This patent application claims priority to U.S. patent application Ser. No. 12/786,096 filed May 24, 2010, which is incorporated herein by reference in its entirety.
In the well completion and production arts, production systems that enable operators to pinpoint fluid placement and volume during openhole fracturing (frac) operations are very desirable. These systems are used to establish openhole isolation between zones, zone lobes, or fault lines, so fracture fluid may be delivered where it is needed, for maximum effect. The systems are designed to incorporate short-radius open-hole packers and frac sleeves to isolate intervals of an underground fluid production section for targeted fracturing treatment placement. The result is greater control of the frac treatment and a greater chance of fracturing the entire length of the lateral and increasing production.
Such systems may be advantageously deployed as a one-trip installation and set in place by the application of hydraulic pressure. Isolation and casing packers may be set against a ball seat in the shoe of the liner. The drill rig can then be moved to another location and the desired frac treatment may be performed by the application of hydraulic pressure by pumping when ready.
Frac treatment is performed by providing fluidic access through openings in the tubular string in a generally radial direction. Such openings allow fluid communication between the ID of the flow channel and an annulus created between the tubular string and a borehole wall (casing or openhole). Openable and closable valves are employed in concert with such openings to selectively promote and prevent the fluid movement noted above.
One frac sleeve arrangement employed in these systems is a slidable frac sleeve. A slidable frac sleeve employs a housing having an opening, a slidable sleeve translatable relative to the housing to either misalign entirely with the opening or to align a port with the opening, and a spring to bias the sleeve to a selected position (open or closed). The sleeve employs a plug valve that is configured to receive a plug to close the valve; the plug valve may include a ball seat in the sleeve that is configured to receive a corresponding ball that is configured to be seated in the ball seat for closing the valve. The systems typically employ a plurality of plug valves that are sized with successively smaller valve openings proceeding inwardly from the surface along the length of the production string.
In use, successively larger plugs (e.g. balls) are dropped into the string, each configured to engage a corresponding valve seat, closing their respective valves and opening the corresponding frac sleeves at various locations along the production string. Desired fracture volumes can be displaced with timing of the ball releases to accurately place frac fluid in each desired interval of the production string.
It has previously been the practice to remove the balls and ball seats in the sleeves after the frac operations. This has included flowing the balls back to the surface by high production rate flows and by drilling out the ball seats to recover a full-open string inside or inner diameter (ID). While effective, such ball removal and drilling operations represent additional drill string operations that require additional equipment and time on the drill rig.
Therefore, it is desirable to provide frac tools that incorporate plug valves, such as ball valves, that may be removed to recover the full ID of the drill string without drilling.
In an exemplary embodiment, a disposable downhole tool is disclosed that includes a housing having an inner wall surface defining a bore. The disposable downhole tool also includes a valve structure disposed within the bore, the valve structure comprising a disposable plug seat, the disposable plug seat comprising a natural rock material.
In another exemplary embodiment, a disposable downhole tool is disclosed that includes a disposable plug that is seatable against a disposable plug seat of a disposable valve structure, the disposable plug comprising a natural rock material.
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
Referring to
Disposable valve structure 50, including disposable plug seat 59, includes a first natural material 61 that is dissolvable in a suitable dissolution fluid 80 as described herein, which may include naturally occurring downhole fluids, or a fluid introduced into the downhole environment in conjunction with frac or other drill string operations, or various acid fluid treatments introduced into the drill string, as described herein. Valve structure 50 and disposable plug seat 59 may be made either partially or completely of first natural material 61. First natural material 61 may include any suitable natural material, including any suitable form thereof. In an exemplary embodiment, first natural material 61 may include a sedimentary rock, including various forms of limestone. More particularly, the limestone may include calcite, and may also be formed predominantly from calcite. This includes the use of a first natural material 61 that includes, by weight, greater than 70 percent calcite. For example, first natural material 61 may include forms of limestone such as Carrara marble that is readily available in Europe or Indiana limestone that is readily available in the US. First natural material 61 may have an acid solubility greater than 70% and permeability of less than 10 millidarcy (mD). For example, Indiana limestone has a solubility of about 99.01% in 15% by volume hydrochloric acid and 98.86 in 10% by volume of dibasic acid, and a dissolution rate on the order of 0.5 grams per square centimeter per minute at ambient temperature. It also has a permeability of less than 3 mD. Indiana limestone is generally composed of greater than 98% calcite, which has high acid solubility. Additionally, the compressive Young's modulus of Indiana limestone is approximately 30,600 MPa with no dependence on confining pressure, which is comparable to that of high strength concrete. Limestone with similar properties is also readily available in other countries and on other continents.
