The present invention in general relates to the collection, storage and disposal of used and spent liquids, and in particular to a disposable oil change kit for servicing engines.
The high cost of owning and maintaining an automobile has led many vehicle owners to drain and change their own oil at home. Typically, the oil change performed by the vehicle owner is done in a haphazard manner, with the vehicle owner utilizing any available household receptacle, such as a bowl or cooking pan, to receive the dirty or spent engine oil. Subsequently, the dirty oil must be disposed of in an ecologically responsible manner into some larger licensed receptacle, thus increasing cost and adding further inconvenience to the procedure. Furthermore, there is greater likelihood of spilling the dirty oil during the oil changing operation using readily available household equipment.
The spilt oil results in driveways and garages being stained. Further, the leakage or spilling of oil results in a significant amount of oil accumulating on the roadways. During rains, the accumulated oil can present a driving hazard to motorists as the oil makes the roadway slick. Additionally, during rains the oil on the driveways and roadways eventually ends up in streams, waterways, and ground water thereby creating a significant environmental problem.
Thus, there exists a need for an economical oil change kit that collects and provides for the disposal of spent or dirty oil in an ecologically safe manner.
A disposable oil change kit (DOCK) is provided for changing engine oil or other hydrocarbon containing products whereby the spent oil or hydrocarbon is encapsulated in a non-biodegradable substance rendering the kit safe for disposal in a non-hazard or controlled substance landfill. Embodiments of a container insert tray for dispersing spent hydrocarbons may be formed from scrap news print that has been emulsified into liquefied slurry that is injected into a mold, thus creating a uniquely designed dispersion tray.
In specific embodiments, the disposable container insert tray is composed of rows of conical shaped protrusions that are used to channel the hydrocarbon materials to all levels of the container so that the hydrocarbon can be exposed to the maximum surface area of the non-biodegradable substance for total encapsulation. In other specific embodiments in order to maximize the rate of absorption and efficiency of the encapsulating material, various slits or holes are strategically placed within each conical shaped protrusion of the insert tray.
In other specific embodiments, the top of the oil change kit container is covered with an open weave fabric material that acts as a diffuser whereby the hydrocarbon materials are spread more equally throughout the confines of the container and on to the surface of the tray insert. The polypropylene material has a center taper of about 1 inch depth to create a reservoir in the top of the container that accommodates the on-rush of dirty oil upon opening the drain plug to an oil pan, and prevents an over-flow condition.
An absorbent including but not limited to a non-degradable substance, such as peat moss that has been specially processed and is capable of absorbing hydrocarbons with total encapsulation is present underneath the tray insert. The peat moss prevents the hydrocarbons from escaping or exhibiting any form of free flow once the encapsulation has occurred. The encapsulation process provided by the absorbent non-degradable substance is what allows the DOCK to be disposed of in a non-hazardous or controlled substance landfill.
The present invention has utility as a liquid disposal tool. An inventive liquid disposal tool may be used to collect liquids that drip from equipment over time, or in a particular non-limiting application as a disposable oil change kit (DOCK). Embodiments of the liquid disposal tool absorb a variety of liquids illustratively including spent oil, other hydrocarbon fuel, or combinations thereof in a substance and in specific instances rendering the tool safe for disposal in a non-hazard or controlled substance landfill.
In other specific embodiments of the inventive liquid disposal tool, a disposable container insert tray is composed of rows of protrusions that are used to channel the liquid within the container so that the liquid can be exposed to the maximum surface area of the absorbent substance. The protrusions have a variety of shapes illustratively including conical, stepped, cuboidal, frustoconical, and other polygonal forms. The structure of the insert tray is designed to provide a reservoir to hold the oil long enough to allow the absorbent to absorb the liquid. A physical limitation of the absorption when the liquid is 10/30 weight motor oil is that the oil can only be absorbed from a diameter of about 2 inches. In other embodiments, in order to maximize the rate of absorption and efficiency of the absorbent, various slits or holes are strategically placed within each protrusion of the insert tray.
The top of the inventive liquid disposal tool is in some specific embodiments covered with an open weave fabric that acts as a diffuser whereby the liquid or hydrocarbon materials are spread more equally throughout the confines of the container and on to the surface of the tray insert. This fabric is synonymously referred to herein as a top or top cover. The fabric is illustratively formed from materials synthetics such as polypropylene, polyethylene, polyamides, and polystyrenes; and natural fibers such as cotton, hemp, jute, and other cellulosics. The mesh coating of the diffusing top coat fabric provides a capillary action to spread the oil across the whole surface. The fabric in some specific embodiments has a center depression to create a reservoir in the top of the container that accommodates the on-rush of liquids. In another specific embodiment the taper at the center of the fabric is about one inch and in other embodiments ranges between 0.5 an 2 inches. For example, in the application of the liquid disposal tool for an oil change or DOCK, the on-rush of dirty oil exiting upon opening the drain plug to an oil pan is controlled on the surface of the fabric and prevents an over-flow condition.
An absorbent operative herein illustratively includes peat moss; peat moss that has been specially processed and is capable of absorbing hydrocarbons with total encapsulation; cellulosics such as corn cob grit, saw dust, paper, straw, and cotton; clays such as cat litter; synthetic polymers such as polyethylene, polypropylene and polyacrylics. This or other absorbents specific to the liquid to be absorbed is present underneath a tray insert, filling the tray insert, or both. Peat moss prevents the hydrocarbons from escaping or exhibiting any form of free flow once the encapsulation has occurred. Peat moss is a well suited material for absorbing oil because the oil penetrates into the peat core and does not seep from it. In contrast, other conventional absorbents operative herein are either only surface coated (cellulosics such as sawdust or corn cob grit) or becomes softened with the absorption (polyethylene). It is appreciated that some disposal regulations allow for oil that has been encapsulated in an inventive DOCK to be disposed of in a non-hazardous or controlled substance landfill.
Referring now to the figures,
The top cover 180, which is shown in greater detail in
The foregoing description is illustrative of particular embodiments of the invention, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the invention.
This application claims priority benefit of U.S. Provisional Application Ser. No. 61/658,655 filed 12 Jun. 2012; the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61658655 | Jun 2012 | US |