1. Field of the Invention
The present invention relates to the field of endoscopy and specifically to a cap attachable to an optical head of an endoscope, which can be used in medical applications e.g. as a colonoscope. The colonoscope is used in colonoscopic procedures, during which a flexible tube provided with the optical head is inserted into the rectum and colon to enable visualization and examination of the colon interior for abnormalities. It should be borne in mind, however, that the present invention is not limited strictly to caps employed in colonoscopes. The present invention covers any other endoscopic apparatuses used for the purpose of examination, operation, diagnostic, therapy etc. Among such endoscopic apparatuses one can mention endoscopes for examination of the esophagus, stomach and duodenum, cystoscopes for examinating the bladder, angioscopes, bronchoscopes, laparoscopes, arthroscopes, sigmoidoscopes etc. Furthermore the present invention covers not only medical, but also industrial applications, and is applicable in industrial endoscopes, or so called boroscopes.
2. Summary of the Prior Art
There are various known endoscopes employing optical heads for visualization of the interior of the body cavity or lumen. Essential parts of such optical head are the imaging system and the illumination system. The imaging system might comprise an objective at the distal end of the endoscope or a fiber bundle and an eyepiece at the proximal end of the endoscope to observe the interior of the lumen with the eye.
In the modern endoscopic devices, the imaging system comprises an imaging optic and an imager chip, e.g. in the form of a CCD-chip or CMOS, which transforms the reflected light signals into electric signals, passing to the proximal end via electric lines and visually presented, as a real image, on an image reproduction unit outside the endoscope.
In the further disclosure the objective, the fiber bundle with an eyepiece or the CCD-chip or CMOS will be referred-to as an image viewer.
The illumination system serves for transmitting light to the distal end of the endoscope for illuminating the location to be observed. Such illumination system might comprise external light sources, e.g. xenon or halogen light sources, or internal light sources, e.g. light emitting diodes (LED's) located within the endsocope.
The use of CCD sensors and LED's in an optical head of an endoscope is relatively new issue, nevertheless one can mention many patents describing endoscopes provided with such optical devices.
An example of an endoscope with LED illumination can be found in Nakashima (U.S. Pat. No. 6,533,722). In this endoscope the LED's are located within the endoscope shaft and at a distal end thereof.
Another example of an endoscope provided with a CCD-chip and LED's is disclosed in Irion (U.S. Pat. No. 6,730,019). In this endoscope the imaging system is also located within the shaft, while the LED's are arranged at the proximal end of the endoscope outside from the shaft.
The present invention concerns an optical head, in which, preferably, but not exclusively, a CCD camera with a projective lens is employed as an image viewer and LED's provide a light source.
The modem endoscopes might employ also a sheath or sleeve, which covers an endoscope insertion tube to prevent its contamination during the endoscopic procedure.
An example of such an endoscope can be found in Eizenfeld (WO 2004/016299; International patent application PCT/IL2003/000661), which disclosure is incorporated herein by reference.
In this application is described a colonoscopic apparatus provided with an insertion tube, covered by a protective sleeve. A cap seals the distal end of the insertion tube and the distal end of the sleeve is connected to the cap. An opening is provided at the distal end of the cap to enable viewing the interior of the body channel during the endoscopic procedure. A window made of transparent material closes the opening.
Unfortunately use of the transparent window is associated with the so-called ghost image problem or glare problem. Unnecessary or so-called parasitic reflections entering the CCD camera through projective lens cause this problem. The reason for unnecessary reflections can be, for example, reflection of light from an inside surface of the window or reflections within the window itself. Accordingly the projective lens percepts not only the light, which has been reflected from the relevant objects representing a true image, but also parasitic reflections, which deteriorate the image rendering it less sharp and less coherent.
This problem is known and there exist various attempts to solve it.
So, for example, in Silverstein (U.S. Pat. No. 5,193,525) is disclosed an antiglare tip for a sheath of an endoscope. The tip is provided with a dedicated interfitting region ensuring that the image viewer percepts only light reflected from objects external to the endoscope.
The disadvantage of this solution is associated with the necessity to arrange within the interfitting region dedicated mating projections and recesses on the tip and on the distal end of the endoscope. To achieve the desired antiglare effect one should ensure that these projection and recesses have very accurate dimensions, which means that during their manufacturing very narrow tolerances have to be met. Obviously, this renders the manufacturing process complicated and expensive.
There exists also an endoscopic apparatus developed by Sightline Technologies Ltd. (now known as Stryker GI Ltd) that is marketed under the trademark ColonoSight™. This apparatus comprises an insertion tube covered by a disposable, inflatable sleeve, and the distal end is secured on a plastic cap, which accommodates therein an optical head. The frontal face of the cap is provided with a transparent window to enable view for the image viewer, i.e. the projective lens of a CCD-chip. There is provided also an antiglare ring, situated around the projective lens.
