In general, the present invention is directed to a fluid sampling device, and in particular, to a fluid sampling device having a configuration amenable to “single-use disposability”, while still enabling good aseptic sampling.
When conducting complex and/or delicate fluid processes within a “closed” fluid receptacle, to monitor the progress of the process, it is often desirable to withdraw and analyze samples of the fluid without disturbing the process, such as may occur upon “opening” the receptacle. For example, in the study and/or manufacture of biochemical products (e.g., biopharmaceuticals), biochemical fluid is often contained in an aseptically “closed” fermenting tank, bioreactor, or like fluid receptacle, wherein the fluid is processed over comparatively long periods of time, under diverse and changing chemical and environmental conditions. By withdrawing and analyzing samples of the fluid intermittently in the course of the process, one can learn more about the progress of the process, and if called for, take prophylactic measures to change the outcome thereof.
Similar issues arise also in instances wherein fluid is conducted through a conduit, or a pipe, or other like fluid receptacle. Sampling of said fluid is often difficult because in many industrial systems, said receptacles are not easily opened or disassembled to allow one to withdraw fluid samples, especially in a sterile manner.
While several fluid sampling techniques are known, certain technical issues can be noted. For example, certain integrated fluid sampling fixtures comprise stainless steel valves and piping which, for biopharmaceutical applications, often require laborious steam sterilization and cleaning prior to use. (See e.g., U.S. Pat. No. 5,948,998, issued to L. D. Witte et al. on Sep. 7, 1999). Other fluid sampling devices are difficult to integrate into extant fluid processing systems, for example, by requiring the installation of custom-fitted ports onto a host fluid receptacle. (See e.g., U.S. Pat. No. 6,032,543, issued to Nils Arthun et al. on Mar. 7, 2000). Still other devices, although adapted for use in standard industrial ports, are complex and costly instruments comprising valves, inlets, outlets, seals, needles, and other components, all precisely arranged, but capable of only a single aseptic sample per sterilization cycle. (See e.g., U.S. Pat. No. 4,669,312, issued to Pio Meyer on Jun. 2, 1987). Finally, the majority of fluid sampling devices—as is the case in many of those already mentioned—require in their operation the piercing of a septum using a hypodermic needle. (See also, e.g., U.S. Pat. No. 4,423,641, issued to K. Ottung on January 1984; and U.S. Pat. No. 2,844,964, issued to F. W. Guibert on Jul. 29, 1958).
In light of the above, a need exists for a fluid sampling device that is sufficiently inexpensive in its construction to promote single-use disposability, capable of being used in standard industrial ports commonly found in fluid receptacles, and capable of several good sterile fluid sample withdrawals per sterilization cycle and/or prior to being exhausted.
The present invention provides a fluid sampling device comprising a port insert, a plurality of flexible conduits, and a plurality of sample containers. The port insert comprises a body having a plurality of shafts therethrough, and sample grating means for individually opening and closing any of said shafts to control the flow of fluid therethrough. The sample gating means comprise single or multiple members that are displaceable between “open” and “closed” positions such that fluid can flow through said body through one of said shafts in said “open” position, but not in said “closed” position. Each shaft is in fluid communication with a flexible conduit, which in turn, is in fluid communication with a sample container. The sample containers are preferably flexible bags; and the conduits, preferably, flexible tubing.
In a principal embodiment, the port insert is configured as a monolithic body having a plurality of rigid elongate members disposed therethrough in a manner allowing linear displacement of said members between said “closed” and “open” positions. When the port insert is installed into a suitable port provided on a fluid receptacle, an elongate member can be moved into its “open” position, whereupon, fluid contained within the receptacle flows into the elongate member, then through the flexible conduit, and ultimately into the sample container. After the desired amount of fluid is collected in the sample container, the elongate member is moved and locked into its “closed” position, the flexible conduit is severed (preferably, aseptically), and the sample container taken for further analysis. The process can then be repeated, by using the remaining elongate members. When all elongate members are exhausted, the port insert is fully spent and can be easily removed and replaced after the fluid processes in the fluid receptacle are concluded.
In light of the above, it is a principal object of the present invention to provide a fluid sampling device.
It is another object of the present invention to provide a fluid sampling device that enables the withdrawal of several samples of fluid from a fluid receptacle.
It is another object of the present invention to provide a fluid sampling device that enables the withdrawal of several samples of fluids from a fluid receptacle, wherein said withdrawal occurs in a substantially sterile manner, and wherein inter-sample cross-contamination is substantially discouraged.
It is another object of the present invention to provide a fluid sampling device that enables the withdrawal of several samples of fluid from a fluid receptacle, the fluid sampling device capable of being configured to promote so-called “single-use disposability”.
It is another object of the present invention to provide a fluid sampling device comprising a port insert, a plurality of flexible conduits, and a plurality of sample containers (preferably, flexible, bag-like sample containers).
