yarns or filaments. The fibers may be of natural and/or man-made origin and may be staple and/or continuous filaments or be formed in situ. Commercially available fibers have diameters ranging from less than about 0.001 mm to more than about 0.2 mm and they come in several different forms: short fibers (known as staple, or chopped), continuous single fibers (filaments or monofilaments), untwisted bundles of continuous filaments (tow), and twisted bundles of continuous filaments (yarn). Nonwoven fabrics can be formed by many processes including but not limited to meltblowing, spunbonding, spunmelting, solvent spinning, electrospinning, carding, film fibrillation, melt-film fibrillation, airlaying, dry-laying, wetlaying with staple fibers, and combinations of these processes as known in the art. The basis weight of nonwoven fabrics is usually expressed in grams per square meter (gsm).
“z-direction,” with respect to a web, means generally orthogonal or perpendicular to the plane approximated by the web along the machine and cross direction dimensions.
Although examples of the structure of the invention are described herein as used to form the belt of a belt- or balloon-type absorbent pant, it will be appreciated that examples may be used to form other components of pants, diapers, other wearable articles, and other products as well.
In the example shown in
Referring to
The individual fibers may be monocomponent or multicomponent. The multicomponent fibers may be bicomponent, such as in a core-and-sheath or side-by-side arrangement. Often, the individual components comprise polyolefins such as polypropylene or polyethylene, or their copolymers, polyesters, thermoplastic polysaccharides or other biopolymers.
According to one example, the nonwoven may comprise a material that provides good recovery when external pressure is applied and removed. Further, according to one example, the nonwoven may comprise a blend of different fibers selected, for example from the types of polymeric fibers described above. In some embodiments, at least a portion of the fibers may exhibit a spiral curl which has a helical shape. According to one example, the fibers may include bicomponent fibers, which are individual fibers each comprising different materials, usually a first and a second polymeric material. It is believed that the use of side-by-side bi-component fibers is beneficial for imparting a spiral curl to the fibers.
In order to enhance softness perceptions of the laminate, nonwovens may be treated by hydrojet impingement, which may also be known as hydroenhancement, hydroentanglement or hydroengorgement. Such nonwovens and processes are described in, for example, U.S. Pat. Nos. 6,632,385 and 6,803,103, and U.S. Pat. App. Pub. No. 2006/0057921, the disclosures of which are incorporated herein by reference.
Other examples of nonwoven web that may be useful in the present laminate may be an SMS web (spunbond-meltblown-spunbond web) made by Avgol Nonwovens LTD, Tel Aviv, Israel, under the designation XL-S70-26; an SSS (spunbond-spunbond-spunbond) web made by Pegas Nonwovens AS in Znojmo, Czech Republic, under the designation 18 XX 01 00 01 00 (where XX=the variable basis weight); an SSS web made by Gulsan Sentetik Dok San VE TIC AS, in Gaziantep, Turkey, under the designation SBXXF0YYY (where XX=the variable basis weight, and YYY=the variable cross direction width); an HESB (hydroenhanced spunbond) web made by First Quality Nonwovens Inc., in Hazelton, Pennsylvania, under the designation SEH2503XXX (where XXX=the variable cross direction width); and a bicomponent SS web.
A nonwoven web useful as a component to form one or both of layers 25, 26 may be bonded in a pattern of bonds. A batt of loose, e.g., spunlaid, fibers may be passed through the nip between a pair of calender bonding rollers and thereby consolidated and bonded in a pattern of bonds, to add tensile strength and dimensional stability, converting the batt of loose fibers to a coherent and useable nonwoven web material. The bonding may include a pattern of thermal bonds, mechanical bonds or adhesive bonds or a combination thereof, although in some circumstances thermal bonding may be preferred. Thermal bonds may be formed by supplying one or both of the calender rollers or accompanying equipment with a source of heating energy that functions to heat the fibers and cause them to melt and fuse beneath bonding projections in the nip between the calender bonding rollers. One or both of the rollers may be machined, etched or otherwise formed to have a pattern of shaped bonding projections extending radially outward from the cylindrical surface of the roller. When the rollers are maintained in suitably close proximity with their axes in parallel, the batt of fibers passing therebetween will be subjected to pressure concentrated in the nip beneath the bonding projections, and fibers passing through the nip and beneath the bonding projections will be deformed and at least partially fused (by application of heating energy), to form bonds. Each bond will have a shape, and the bonds will have a pattern and spacing, substantially corresponding to the shape, pattern and spacing of the bonding projections on the calender bonding roller.
