The present invention relates to binding elements for holding a plurality of perforated sheets or the like, and more specifically the invention pertains to structure for coupling binding elements for use in automated binding processes.
Various types of binding elements have been utilized to bind a stack of perforated sheets or the like. Binding elements typically include a spine from which a plurality of fingers extends which may be assembled through perforations in a stack of sheets. This spine may be linear, with or without a longitudinally extending hinge. Alternately, the spine may be formed by sequential bending of a wire, as with wire comb or hanger type binding elements.
Examples of such binding elements which are of a wire comb or hanger-type design are disclosed, for example, in U.S. Pat. No. 2,112,389 to Trussell and U.S. Pat. Nos. 4,832,370 and 4,873,858 to Jones, while machines for assembling such binders are disclosed in U.S. Pat. No. 4,031,585 to Adams, U.S. Pat. No. 4,398,856 to Archer et al., U.S. Pat. No. 4,525,117 to Jones, U.S. Pat. No. 4,934,890 to Flatt, and U.S. Pat. No. 5,370,489 to Bagroky. Other binding devices are disclosed, for example, in the following references: U.S. Pat. Nos. 2,089,881 and 2,363,848 to Emmer, U.S. Pat. No. 2,435,848 to Schade, U.S. Pat. No. 2,466,451 to Liebman, U.S. Pat. No. 4,607,970 to Heusenkveld, U.S. Pat. No. 4,904,103 to Im, U.S. Pat. No. 5,028,159 to Amrich et al., U.S. Pat. No. 4,369,013, Reexamination Certificate B1 4,369,013 and Re. 28,202 to Abildgaard et al. Machines for assembling plastic comb or finger binding elements are disclosed in patents such as U.S. Pat. Nos. 4,645,399 to Scharer, U.S. Pat. No. 4,900,211 to Vercillo, U.S. Pat. No. 5,090,859 to Nanos et al., and U.S. Pat. No. 5,464,312 to Hotkowski et al. The patents are included herein by reference.
Due to the structure of such binding devices, which include elongated spines and fingers, the binding devices commonly become entangled when stored in a group. Thus, mechanical binding processes are considered to be either cumbersome and labor intensive, or complicated and expensive, requiring dedicated machines. Detangling the binding elements in order to assemble the element to a stack of sheets or lay the element into a binding machine can be a tedious and potentially time consuming process. Further, this tendency to become entangled may complicate or prevent the use of such binding devices in automated binding processes or machines wherein an automated feed is desirable. The time required to manually feed binding elements into a machine would be prohibitive to efficient, high-volume automated binding operations.
Relatively low cost, manual, semi-automatic machines are commonly utilized in binding successive single documents by loading single elements by hand into such machines. In such manual arrangements, various issues present obstacles to efficient utilization. In such arrangements, one or more binding elements must be untangled from a box, exposing the operator to possible sharp corners and points, and then oriented and loaded by hand into a machine and/or another portion of the binding element.
Relatively high cost, automated machines likewise present challenges that have yet to be successfully overcome. For example, elements may be presented to automated machines in cassettes, which are typically formed of plastic, or attached to a backing with an adhesive or mechanical coupler. Such presentation methods result in excessive volumes of waste that must be stored and ultimately discarded. Additionally, the use of adhesive in such coupling can make the coupling vulnerable to atmospheric factors, causing the adhesive to loosen or lose its holding properties. Various other methods have been proposed for coupling binding elements together for packing, shipping, or feeding to an automated process. Such arrangements are disclosed, for example, in P.C.T. Application PCT/US0106362, filed Feb. 28, 2001, based upon U.S. Provisional Application 60/188372, which likewise are assigned to the assignee of the present application and is hereby incorporated by reference in its entirety. At least a portion of these arrangements have not been commonly utilized, however. While some types of binding elements may be preformed and delivered to the automated binding machine on spools, spools are generally quite large, bulky, weighty and cumbersome, and still require the use of separating paper to prevent tangling. Additionally, they typically require skilled operator set up. Accordingly, there still exists a need for alternate or additional arrangements that may be successfully and economically automated at a relatively low cost and with minimal associated waste.
The invention provides a clip-type coupling structure for coupling a plurality of binding elements to provide a combination of binding elements and coupling clips that is particularly suitable for packaging and shipment, as well as usage in automated binding processes, and various methods of utilizing the same. In accordance with the invention, a separately formed coupling clip is provided that releasably engages at least two binding elements to temporarily couple the binding elements to maintain their respective relative positions. A plurality of binding elements in this form may be provided either as discrete sheets, or as a continuous sheet which is rolled up, for example, for storage, shipping, or feeding to an automated binding process. In use, the coupling clip is separated from the binding elements to allow separate usage of the binding elements.