It is another object of the present invention to provide a port insert useful for making a fluid sampling devices, said port insert maximizing functionality with a minimal number of comparatively inexpensive components, thus promoting said “single use disposability”.
It is another object of the present invention to provide a kit containing in sterilized packaging the assembled, partially assembled, or unassembled components of a fluid sampling device, wherein all contained components are sterilized.
These and other objects of the present invention can be better understood in view of the detailed description herein, read in conjunction with the attached drawings.
As illustrated in
The port insert 10 includes a plurality of shafts, each providing an avenue through which fluid can flow from the host fluid receptacle into one of said sample container 130. The port insert 10 further comprises sample gating means for individually opening and closing said shafts to control the flow of fluid therethrough. The sample gating means comprise single or multiple members displaceable between “open” and “closed” positions such that fluid can flow through said body through one of said shafts in said “open” position, but not in said “closed” position. Each individual elongate member is connected to (or otherwise in fluid communication with) a flexible conduit, which in turn, is connected to (or otherwise in fluid communication with) a sample container.
In operation, prior to being charged with fluid, a host fluid receptacle is cleaned, sterilized, and otherwise prepared for processing. The pre-sterilized fluid sampling device is installed into an existing port provided in the host and steam “sterilized-in-place”. The fluid receptacle is then charged with the fluid, and fluid processing commences.
During the processing of the fluid, when a sample is desired for analysis, the sample gating means is displaced into an “open” position, whereupon fluid flows out of the host receptacle, through the active shaft, then through the attached fluid conduit, and ultimately into the sample container. After the desired quantity of fluid is collected, sample gating means is displaced into a “closed” position. The flexible conduit is then clamped off at two points, then severed between the two clamps, so that the captured sample can be removed for analysis. Preferably, a heat knife, flame, or the like, is used to both sever and seal the conduit simultaneously.
As the fluid process continues, if further samples are desired, another of the remaining unused shaft can be activated. This continues until all shafts are spent, or the fluid process ends. At the end of the fluid process, the fluid sampling device is removed, and disposed off in accordance with appropriate industrial practice. When the host receptacle is again needed for another processing operation, a fresh fluid sampling device is installed.
The fluid sampling device 100 is preferably made as a “single use” item. In this regard, it is “single use” in the sense that at the completion of the desired (or predetermined) number of fluid sampling operations, the device 100 can either be disposed (e.g., as is sometimes required by law after sampling certain environmentally-regulated substances) or partially recycled (e.g., after dispensing non-regulated substances).
Although subject to several and diverse configuration, a preferred embodiment of the port insert is shown in
In respect of materials and methods, the body 20 of the port insert 10 will generally be formed monolithically (i.e., as a single, homogenous, unitary, unassembled piece) from polymeric material, for example, by well-known injection molding or like processes.
Examples of suitable polymeric material include, but are not limited to, polycarbonates, polyesters, nylons, PTFE resins and other fluoropolymers, acrylic and methacrylic resins and copolymers, polysulphones, polyethersulphones, polyaryl-sulphones, polystryenes, polyvinyl chlorides, chlorinated polyvinyl chlorides, ABS and its alloys and blends, polyurethanes, thermoset polymers, polyolefins (e.g., low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene and copolymers thereof), polypropylene and copolymers thereof, and metallocene generated polyolefins.
The body 20 should be formed in consideration of conditions likely to be encountered in the course of in situ steam sterilization. The temperature and pressure of such sterilization is typically about 121° C. and 1 bar above atmospheric pressure. The use of temperatures and pressures up to and in excess of 142° C. and 3 bars is not too uncommon.
To accommodate easy installation of the fluid sampling device into the host receptacles, the port insert should be substantially cylindrical in shape and have an external diameter of about 0.985 inch (2.5 cm.) In the biopharmaceutical field, such configuration will allow the fluid sampling device 10 to be installed, without further custom engineering, into several commercially-available types of bioreactors, that already contain ports (e.g., so-called “Ingold Ports”) of such dimensions, and which are currently used for probes and other sensors.
Each of the elongate members 30 are monolithic and rigid, and has a front 30A and a back 30B. They are shaped to fit substantially water-tight within said shaft 26 such that the front thereof 30A is proximate the first open end 24 and the back thereof 30B is proximate the second open end 22. Each elongate member 30 is movable within said shaft 26 from a closed position P1 to an open position P2, such that the release of fluid out of said fluid receptacle through said port insert 10 is frustrated when the elongate member 30 occupies the closed position P1 and enabled when the elongate member 30 occupies the open position P2.
