There are numerous well-known machines available for making a single-serve brewed beverage. The present invention is intended for use with any of these systems, including the well-known beverage brewing systems sold by Keurig®, Nespresso® and others. These brewers are designed to quickly brew a single cup of coffee, tea or other beverage, and they have become increasingly popular with consumers, with an estimated 41% of all U.S. consumers owning one of these machines as of 2018. The brewers typically use self-contained, single-serve beverage pods. Some systems also can be configured to make multi-cup “carafe” sized brews.
The standard beverage configuration used with the Keurig® brewer is what Keurig® terms the K-Cup®. As shown in
When a K-Cup® is placed in the Keurig® brewer's brewing chamber and the chamber is closed, the brewer's hollow upper inflow needle pierces the foil lid 8 and a hollow lower discharge needle pierces the bottom of the plastic cup 2 without piercing the paper filter 4. When the brew button is pressed, the brewer injects hot, pressurized water into the coffee grounds 6 (or other beverage material) contained in the paper filter 4. The K-Cup® acts as a pressurized chamber during the brewing process. The brewed coffee (or other beverage) percolates through the paper filter 4 (which captures beverage material sediment) and flows out of the hollow lower discharge needle into a coffee cup or other beverage container.
The Keurig® brewing system provides a convenient way to make a single, fresh serving of a beverage. The standard K-Cup® configuration provides for easy, mess-free preparation and cleanup-there is no pre-brew grinding, measuring or spillage by the end user; the K-Cup® fits easily into the brewing chamber; and, after brewing is complete, the spent K-Cup® can be removed and thrown away, again without making a mess.
However, there are significant shortcomings with the K-Cup® brewing technique, not the least of which is that K-Cup® type cartridges are relatively expensive. Also, they are made largely of non-recyclable plastic, which creates significant environmental issues since they are not biodegradable, compostable or recyclable. The capsules used with Nespresso® and other brewers suffer similar shortcomings. Many billions of these relatively expensive cups and capsules, having plastic and/or metal components, are used and disposed of each year as landfill waste, resulting in tremendous environmental stress.
Materials used in the food industry are increasingly subject to stringent environmental regulatory requirements, and consumer preferences also are evolving to favor biodegradable, compostable and recyclable products. A variety of alternative beverage cartridge configurations have been created to address the cost and environmental issues associated with K-Cup® type cartridges (whether made of plastic, aluminum, or other non-biodegradable, environmentally unfriendly materials).
Alternatives to brewing systems employing plastic cups, such as the K-Cup® type cartridges, include cup-less pods. One type of cup-less pod 9, shown in
Another variant consists of a reusable plastic or metal cup and lid in which the user places a paper filter in the cup and then fills the filter with beverage material (for example, loose coffee grounds) and then places the lid on the cup. Numerous products of this sort are currently available, including the Perfect Pod® EZ-Cup® 2.0 and the Melitta® JavaJig®. This product is more environmentally friendly than K-Cup® type cartridges, because the cup and lid are reused, and only the paper filter and loose coffee grounds need to be thrown away after brewing. Cost-per-brewed cup also is generally lower than with the K-Cup® type cartridges.
However, this product requires users to carefully grind and measure the ground coffee, requiring users to purchase coffee grinding equipment, and making dosing inconsistent and delivering varying and potentially sub-par cups of coffee. It also has the disadvantages of pre-brew spillage when the coffee is ground and/or added to the filter and post-brew spillage during disposal of the paper filter and grounds. Preparation of the coffee and clean-up using this product is thus time consuming, inconvenient, inconsistent and messy.
Another variant, shown in
The product shown in
However, this product also requires users to purchase grinding equipment, and carefully measure and precisely grind the coffee, making dosing inconsistent and delivering varying and potentially sub-par cups of coffee. It also has the disadvantages of pre-brew spillage when the coffee is ground and/or added to the filter cup and post-brew spillage during disposal of the coffee grounds. Preparation of the coffee and clean-up using this product is thus time consuming, inconvenient, inconsistent and messy.
A continuing need exists for improved single-serve brewing systems and associated brewing means that are environmentally sound, cost-effective to manufacture and distribute, provide consisting dosing, and minimize user preparation and clean-up time and mess.