The coupling clip may be of any appropriate design. The coupling clip preferably includes a plurality of legs that partially surround a portion of at least two adjacently disposed binding elements. In the currently preferred embodiment, two pairs of legs are provided, the pairs of legs being coupled by a base element. Each pair of legs is adapted to surround any appropriate portions of the binding elements, e.g., spine to spine, spine to finger, or finger to finger. It is envisioned that alternate designs may be utilized. For example, a design with three such legs may be utilized wherein one leg is common holds the pair of binding elements, or a base with two legs may be utilized. The base and legs may be of any appropriate design or length so long as the clip temporarily couples the binding elements.
Preferably, the design is such that the application of an external force to coupling clip causes release of one or more of the coupled binding elements. This may be accomplished by including one or more portions that flex to allow the separation of the legs, or example. In one embodiment, two pairs of legs are provided to couple two adjacent binding elements, an inwardly disposed leg and an outwardly disposed leg. The inwardly disposed legs may be formed on a portion of the base section wherein application of a force to that base section cause the legs to flex slightly apart from one another, releasing the coupled binding elements. In an alternate embodiment, the base includes flanges that extend from the sides of the coupling clip such that application of a force to a flange causes the adjacent outwardly disposed leg to flex outward from the adjacent portion of the coupling clip holding the binding element. The coupling clip may thus elastically flex to allow the coupling or decoupling of the binding elements. Alternately, the coupling clip may be designed to move between at least two discrete positions, clamping and unclamping positions.
In utilizing such coupling clips, one or more may be utilized to couple binding elements in a given spatial relationship. For example, one, two, three or more such coupling clips may be utilized to couple a pair of binding elements. Additionally, this same or a different number of such coupling clips may be utilized to couple one of the pair of binding elements to a third binding element, and onward to a plurality of binding elements to create a continuous length of binding elements.
Alternately, a single coupling clip may couple more than two binding elements in a given spatial relationship. As with a coupling clip that couples only two binding elements in a given spatial relationship, a plurality of such coupling clips that couple more than two binding elements in a given spatial relationship may be utilized along the length of the plurality of binding elements to be coupled. In one such embodiment, the coupling clip is in the form of a carrier strip that couples three or more binding elements in a given special relationship, the carrier strip including a plurality of such individual coupling arrangements for coupling to the binding elements.
Thus, the coupling clip arrangement provides an economical means by which a plurality of binding strips may be coupled in a given spatial relationship for storage, shipping or feeding to an automated process. Such an automated process may include a means by which a force is applied to the coupling clip or the binding element to separate the binding element from the clip. The coupling clip may ten be dropped into a collection container for disposal or reuse. The coupling clip does not damage or interfere with the use or final appearance of the coupled binding elements.
The coupling clip may be economically manufactured using conventional molding techniques.
These and other objects and advantages of the invention will be apparent to those skilled in the art upon reading the following detailed description and upon reference to the drawings.
Turning now to the drawings, there is shown in
In accordance with aspects of the invention, there is provided a coupling clip for coupling a plurality of binding elements in a given spatial relationship, and a combination of one or more coupling clips with a plurality of binding elements. An embodiment of such a coupling clip 40 is shown in
It will further be appreciated by those of skill in the art that the coupling portion 44 may be alternately designed. For example, three, rather than four such legs 62, 64, 66 may be provided, as shown in
Returning now to
Also as shown in
According to an important aspect of the invention, the binding elements 58, 60 may be readily released from the clip 40, preferably by the application of an outside force to the coupling clip 40. In this way, the coupling clip 40 may be separated from the binding elements 58, 60 without damaging the binding elements 58, 60 so that they may be readily utilized in a manual or automated binding process. In the embodiment of
Alternate arrangements may be provided whereby the coupling clip releases the coupled binding elements upon application of an external force. Returning to
A plurality of such coupling elements may be utilized to chain three or more binding elements together to create a sheet of coupled binding elements. As shown in
In another embodiment of the invention, a plurality of such coupling clips is formed as a single unit 122, as shown for example in
It will be appreciated by those of skill in the art that the coupling clip may alternately include a protrusion that is received in a recess in a binding element. As shown in
Alternately, the coupling clip 156 may include a combination of recess(es) 158 and protrusion(s) 160, such as shown in
The coupling clips may be formed of any appropriate material by known fabrication methods, such as, for example, stamping or injection molding. They may be formed of any appropriate material, such as, for example, wood, metal, or plastic. After use, they may either be scrapped, or reused.
While this invention has been described with an emphasis upon preferred embodiments, variations of the preferred embodiments can be used, and it is intended that the invention can be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the following claims. For example, various aspects of the invention may be practiced simultaneously, such as a plurality of binding elements with stacking structures, flexible connectors and runners disposed in a cartridge.
All of the references cited herein, including patents, patent applications, and publications, are hereby incorporated in their entireties by reference.
Number | Date | Country | |
---|---|---|---|
60563100 | Apr 2004 | US |