Referring to
The elastic members can also be formed from various other materials, such as but not limited to, rubbers, styrene ethylbutylene styrene, styrene ethylene propylene styrene, styrene ethylene propylene styrene, styrene butadiene styrene, styrene isoprene styrene, polyolefin elastomers, elastomeric polyurethanes, and other elastomeric materials known in the art, and combinations thereof. In some embodiments, the elastic members can be extruded strand elastics with any number of strands (or filaments). Elastic strands, if used, may be selected to have a decitex ranging from 50 to 2000, or any integer value for any decitex value in this range, or any range formed by any of these integer values. The elastic members may be in a form of film. Examples of films have been described extensively in prior patent applications (see, for example, U.S. Pat. App. Pub. No. 2010/0040826). The film may be created with a variety of resins combined in at least one of several sublayers, the latter providing different benefits to the film. Elastic members may also be in the form of scrim, strips or sections of tape of elastomeric material with their longer dimensions oriented along the stretch direction.
During manufacture of the belt structure, the one or more elastic members such as elastic strands 27, may be pre-strained lengthwise by a desired amount as they are being incorporated into the belt structure. Upon subsequent relaxation of the belt, the one or more elastic members, such as elastic strands 27, will contract toward their unstrained lengths. Referring to
The size(s) and shape(s) of the ruffles or gathers will be affected, and may be manipulated, by design of the pattern of joined portions and/or bonding between the layers of nonwoven web 25, 26, with respect to each other and with respect to elastic strands 27.
In one example, a stretch laminate may incorporate elastic strands 27 as the elastic stretch mechanism. Elastic strands 27 may have adhesive applied to them prior to lamination (e.g., by a strand coating process), such that, when the web layers 25, 26 are brought together to sandwich the strands, the applied adhesive causes the web layers to be adhered about the strands to form the stretch laminate. The adhesive applied to the elastic strands may be the only adhesive used to hold the laminate together. Alternatively, or in addition, adhesive may be deposited upon one or both layers 25, 26 prior to lamination, and may be deposited in a pattern. Examples of methods for applying patterned deposits of adhesive to a nonwoven web substrate to enable manufacture of an elasticized laminate are described in U.S. Pat. No. 8,186,296. In one example, the adhesive pattern selected may be effected by design of a correspondingly designed roller. The pattern of adhesive to be applied may be designed to affect the size(s) and shape(s) of the ruffles or gathers. The layers 25, 26 may be adhesively joined and/or bonded to each other at the locations of adhesive deposits, and remain unjoined or unbonded, or free, of each other at other locations, such that they may move and shift slightly relative each other as the laminate is moved and stretched, as during wear of the article.
When bonding of one or both of layers 25, 26 is effected using thermal calender bonding, the joining and/or bonding pattern may be designed to affect the size(s) and shapes of the ruffles or gathers. It may be desired in some circumstances that a spunlaid nonwoven web be bonded with a pattern of thermal bonds to a bond area of from 5% to 20%. For purposes described herein it may be desired that bond area be from 8% to 15%. Patterned thermal bonding tends to enhance machine-direction and cross-direction strength and dimensional stability of the resulting bonded nonwoven web, which has benefits in downstream converting and processing operations, and adds tensile strength and robustness to a product in which the web is to form a component. However, thermal bonding also generally increases the stiffness of the resulting bonded nonwoven web. This may have adverse effects on the product consumer's perception of tactile softness of the product surfaces. For example, if the web is used as a layer of a belt structure of a pant product, stiffness imparted to the web may cause the consumer to negatively perceive the belt layer as stiff- or rough-feeling. For this reason, in some circumstances it may be desired to limit bond area to less than 16%, less than 12%, less than 10% or even less than 8%. It has been discovered, however, that imparting certain features as described herein to the bond pattern of a web to be used in a stretch laminate can mitigate the negative effects of stiffening the web, while providing advantages in addition to tensile strength.