Embodiments of the present invention address and overcome the deficiencies addressed above. The inventive beverage bag described and claimed herein provides an elegant, convenient, consistent, mess-free, low-cost and environmentally-friendly alternative to the prior art brewing systems. Embodiments of the flexible and properly-dosed beverage bags of the present invention also allow for improved intermixing of pressurized heated water and the beverage material, improved extraction, and a superior flavor profile.
Embodiments of the present invention include an inventive brewing machine adapter that allows use of the inventive beverage bag described and claimed herein without the need for users to purchase a reusable cup or reusable filter cup. The adapter comprises a gasket disposed over and/or within the upper portion of the brewing machine's brewing chamber and/or on the underside of the brewing chamber cover that seals the upper portion of the brewing machine during the brewing process. The adapter also can include a plug disposed in the lower portion of the brewing chamber that, combined with the gasket, helps retain pressure in the brewing chamber during the brewing process without the need for a reusable cup or a reusable filter cup.
The foregoing presents merely a simplified, brief summary of some embodiments in order to provide a basic understanding of the invention. The present invention can be embodied many different ways. For a more complete understanding of the nature, scope and advantages of the present invention, reference also should be made to the ensuing detailed description and accompanying drawings.
A better understanding of the present invention may be obtained by reference to the accompanying drawings, when considered in conjunction with the other portions of the specification. The drawings illustrate only certain embodiments of this disclosure and are not to be considered to limit its scope. The disclosure supports other equally effective embodiments and it is intended to cover all such embodiments.
The following detailed description is merely exemplary and is not intended to limit the described embodiments or the application and uses of the described embodiments. The description represents the information necessary to enable those skilled in the art to practice the invention and illustrates various methods of practicing embodiments of the invention. The general principals and information described herein may be applied to embodiments and applications other than those detailed below without departing from the spirit and scope of the disclosure and all such embodiments and applications are covered by this disclosure.
The disclosure set forth herein is to be accorded the broadest scope consistent with the principles and features disclosed or suggested herein. Upon reading the description and the other portions of the specification, including the accompanying drawings, those skilled in the art will understand the concepts of the invention and recognize applications of these concepts not particularly addressed herein, and each of these concepts and applications fall within the broad scope of the disclosure and the accompanying claims.
The beverage bag 24 is preferably made from environmentally-friendly woven or knitted materials, including material blends, that are biodegradable, compostable and/or recyclable, or any other suitable stretchy, water-permeable, eco-friendly material. The use of a woven, knitted or other stretchy water-permeable, eco-friendly material or material blend allows for improved interaction and intermixing between the pressurized heated water and the beverage material 26 and for improved extraction and flavor profile.
The water-permeability of the beverage bag 24 allows for pressurized heated water to enter the beverage bag 24 to intermix and interact with the beverage material 26 and then exit the beverage bag 24. The beverage bag 24 can be configured to capture essentially all the beverage material 26 sediment that may be generated in connection with the brewing process. The openings or holes 28 that make the beverage bag 24 water-permeable can be sized and configured based on the type and grind of the beverage material 26 contained in the beverage bag 24 to maintain optimal interaction, intermixing and extraction. The terms “opening” or “holes” can refer to mechanically formed perforations or micro-perforations in a solid, flexible sheet material, or more preferably, they refer to the natural spacing or gaps between the warp and weft strands of a woven or knitted fabric material, or the spacing between the multi-filaments that comprise individual strands of the fabric.
Because knitted fabrics generally are more stretchy (flexible and expandable) than woven fabrics, knitted fabrics are more preferred in the present invention. Moreover, “natural” fibers and fabrics such as cotton, flax, wool and hemp, and “manufactured” or “regenerated” cellulose based fibers and fabrics are preferred over nonbiodegradable synthetics, due to their natural ability to biodegrade on a relatively short time table, making them environmentally friendly.
The beverage bag 24 may contain any beverage material 26 (shown with stippled lines). Although certain of the disclosures herein reference ground coffee as the beverage material, it will be understood that all of the disclosures herein apply equally (and broadly) to other beverage material, including tea, hot chocolate and other beverage materials including cold and flu remedies, protein and health drinks, powered milk, soups, fruit and vegetable drinks, soft drinks, breakfast drinks, meal replacements and any other beverage material that can be prepared in brewing machines of the type discussed herein.