The permeability of first natural material 61, as well as the other natural materials described herein, may also be reduced by filling the limestone matrix with another acid-soluble substance, such as a nanoparticle slurry, as a sealer. For example, as an option, a nanoparticle slurry may be used to fill in the limestone matrix to make the sealing surfaces, such as the surfaces of plug seat 59 and disposable plug 62, less permeable, thereby enhancing the seal formed between them. The nanoparticles may have relatively large surface charges per volume, thereby permitting the crystal particles to bond, associate, link, connect, group, or otherwise relate together to further reduce the permeability of the matrix of the natural materials to which they are applied. Exemplary acid-soluble nanoparticle slurries include, in non-limiting embodiments, ConFINE™, available from Baker Hughes, or a high-concentration slurry of approximately 35 nm magnesium oxide (MgO) particles in an appropriate fluid base, such as a diluent or solvent as described herein.
Disposable plug 62, including disposable ball 63, includes a second natural material 65 that is dissolvable in a suitable dissolution fluid 80 as described herein, which may include a naturally occurring downhole fluid, or a fluid introduced into the downhole environment in conjunction with frac or other drill string operations, or a predetermined dissolution fluid, including various acid treatments that may be introduced into the drill string as described herein. Disposable plug 62, including disposable ball 63, may be made either partially or completely of a second natural material 65. Second natural material 65 may include the same materials identified for use as first natural material 61. Second natural material 65 may be selected to be the same as first natural material 61, or may be selected to be a different natural material. Second natural material 65 may be selected so that it has the same dissolution rate in a given dissolution fluid 80 as first natural material 61, or may be selected to have a different dissolution rate. The selection of different first natural material 61 and second natural material 65 enables predetermined and selective dissolution of, for example, disposable plug 62 prior to disposable valve structure 50, or vice versa.
Valve structure 50 and valve 53 may be used in various frac tools 30, including various forms of slidable disposable sleeves 51. Frac tools, including slidable disposable sleeves 51 may also include or work in conjunction with other disposable components 69, such as disposable return member 70, including disposable return sleeve 71. Disposable components 69, such as disposable return member 70, including disposable return sleeve 71, includes a third natural material 67 that is dissolvable in a suitable dissolution fluid 80 as described herein, including naturally occurring downhole fluids or a fluid introduced into the downhole environment in conjunction with frac or other drill string operations, or dissolution fluid, including various acid treatments introduced into the drill string, as described herein. Disposable components 69, such as disposable return member 70, including disposable return sleeve 71, may be made either partially or completely of third natural material 67. Third natural material 67 may include the same materials identified for use as first natural material 61 or second natural material 65. Third natural material 67 may be selected to be the same as first natural material 61 or second natural material 65, or any combination thereof, or may be selected to be a different material than first natural material 61 or second natural material 65, or any combination thereof, or any combination of the same or different materials. Third natural material 67 may be selected so that it has the same dissolution rate in a given dissolution fluid 80 as first natural material 61 or second natural material 65, or these materials may be selected to have a different dissolution rate. The selection of different first natural material 61, second natural material 65 or third natural material 67 enable predetermined and selective dissolution of, for example, disposable component 69 prior to disposable plug 62 or disposable valve structure 50, in any combination.
Referring now to
Disposable sleeve 51 is in slidable engagement with inner wall surface 34. Disposable sleeve 51 includes bore 52 and retaining member 48 shown as a flange 49 that is disposed within recess 39 in inner wall surface 34. Disposable sleeve 51 also includes sleeve port 54 and an actuator for moving disposable sleeve 51 from the desired run-in position (
Also disposed along inner wall surface 34 is disposable return member 70. Disposable return member 70 comprises a disposable return sleeve 71 having bore 73 and disposable bias member 74. Although disposable bias member 74 is shown as an elastic member such as a spring in
The operation of frac tool 30 is now described with reference to
As shown in
Reduction of the fluid pressure of the frac fluid 55 in conjunction with removal of ball 63 allows energized biased member 74 to overcome the downward force of the frac fluid 55. When the upward force of biased member 74 overcomes the downward force of the frac fluid 55, disposable return member 70 begins to move upward and, thus, forces disposable sleeve 51 upward from the first operational position (
Movement of frac tool 30 from the first operational position (
In the embodiments discussed herein with respect
As shown in
In one example, an inorganic acid dissolution fluid 80 may include hydrochloric acid (HCl) or a hydrochloric acid mixture, including a mixture of hydrofluoric acid and hydrochloric acid. This includes conventional wellbore inorganic acidizing fluids that include hydrochloric acid, including those having a high acid strength. Further exemplary inorganic acid fluids which may be used include, but are not limited to, sulfuric, hydrofluoric, fluoroboric or phosphoric acid, or a combination of the above inorganic acids.
