Tight control over the delivery of insulin in both type I diabetes (usually juvenile onset) and type II diabetes (usually late adult onset), has been shown to improve the quality of life as well as the general health of these patients. Insulin delivery has been dominated by subcutaneous injections of both long acting insulin to cover the basal needs of the patient and by short acting insulin to compensate for meals and snacks. Recently, the development of electronic, external insulin infusion pumps has allowed the continuous infusion of fast acting insulin for the maintenance of the basal needs as well as the compensatory doses (boluses) for meals and snacks. These infusion systems have shown to improve control of blood glucose levels. However, they suffer the drawbacks of size, cost, and complexity. For example, these pumps are electronically controlled and must be programmed to supply the desired amounts of basal and bolus insulin. This prevents many patients from accepting this technology over the standard subcutaneous injections.
Hence, there is a need in the art for a convenient form of insulin treatment which does not require significant programming or technical skills to implement to service both basal and bolus needs. Preferably, such a treatment would be carried out by an infusion device that is simple to use and mechanically driven negating the need for batteries and the like. It would also be preferable if the infusion device could be directly attached to the body and not require any electronics to program the delivery rates. The insulin is preferably delivered through a small, thin-walled tubing (cannula) through the skin into the subcutaneous tissue similar to technologies in the prior art.
While the idea of such a simple insulin delivery device is compelling, many obstacles must be overcome before such a device may become a practical realty. One problem resides in insulin supply. Patients vary greatly on the amount of insulin such a device must carry to provide treatment over a fixed time period of, for example, three days. This is one environment where one size does not fit all. Another problem is with cannula deployment to support insulin delivery. Cannula deployment to support delivery of the insulin beneath the patient's skin must be made easy and convenient. This is not as easy as it seems because cannula deployment, as generally and currently performed in the art, requires insertion of a cannula carrying needle into the patient and then retraction of only the needle to leave the cannula in place beneath the patient's skin. As will be seen subsequently, the present invention addresses these and other issues toward providing a simple, practical, and reliable insulin delivery device.
The invention provides an infusion system comprising a disposable wearable infusion device having a body arranged to be adhered to a patient's skin and a reservoir for holding a liquid medicant to be infused into the patient. The system further comprises a filler device arranged to detachably receive the infusion device body and transfer a volume of the liquid medicant to the infusion device reservoir.
The filler device may have a window through which the liquid medicant within the reservoir may be observed. This enables trapped air to be viewed and removed.
The filler device may have a cavity for receiving a vial of the liquid medicant, and establishes fluid communication between the infusion device reservoir and the liquid medicant upon concurrently receiving the infusion device body and the vial of liquid medicant. The filler device may arranged to transfer a desired volume of the liquid medicant from the vial to the infusion device reservoir. The filler may, for example, be arranged to meter a predetermined volume of medicant from the vial to the reservoir.
The filler device is preferably enabled to transfer a volume of the liquid medicant to the infusion device reservoir upon the cavity receiving the vial of the liquid medicant. The filler may further includes a pump that transfers the liquid medicant from the vial to the infusion device reservoir. The pump may be arranged to pump air into the vial to displace liquid medicant from the vial and into the reservoir. The filler may include a vent that vents the vial to atmospheric pressure when being received in the cavity. The filler cavity may seal the vial after the vent vents the vial to atmosphere as the cavity receives the vial.
The invention further provides a method comprising the steps of providing a disposable infusion device adapted to adhere to a patient's skin and having a reservoir for holding a liquid medicant to be infused into the patient, filling the reservoir at least partially with the liquid medicant, adhering the device to the patient's skin, and deploying a cannula through the device to beneath the skin of the patient
The filling step may be performed before the adhering step is performed. The method may further include the step of pre-selecting a desired amount of the liquid medicant to be filled into the reservoir before filling the reservoir. The filling step may comprise the further step of detachably joining the device to a filler and providing the filler with a vial of the liquid medicant. The filling step may further comprise pumping liquid medicant from the vial into the reservoir. The pumping step may comprise admitting air into the vial to force liquid medicant from the vial into the reservoir. The filling step may further comprise venting the vial to atmospheric pressure before admitting the air into the vial. The filling step may include pre-selecting a desired amount of air to be admitted into the vial before admitting the air into the vial. The method may further include the step of removing air trapped in the reservoir after the reservoir is filled with the liquid medicant.
The method may include the further step of detaching the infusion device from the filler prior to adhering the device to the patient's skin. The deploying step may comprise detachably joining the infusion device to a cannula driver containing the cannula and driving the cannula from the cannula driver through the infusion device. The method may still further include the step of detaching the cannula driver from the infusion device after the cannula is deployed.
The method may further comprise the step of detachably joining the infusion device to a service device having a liquid medicant filler and the cannula to be deployed. The filling step may then further include inserting a vial of liquid medicant into the filling device from which the reservoir is to be filled. The adhering step may be performed with the service device joined to the infusion device and the deploying step may comprise driving the cannula from the service device through the infusion device. The service device may then be detached from the infusion device after the cannula is deployed.