The quantity of beverage material 26 used in the beverage bag 24 is properly dosed depending on the beverage material 26 and brewing system being used, the beverage bag construction, the desired beverage flavor profile, and, if utilized, the configuration and design of the reusable cup or reusable filter cup. By example, if the beverage material is ground coffee, the quantity and grind of ground coffee can be selected to provide a mild, medium or strong brewed coffee, or any variation in between. Moreover, the fineness of the coffee grind can be selected to match with a preferred material from which the beverage bag 24 is made.
Closure means 30 that can be used to close the beverage bag 24 broadly include heat sealing, gluing, sewing; using a string, thread, cord or the like; ultrasonic fabric welding; and mechanical closures such as clips or complimentary closures such as micro-hook and micro-loop fasteners. As shown in
Persons of ordinary skill in the art will recognize that other bag shapes and configurations that result in a closed beverage bag for containing beverage material are also possible and covered by this disclosure. The exact shape and size of the beverage bag may depend on various factors, including the brewing machine in which the beverage bag will be used, the type and grind of coffee or other beverage material, and/or the configuration and design of the reusable cup or reusable filter cup when one is being used. However, it is an aspect of the present invention that the beverage bag, which in the preferred embodiment takes the shape of a conventional “bag,” is flexible and somewhat amorphous in shape so that a bag of the present invention can easily be configured to fit into several different types of brewing machines and structures. The beverage bag can conform its shape to its application.
The inventive beverage bag described and claimed herein can be used with reusable cups or reusable filter cups. As noted, a variety of such reusable cups and reusable filter cups are commercially available, and the inventive beverage bag described and claimed herein is intended for use with any cup type or configuration. When the beverage bag is used in conjunction with an all-metal reusable filter cup, there is no contact with plastic, which eliminates plastic taste and potentially harmful effects of plastic when heated and placed in contact with potable water.
The present invention preferably contemplates a combination of a reusable filter cup and beverage bag. The exact type of material, and knitting pattern, for example, are selected to allow expansion of the beverage bag during brewing (as a result of the introduction of pressurized heated water and the swelling of the coffee grinds), and to allow proper timing of exposure of the pressurized heated water to the ground coffee, thus optimizing coffee flavor extraction from the grinds and taste profile.
The reusable filter cup 44 may be sized and shaped to fit within the brewing chamber of existing commercially available brewing machines, such as the Keurig® machine that uses K-Cup® type cartridges which fit within the brewing chamber. With conventional K-Cup® type cartridges, an injection needle punctures the lid of a plastic cup to inject pressurized heated water into the cup itself to thereby interact with ground coffee. Brewed coffee exits the bottom of the plastic cup through a discharge needle that punctures the bottom of the plastic cup and the brewed coffee flows into a coffee cup disposed under the brewing chamber. When the brewing chamber cover is closed over the brewing chamber, a pressure chamber is formed inside the K-Cup® due to the solid sidewall, bottom and lid of the K-Cup®. When using the inventive combination of the present invention (preferably a reusable filter cup 44 with the beverage bag 42 placed therein) pressure is maintained in the brewing chamber by means of the reusable filter cup and lid (not shown) and the brewing chamber cover seating over the reusable filter cup 44. The injection and discharge needles of the machine no longer serve to puncture a solid cup, but the injection needle still functions to inject pressurized heated water into the reusable filter cup 44.
As shown in
Tests were conducted relating to the beverage bag of the present invention using a Keurig®1.0 brewing system set at the 6 oz. brew level. The best performance in these tests was displayed using a beverage bag constructed of 32S 100% unbleached cotton knitted fabric loosely filled with about 10 grams of VT Artisan Breakfast Blend coffee (ground using a 3.5 grind setting on a Mahlkönig GmbH & Co. lab grinder) in connection with an Ekobrew® Elite® Stainless Steel Reusable filter cup. The beverage bag was sized to occupy approximately 90% of the volume of the reusable filter cup. The fabric allowed the ground coffee to expand in the brewing process optimizing extraction by allowing the pressurized heated water to come in contact with all of the ground coffee. Essentially no particles escaped, which prevented the grinds from disbursing in the filter cup and clogging the filters. The beverage bag also was easily removed from the brewing machine and the filter cup was reusable without the need for rinsing between cups.
The performance and extraction of this beverage bag configuration consistently equaled or exceeded that of ground coffee placed directly in a Keurig® My K-Cup® reusable filter cup. It also had the added benefit of being fully compostable and easily removed from the Ekobrew® filter cup and disposed of without the need for cleanup.