Referring to
It has been found that orienting stiffening columns of bonds such that they run substantially perpendicular to the stretch direction SD (such that unbonded pathways 41 also run substantially perpendicular to and for a substantial length along the stretch direction), beneficial effects upon formation of ruffles or gathers in layers 25 and/or 26 may be achieved. Within the region occupied by a bond 40 in a nonwoven web layer 25 and/or 26, the constituent fibers of the web have been melted, deformed, highly consolidated and fused together. As a result, within the bond shape the structure is stiffened relative the surrounding unbonded areas. The stiffened area will tend to be more resistive to bending and flexing than the surrounding unbonded areas. Conversely, the unbonded areas (comprising undeformed and unbonded fibers) will tend to more easily bend and flex relative the stiffened areas within the bonds. Thus, the web will more easily bend and flex along an unbonded pathway 41, while columns of bonds 40 will tend to remain relatively resistant to bending and flexing. These effects may be exploited via design of the bond pattern, to favorably affect formation of ruffles or gathers in the stretch laminate.
Referring to
The shapes and dimensions of the bonds 40 may be configured for beneficial impact not only on tactile softness, but on formation and size of the ruffles or gathers. Currently marketed belt- or balloon-style pants that include longitudinally spaced elastic strands as the belt stretch mechanism tend to have a bulky, puffy appearance that may not be deemed desirable for an adult product. It has been found that selecting spacing of the elastic strands in conjunction with spacing and dimensions of the bonds 40 in a bonded nonwoven layer 25 and/or 26 can work to greatly reduce the size of the ruffles or gathers, and also enhance regularity and consistency of size and shape. This helps impart a neat, low-bulk, cloth-like appearance to the stretch laminate.
Referring to
Alone or in combination with any other features described herein, bond shape length L may be selected so as to be no less than 33% of row repeat interval RI, more preferably no less than 40%, 50%, 60% and even more preferably no less than 70% of row repeat interval RI. This feature contributes to orderly and regular formation of gathers with peaks and valleys extending along a direction perpendicular to the stretch direction. It may be desired that bond shape length L be no greater than 90% of row repeat interval RI. This ensures that the bonds are discrete (not indefinitely long), and avoids imparting too much stiffness to the web along a direction perpendicular to the stretch direction SD.
Alternatively, or in combination with any other features described herein, bond shape width W, may be selected to be from 5% to 50% of column repeat interval CI, more preferably from 8% to 40%, and still more preferably from 10% to 30% of column repeat interval CI. This feature strikes a balance between providing an appropriate width for bond-stiffened regions that will resist bending and thereby form the sides of ridges 28, while leaving an appropriate width for non-bonded, non-stiffened regions that will bend or flex to form the peaks and floors of ridges 28 and valleys 29 of gathers in the web material.
Alternatively, or in combination with any other features described herein, the pattern of bonds may be arranged such that the total of unbonded pathway widths PW for the pattern over a stretch direction distance over which the pattern repeats is from 50% to 95% of the stretch direction repeat length, more preferably from 60% to 92% of the stretch direction repeat length, and still more preferably from 70% to 90% of the stretch direction repeat length.
Referring to
For purposes of reducing the overall size of the ruffles or gathers formed, and in conjunction with any combination of the features described herein, it may be desired that the trans-stretch spacing ES of the elastic strands 27 be no greater than 14 mm, more preferably no greater than 10 mm, even more preferably no greater than 7 mm, and still more preferably no greater than mm. (Herein, trans-stretch spacing of adjacent elastic strands is to be understood to refer to the distance between their longitudinal axes, not the distance between their nearest outer surfaces.) Through experimentation it has been determined that limiting spacing of elastic strands 27 in this way has the effect of promoting formation of ruffles or gathers that are relatively small, thereby promoting or enhancing a cloth-like appearance in the stretch laminate. This effect may be complimented and amplified by incorporating other features of a bond pattern in one or both of the nonwoven web layers 25, 26 as described herein.