In another example, an organic acid dissolution fluid 80 may include an organic acid fluid system and method for matrix acidization of subterranean formations penetrated by a wellbore, including acidization at temperatures in excess of about 200° F. (92° C.). One suitable organic acid fluid contains at least one water-soluble dicarboxylic acid. In one non-limiting embodiment of an organic acid fluid, the dicarboxylic acid is of relatively low molecular weight, that is, has a formula weight of 175 or less. Suitable dicarboxylic acids therefore include, but are not necessarily limited to, oxalic (ethanedioic), malonic (propanedioic), succinic (butanedioic), glutaric (pentanedioic), adipic acid (hexanedioic), or pimelic (heptanedioic) acid, or combinations thereof, including mixtures thereof. In another embodiment, the dicarboxylic acids are selected from the group consisting of succinic, glutaric and adipic acid, and mixtures thereof. In a non-limiting embodiment, the organic acid fluid may include a dibasic acid comprising 51-61 weight percent glutaric acid, 18-28 weight percent succinic acid, and 15-25 weight percent adipic acid. Interestingly, glutaric, succinic and adipic acid have been used as components for corrosion inhibitors for ferrous metals. Further exemplary inorganic acids which may be used include, but are not limited to, formic, acetic, citric, sulfonic, glycolic acid, or combinations of the above organic acids. Dissolution fluid 80 also include other suitable acid fluids, including various acidic chelating agents, such as, for example, ethylenediaminetetraacetic acid (EDTA), disodium EDTA (Na2EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), docosatetraenoic acid (DTA), nitrilotriacetic acid (NTA), hydroxyaminopolycarboxylic acid (HACA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethyliminodiacetic acid (HEIDA), or polyaspartic acid (PASP) and the like, or combinations thereof.
In addition to dissolution of the disposable elements of frac tool 30 described herein, the organic acid fluid systems of the invention can also effectively generate wormholes to stimulate production in subterranean carbonate formations and dissolve carbonate scale, and these organic acids mixed with hydrofluoric acid can effectively remove fines to recover production in sandstone formations at elevated temperatures. These organic acid fluids have very low corrosion on the tubing, casing and downhole equipment.
Based on the properties of glutaric, succinic and adipic acid, this composition of dicarboxylic acids and other combinations of dicarboxylic acids (or dicarboxylic acids used alone) can be used as acid compositions to stimulate high temperature wells in addition to dissolution of frac tool 30. This organic acid system, which is advantageously highly biodegradable, can also successfully remove the calcium carbonate scale and fines to stimulate production. Core flood testing demonstrates that this organic acid system can effectively remove calcium carbonate scales and fines at temperatures up to 400° F. (204° C.). In addition to its reactivity, the acid system, when combined with corrosion inhibitor, exhibits very low corrosion at high temperatures. These acid fluid systems may be used for successive removal of plugging fines from screens, such as screens 43 in addition to dissolution of the disposable elements of frac tool 30.
In some non-limiting embodiments, hydrofluoric acid may be used together with the dicarboxylic acids. Hydrofluoric acid may be used to aid in dissolving silicates. Alternatively, a substance that hydrolyzes to hydrofluoric acid may be used. Suitable substances include, but are not necessarily limited to, ammonium bifluoride and ammonium fluoride, alkali metal fluorides and bifluorides (where the alkali metal is typically sodium, potassium or the like) as well as transition metal fluorides (for instance hexafluorotitanate salts and the like) and mixtures thereof.
Suitable solvents or diluents for the acids described include, but are not necessarily limited to, water, methanol, isopropyl alcohol, alcohol ethers or aromatic solvents, or combinations thereof, including mixtures thereof. In one exemplary embodiment, the composition has an absence of monocarboxylic acids and/or an absence of tricarboxylic acids. Alternatively, in another exemplary embodiment, the acid composition has an absence of quaternary ammonium compounds and/or an absence of sulfur-containing corrosion inhibitor activator (e.g. thioglycolic acid, alkali metal sulfonate, etc.).
While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
Number | Date | Country | |
---|---|---|---|
Parent | 12786096 | May 2010 | US |
Child | 13892390 | US |