Additional embodiments of the present invention allow the inventive beverage bag described and claimed herein to be used with Keurig® and other brewing systems without the need for a reusable cup or reusable filter cup. In these embodiments, a gasket and plug configuration is used to seal the brewing chamber in order to maintain proper pressure during the brewing process.
If a beverage bag of the present invention were placed directly in the brewing chamber 72 without use of a reusable cup or a reusable filter cup, the brewing chamber 72 would not act as a pressure vessel during the brewing process due to the loss of pressure at both the upper and lower portions of the brewing chamber 72. An inventive solution to this pressure loss issue which allows users to use the beverage bags of the present invention without the need for a reusable cup or a reusable filter cup is to adjoin a gasket to the upper portion of the brewing chamber 72 and/or the underside of the brewing chamber cover 74 to seal the upper portion of the brewing chamber 72 during the brewing process. The gasket(s) can be combined with a plug or plugs disposed in the lower portion of the brewing chamber 72 and configured to reduce pressure loss through the lower portion of the brewing chamber 72 during the brewing process. The gasket can be permanently adjoined to the upper portion of the brewing chamber 72 and/or the underside of the brewing chamber cover 74, or it can be adjoined so as to be removable (i.e., removably adjoined).
The gasket of the present invention can have any cross-sectional shape that allows for sealing engagement between the gasket 84, the brewing chamber 74 and the brewing chamber cover 74.
The gasket can be used with a plug or plugs disposed in the lower portion of the brewing chamber. The term plug is used herein in its broadest sense to mean any device that slows, blocks and/or obstructs flow through the openings in the lower portion of the brewing chamber in order to impede pressure loss in the brewing chamber during the brewing process to allow intermixing of the heated water and the beverage material. The plug can be configured based on the configuration of the brewing chamber, and it can take any shape, including, e.g., the general shape of a “stopper” type plug, a flat or shaped disc, or a cup. The plug can be configured to impede or completely obstruct pressure loss through any or all openings in the lower portion of the brewing chamber.
As illustrated by
The various embodiments of plugs preferably work in conjunction with the previously described gasket to maintain pressure within the brewing chamber during the brewing process without the need for a reusable filter cup or a reusable cup. The plug and gasket can be configured and sized as appropriate to work with any beverage brewing system.
In the illustration of
As but a few examples, the gasket 197 can comprise silicone or plastic, the plug 190 can comprise plastic or metal, and the connectors 195 can comprise silicone, plastic or metal. Alternatively, the gasket 197, plug 190 and connectors 195 can be formed from a single piece of plastic or silicone (with individual connectors 195 as illustrated in
As noted, the beverage bag of the present invention has many advantages over other single-serve beverage containers. The inventive beverage bag described herein is made from environmentally-friendly woven or knitted materials (or any other suitable stretchy, water-permeable, eco-friendly material) that are biodegradable, compostable and/or recyclable. Where cotton is used as the fabric, the beverage bag biodegrades in approximately 90 days in a compost or landfill. The beverage bag also offers an easy, convenient, cost-effective and mess-free way to prepare beverages, and easy, eco-friendly disposal. After brewing, essentially all of the coffee grounds remain in the beverage bag and the bag and grounds are easily disposed of in a completely eco-friendly way.
Because the beverage bags of the present invention are prefilled with beverage material, they provide the proper amount of beverage material. This compares favorably to other solutions where the user must measure out the amount of beverage material, which results in varying taste profiles as well as pre- and post-brew mess. As noted, the use of knitted or woven fabric (or other stretchy, water-permeable, eco-friendly material) in connection with the beverage bag of the present invention allows for the opening or hole size to easily be adjusted to accommodate various beverage material grinds. For example, the hole size can be designed to contain finer ground coffee than what would otherwise be filtered by the reusable filter cup alone. Also, finer grinds that would tend to clog the holes in the reusable filter cup and interfere with the working of the cup and the system can be used and contained in the inventive beverage bag. Finer ground coffee may allow for greater extraction and arguably better tasting brewed coffee.