The cap is manufactured from a plastic material, e.g. ABS (Acrylonitrile Butadiene Styrene), by injection molding within a die. Before injection the antiglare ring is placed within the die and, when the cap is being injected, the antiglare ring remains within the die. When the ready cap is removed from the die, the ring becomes embedded within the frontal face of the cap. Since the ring is shaped as a closed circle, the plastic material, which is being injected in the die, cannot approach the area encircled by the ring. This area remains empty and is sealed by a transparent window during the next step of the manufacturing process. This step includes careful placement of the window within a depression made in the antiglare ring so as to locate the window concentrically therewith. The further step is filling of the annular groove between the window and the ring by a glue to secure the window in place. This manufacturing process is dictated by the present construction of the cap, namely by the fact that the window is separate from the cap. One should appreciate that this manufacturing process is complicated, inconvenient and costly since it requires several steps.
Furthermore, since the window is separate from the cap, a distance should be provided between the window and the lens, otherwise there is a danger that the lens will protrude too much towards the windows and might even have displaced it from the depression. Since the light rays pass through this space and refract, their exit points are located close to the window edge. This might result in catching irrelevant objects outside the window. Therefore, the window should be located within the depression very carefully and accurately, otherwise reflections from the irrelevant objects might enter in the field of view. Obviously this requirement is associated with the necessity to comply with strict tolerances on the dimensions of the elements of the cap, which renders the manufacturing process even more complicated.
Thus, despite known attempts to devise a cap for an endoscope optical head, nevertheless, there still exists a need for a new and improved cap, which can be manufactured easily, economically and conveniently and which would still have the required antiglare properties.
In particular it would be desirable to devise the cap, which could be manufactured simultaneously with the window, so as the window will be an integral part thereof and thus it would be possible to eliminate the necessity in additional labor, required for securing the window on the antiglare ring.
It also would be desirable to devise the cap, wherein the manufacturing and assembling with the optical head does not require strict compliance with the dimension tolerances.
For a better understanding of the present invention as well of its benefits and advantages, reference will now be made to the following description of its embodiments taken in combination with the accompanying drawings.
With reference to
It is seen that cap 10 comprises a tubular housing 12 having a rear open end 14 and a frontal butt end closed by a frontal face 16. The interior of the housing is configured and dimensioned to accommodate therein an optical head. An opening 18 is provided within the frontal face for passing therethrough of a surgical tool when it is advanced through the insertion tube to the place of interest. This opening serves also for supplying vacuum.
It is seen also that at the frontal end an exit port 20 is provided for an irrigation channel. It is not shown in detail, but one skilled in the art would appreciate that through this port emerges a water jet, which is directed to a window made in the frontal face. The water jet is directed by a sprinkler shield (not shown) secured between guiding protrusions 22 (only left side protrusion is seen) provided on the frontal face of the cap.
Situated behind the frontal face a short depressed region 24 is provided. This region is intended for attaching thereto a distal end of a covering sleeve. It should be appreciated, however, that when the cap is used with an endoscopic apparatus, which does not employ a covering sleeve, region 24 is not necessary.
Referring to
It is seen in
Now with reference to
A hole 49 is made in the cylindrical part of the main body portion. This hole mates with the protrusion 28 made on the springy tongue 26 of the cap. A bore 50 is seen, which is made on the circumference of the proximal end. This bore is intended for screws that connect the optical head with vertebrae of a navigation mechanism.
A more detailed explanation of the optical head can be found in our patent application U.S. Ser. No. 60/626,382, which is hereby incorporated herein by reference. From this explanation inter alia follows that within the main body portion are deployed two groups of illuminating means, namely white LED's. The LED's are arranged within the main body portion in such a manner that each group resides within a respective arched region provided at the left or the right side of the distal end face. Distal end face 44 is fitted with two segment-like transparent covers 52, 54 mating with the arched regions. Light generated by the LED's passes through the covers.
Protruding through an opening 56 in the distal end face, a projective lens 58 is seen in
In
In
In accordance with the invention it has been unexpectedly revealed that despite the antiglare ring being discontinuous, it nevertheless reliably eliminates parasitic reflections and permits obtaining a coherent and sharp picture.
Now attention is called to
According to the embodiment shown in
In the embodiment shown in
It can be readily appreciated that, since the window can be shaped simultaneously with the cap, there is no need in attaching the window to the cap and accordingly the manufacturing process becomes less complicated, more convenient and less expensive since it requires less labor.
Now with reference to
In
In
Since the window is integral with the cap there is no danger that the window would be pushed outside. Accordingly the lens can be positioned flush with the lower surface of the window as seen in
It should be appreciated that the present invention is not limited to the above-described embodiments and that changes and one ordinarily skilled in the art can make modifications without deviation from the scope of the invention, as will be defined in the appended claims.
Below are some examples of alternative implementation of some aspects of the invention.
It is not compulsory that the antiglare ring be provided with the lower protruding portion and that the distal end face of the optical head be provided with a widening region to accommodate this protruding portion. Instead of this, one can contemplate an arrangement, in which is employed a resilient sealing ring placed between the antiglare ring and the distal end face of the optical head.
It should also be appreciated that the features disclosed in the foregoing description, and/or in the following claims, and/or in the accompanying drawings may, both separately and in any combination thereof, be material for realizing the present invention in diverse forms thereof.
Number | Date | Country | |
---|---|---|---|
60714480 | Sep 2005 | US |