In combination with any of the other features described herein, column repeat interval CI may be related to trans-stretch elastic strand spacing ES such the CI is no greater than 1.5 ES, more preferably no greater than 1.3 ES, 1.0 ES, 0.9 ES, and even more preferably no greater than 0.8 ES. This feature enables control of the size and regularity/uniformity of the ruffles or gathers formed relative the trans-stretch spacing of the elastic strands 27. If, for example, a stretch laminate has elastic strands spaced at ES=5.0 mm, this means that it may be desired that bond column repeat interval CI be 7.5 mm or less, 6.5 mm or less, 5.0 mm or less, 4.5 mm or less, or even 4.0 mm or less. This dimension, along with the extent of pre-strain imparted to the elastic strands 27 during formation of the stretch laminate, will further impact the stretch-direction size of the ruffles or gathers. For stretch laminates as contemplated herein, pre-strain in the elastic strands in the range from 50% to 200% is envisioned. (Herein, the pre-strain percentage amount is expressed as the calculation of the length of a section of the strand in the pre-strained condition minus the length of the same section of the strand in its relaxed condition (stretch distance), divided by length of the same section of the strand in its relaxed condition, times 100%.) For example, assuming a level of pre-strain in the elastic strands sufficient to cause the laminate to contract upon relaxation to approximately half of its stretch-direction, fully-stretched length (e.g., a pre-strain amount of approximately 100%), a bond column repeat interval CI will promote formation of ruffles or gathers upon relaxation of the stretch laminate that have a peak-to-peak dimension PP (see
In combination with any of the other features described herein, a majority of the bonds 40 in the pattern may have shapes with an aspect ratio of length to width equal to or greater than 1.0, more preferably equal to or greater than 1.5, even more preferably equal to or greater than 2.0, still more preferably equal or greater than 2.5, and most preferably equal to or greater than 3.5. This feature will contribute to promoting formation of regular and uniform ruffles or gathers with ridges and valleys oriented in the trans-stretch direction.
Another characteristic of a bond pattern that can provide a way to effect control over formation of ruffles or gathers for purposes herein may be described with reference to
(L1+L2+etc.)/RDX>(W1+W2+etc.)/RDSD,
for any line SDL that can be identified extending in the stretch direction. Expressed yet another way, a bond pattern in which a trans-stretch direction line along which bonds are arranged traverses a greater sum of bond lengths per unit line length along the web, than any sum of bond widths per unit line length crossed by any stretch direction line that can be identified. The effect of this configuration of bonds is substantially trans-stretch direction columnar stiffened regions alternating with substantially trans-stretch direction columnar flexible regions. This configuration tends to promote formation of ruffles or gathers with improved uniformity and regularity, with alternating ridges 28 and valleys 29 oriented along the flexible columnar regions, and sides or slopes along the stiffened columnar regions, as may be appreciated from
The columns of bond shapes may be configured to be substantially perpendicular to the stretch direction SD, e.g., in
A pattern that has unbonded pathways 41 that lie exactly along the cross-direction of the bonded nonwoven web material reflects a calender bonding roller with a corresponding arrangement of bonding projections. This arrangement pay increase the possibility for increased or undesired excess pressure beneath bonding projections that may result in non-uniform or defective bonds and/or roller and equipment wear, which may result from intermittent and rapid, step-wise changes in pressure in the nip resulting from intermittent absence and presence of bonding projections in the nip that may occur when trans-machine direction columns of bonding projections alternate with trans-machine direction unbonded pathways with no projections present on the cylindrical surface of the calender bonding roller.
Thus, when the machine direction of the bonded nonwoven web layer corresponds with the stretch direction, it may be desired that column angle α not be exactly 90 degrees. Alternatively or in addition, the calender bonding roller may include bonding projections that intermittently interrupt the unbonded pathways 41, resulting in formation of trans-stretch pathway interrupting bonds 42, as suggested in
The stretch direction SD of the stretch laminate may be parallel or perpendicular with the machine direction of manufacture of the nonwoven web layer components 25, 26. For nonwoven webs formed of continuously spun fibers, the fibers in the web often have a machine-direction bias as a result of the manner in which the fibers are spun and laid down on a moving belt. As a result of this machine-direction bias of the fibers, the nonwoven web may be imparted with anisotropic tensile strength properties, for example, machine-direction tensile strength is greater than cross-direction tensile strength. It has been determined, however, than when a bond pattern has a combinations of one or more features described above, the columns of bond shapes are substantially perpendicular to the machine direction, the rows of bond shapes are offset or staggered as suggested in
In view of the description above, the following examples are contemplated:
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value.
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a continuation of U.S. Nonprovisional application Ser. No. 15/586,358 filed May 4, 2017, which claims the benefit of U.S. Provisional Application No. 62/331,650, filed May 4, 2016, the substance of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62331650 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15586358 | May 2017 | US |
Child | 18451901 | US |