The beverage bag of the present invention can be configured to fit within brew system cups of any size and shape. If desired, the beverage bag can be formed in a specific shape appropriate to a particular application, but the beverage bag design does not need to be structured, rigid, pre-formed or of a particular shape. Indeed, the bag is pliable and soft and can thus adopt any suitable shape to fit within a brewing machine. The beverage bag can be free-form and malleable and take the shape of the system cup, allowing for maximum dispersion of the ground coffee within the filter cup, optimal use of the space within the filter cup, and, if desired, a maximum volume of beverage material.
As a general matter, the beverage bag is not a basket, cartridge, or pod, and it is not required to have a bottom or top, sidewalls, lid, ribs, rigid screens, or a combination of materials such as plastics, mesh, non-wovens and/or metals. The beverage bag design requires little special tooling or a special manufacturing process. The beverage bag design is superior to other designs because its overall simplicity results in easier sourcing, quality control and manufacturability, as well as lower manufacturing defects and costs.
Also, the use of a knit beverage bag allows for easy sizing because knitting machines output various diameters of fabric with minor equipment adjustments. Therefore, this design of the beverage bag can easily be sized to work with any beverage brewing system, including the Keurig® and Nespresso® and other single-serve beverage machines, without the need for special tooling or new machinery. The beverage bag design of the present invention is thus readily compatible with an installed base of millions of machines and millions of reusable cups already in the marketplace.
Because openings are integral to knitted and woven fabric, the preferred use of such materials to construct the beverage bag of the present invention render the beverage bag inherently water-permeable. Construction using non-woven materials requires a mechanical process to create the openings needed for effective permeability. Knitted and woven fabrics are also inherently stretchy (flexible and expandable), allowing the beverage material to expand when the heated water enters the beverage bag, which provides better brewing and intermixing of the heated water and the beverage material. Use of non-woven material generally would not have this inherent elasticity.
Knitted and woven fabrics also allow for expansion and contraction of the openings in the fabric, which results in a “grabbing effect” on the beverage material inside the beverage bag. The openings inherent in knitted and woven fabric close when stretched in one direction which is better for removal and disposal of the grinds, or for shipping, but they open when stretched in the other direction or during expansion when water is added which allows for better for extraction and brewing. Also, the natural fibers used in connection with the beverage bag absorb water and become wetted before the grounds become wet. This pre-wetting effect is a preferred and customary aspect of preparing coffee during the pour-over coffee preparation process, often used to obtain maximum flavor from coffee.
The inventive beverage bag is designed to provide variable filtration. The beverage bag is intended to contain the beverage material during shipping and brewing, while at the same time allowing optimal operation of the reusable filter cup. The beverage bag does not adversely affect operation of the filter cup and it allows the filter cup to work as designed with the brewing system without adversely affecting pressure, heat, water flow, percolation in the filter cup or any other important aspect of beverage preparation.
An unstructured beverage bag according to the present invention is less bulky for packing and shipping purposes. As a general estimate, twenty-five of the inventive beverage bags described and claimed herein fit in the same space required for ten K-Cup® type cartridges. Unstructured beverage bags also can be shipped in any shape container, thus resulting in substantial savings in shipping costs. The inventive gasket and plug adapter described and claimed herein also can easily be shipped either with the beverage bag or separately in any shaped container, a significant benefit over the rigid and structured reusable cups and reusable filter cups.
The prefilled beverage bags of the present invention also enable a tamping effect, which compacts the ground coffee to the preferred degree for brewing. When pushing the beverage bag into the beverage brewing system cup or the reusable filter cup or the brewing chamber, the tamping effect is enhanced, without the need for a tamper, and there is no mess as the coffee remains contained within the beverage bag.
Because virtually all the beverage material remains within the beverage bag during brewing, system users can brew multiple cups of coffee before needing to clean the reusable filter cup. When cleaning is required, a simple rinse is enough. Cleaning the reusable filter cup is quick and easy as the beverage bag prevents grinds from clogging the filter cup.
The beverage bag construction avoids rupturing due to back pressure during brewing because the beverage bag prevents the grinds from clogging the holes in the reusable filter cup and the preferred knitted or woven materials used in beverage bag construction are inherently flexible and do not break during pressurized brew.
Other systems, methods, features and advantages of the present disclosure will be, or will become, apparent to one with skill in the art upon examination of the figures and detailed description contained herein. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the present disclosure, and be protected by the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/290,281, filed on Mar. 1, 2019, all of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16290281 | Mar 2019 | US |
Child | 18374670 | US |