In another embodiment, an infusion system comprises a disposable wearable infusion device having a body arranged to be adhered to a patient's skin and a reservoir for holding a liquid medicant to be infused into the patient, and a service device arranged to detachably receive the infusion device body. The service device has a filler that provides the infusion device reservoir with the liquid medicant and a cannula driver including a cannula arranged to drive the cannula into a deployed position extending from the infusion device to beneath the patient's skin.
In another embodiment, a filler device for filling a reservoir of a disposable wearable infusion device with a liquid medicant comprises a body arranged to detachably receive the infusion device and having a cavity for receiving a vial of the liquid medicant, a conduit that establishes fluid communication between the infusion device reservoir and the liquid medicant, and a pump that transfers a volume of the liquid medicant from the vial to the infusion device reservoir.
In a further embodiment, a service device for use with a disposable wearable infusion device having a reservoir for holding a liquid medicant to be infused into a patient comprises a body arranged to detachably receive the infusion device and having a cavity for receiving a vial of the liquid medicant, a filler that provides the infusion device reservoir with a volume of the liquid medicant from the vial, and a cannula driver including a cannula. The cannula driver is arranged to drive the cannula into a deployed position extending from the infusion device to beneath the patient's skin.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further features and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
Referring now to
The device 110 includes a body or enclosure 120 that is adhered to the skin 140 of a patient and that encloses the reservoir 112. The device 130 further includes a cannula 124 deployed from the device 110 to beneath the skin 140 of a patient to deliver the liquid medicant. The reservoir 112 is coupled to the cannula 124 by a pump 114 and a one-way check valve 116. Actuation of the pump provides a fixed quantity of the medicant to the cannula.
The filler 130 is adapted to receive a vial 132 of the liquid medicant 133. A first conduit 136 provides fluid communication from the vial 132, through a filling port septum 126, and into the reservoir 112. A second conduit 138 provides fluid communication from a pump 135 to the vial. The pump 135 is employed to pump air into the vial 132 to displace a known quantity of the liquid medicant 133 from the vial 132. The medicant is then delivered to the reservoir through the first conduit 136. As will be seen subsequently, and in accordance with one aspect of the present invention, as the vial 132 is received by the filler 130, the interior space 134 within the vial 132 is vented to atmospheric pressure and then sealed. This venting of the vial 132 assures that a known volume of air being pumped into the vial will displace a like volume of medicant for filling the reservoir.
Once the reservoir 112 is filled with a desired quantity of liquid medicant, the infusion device may be adhered to the patient's skin 140. Preferably thereafter, the cannula 124 is deployed.
Referring now to
As seen in
The filler device 330 also includes an interlock 340 that prevents the pump arm from being displaced and thus premature actuation thereof before the vial 132 is fully received within the cavity. Hence, the filler device is enabled to transfer a volume of the liquid medicant to the infusion device reservoir only upon the cavity 332 fully receiving the vial 132. To that in end, the interlock 340 includes a follower 342 and an inter-connected latch 344. As shown in
After the filling process is completed, the vial 132 may be removed from the service device 300. Then, the cannula driver 360 is pivoted about pivot point 400 in the direction of arrow 350 (
As will be seen subsequently, a first drive element 362 may now be released to drive the cannula/needle assembly 324 through the port septum 228 rendering the cannula 224 in a deployed position (
With further reference to
Now that the cannula 224 is deployed, the service device 300 may be removed from the infusion device 210. This is illustrated in
While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention as defined by those claims.
The present application is a divisional of co-pending U.S. patent application Ser. No. 11/604,166, filed Nov. 22, 2006, which application is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5656032 | Kriesell | Aug 1997 | A |
5776103 | Kriesel | Jul 1998 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6293159 | Kriesel et al. | Sep 2001 | B1 |
6537249 | Kriesell et al. | Mar 2003 | B2 |
6723068 | Lavi | Apr 2004 | B2 |
6786244 | Jones | Sep 2004 | B1 |
20020022855 | Bobroff et al. | Feb 2002 | A1 |
20030088238 | Poulsen et al. | May 2003 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20030135159 | Daily et al. | Jul 2003 | A1 |
20040138612 | Shermer et al. | Jul 2004 | A1 |
20040143216 | Douglas et al. | Jul 2004 | A1 |
20040158207 | Hunn et al. | Aug 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20050107743 | Fangrow, Jr. | May 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20060129090 | Moberg et al. | Jun 2006 | A1 |
20060183984 | Dobbles | Aug 2006 | A1 |
20060200112 | Paul | Sep 2006 | A1 |
20070066939 | Krulevitch et al. | Mar 2007 | A1 |
20070106218 | Yodfat et al. | May 2007 | A1 |
20070233001 | Burroughs et al. | Oct 2007 | A1 |
20080097327 | Bente et al. | Apr 2008 | A1 |
Entry |
---|
International Search Report for International Patent Application No. PCT/US2007/024278, dated Apr. 7, 2008. |
Number | Date | Country | |
---|---|---|---|
20110130742 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11604166 | Nov 2006 | US |
Child | 13024618 | US |