In a desirable embodiment, four elongate members, each having a length equal to or slightly greater than 1.600 inch (4.064 cm), are provided on the port insert 10. As shown in
Although port insert 10 is structured to fit snugly within host port, to prevent it from being popped into or out of the port during use, additional mechanical restraints are highly desirable. As shown in
As an alternative to a sample gating means comprising multiple elongate members, the present invention also contemplates a port insert comprising a single displaceable member that, by itself, functions to selectively and individually “open” and “close” each shaft provided in the port insert. A representative example of such sample gating means is presented in
In
In practice—in contrast to the schematic nature of FIG. 3—both the passage 38 and member 36 should be structurally configured to optimize fluid flow, for example, by streamlining these parts to minimize so-called “dead spaces”. Such configurations will vary among different applications. Regardless, suitable flow optimizing strategies are well known in the art.
The rotatably displaceable member 36 can be rotated by means of an integrated handle (partially shown in
As an alternative to an integrated handle, one can also employ a separate tool (e.g., an alien wrench or screwdriver) to turn the rotatably displaceable member 36. For such instance, the rotatably displaceable member is configured with an appropriate tool engaging structure (e.g., slots, nuts, bolts, etc.).
Preferably, the rotatably displaceable member 36 should be capable of rotation in a single direction only, i.e., either clockwise or counter-clockwise, and such that alignment in any of the achievable “closed” or “open” positions, respective of said shafts, are definitively and discretely defined. Means should also be provided to prevent the member 36 from being rotated back into alignment with any spent shafts.
As shown schematically, in
To further assist manual rotation and alignment, graphical, textual, or otherwise informative indicia or structures (e.g., a pointer in combination with symbolic icons) can be integrated into or otherwise provided on, for example, the handle, the body 20, or both, to inform a user of the current position of rotatably displaceable member 36. Likewise, the interlocking structures (e.g., 38, P1, and P2) can also be configured to provide an audible (e.g., clicking) or frictional (e.g., variable resistance) clue to a user during rotation indicative of the displacement and/or position of the rotatably displaceable member 36.
As mentioned, the sample containers used for the present invention are preferably flexible bags, particularly so when the fluid sampling device is intended for use in biopharmaceutical applications or like applications that have comparatively high aseptic requirements. Unlike many conventional sampling devices, the fluid sampling device 100 of the present invention does not rely on valves, pumps, and like extrinsic mechanisms to promote, urge, facilitate, or otherwise affect the flow of sample liquid out of the host fluid receptacle 5 into an available sample container 130. Rather, fluid flows through the aseptically-isolated flow path of the device 100 by a combination of ambient gravitational forces and the extant pressurization of the host fluid receptacle. Initially provided in a collapsed or partially-collapsed state, the flexible bag (or functionally-equivalent expansible fluid container) expands, decompresses, or otherwise “fills-out” as withdrawn sample fluid flows thereinto.
Although the use of a flexible, bag-like sample container 130 is preferred, a rigid sample container can also be used without departing from objectives of the present invention. For example, the sample container can be configured as a spacious, rigid box, bulb, vial, or bottle. A vent—preferably of modest construction—can be provided to permit the displacement of contained gas as sample fluid flows thereinto.
One type of vent (not shown) that can be implemented with little cost, yet still provide good aseptic functionality, is constructed by “patching” and opening the rigid container (i.e., above the expected fluid fill level thereof) with a gas permeable sheet of fluoropolymer membrane (e.g., “Gore-Tex”-brand membrane available from W. L. Gore and Associates of Wilmington, Del.) or a substantially gas permeable sheet of polyethylene fiber (e.g., “Tyvek”-brand material available from E.I. du Pont de Nemours, Inc. of Wilmington, Del.).
As an alternative to complete rigidity, it is envisioned that a sample container comprise rigid side walls that bend and flex along folds or creases or crumple zones, and the like, such that the sample container is capable of collapsing or otherwise diminishing its volume. Examples of collapsible rigid configurations include accordion-like configurations, bellows-like configurations, and other configurations having pleated side walls.
The mechanisms underlying the operation of the fluid sampling device 100 call for a certain rigidity in the configuration of elongate members 30. Aside from durability, the rigidity allows the members to be pushed through the shaft into their open positions with sufficient and appropriate force to overcome the frictional forces that create the liquid tight seal, without the elongate member flexing, bending, crumpling, or otherwise deforming, such circumstances potentially leading to sampling failures, and/or more catastrophically, breach of extant sterile conditions.
Because several rigid members 30 are provided through the port insert 30, physical space immediately outside the insert will likely be cramped, and may not accommodate sample containers large enough to collect the volumes of fluid desired. Hence, the sample containers are placed further geographically downstream of the elongate members 130, with lengths of flexible conduit material 120 provided therebetween.
Although a flexible conduit and a flexible bag-like sample container can be formed as one component, in all likelihood, the conduits 120 and elongate members 30 —owing to their differing preferred material composition—are formed separately and later assembled. For example, in one embodiment, conduits 120 are made of flexible elastomeric material, whereas elongate members 30 are made of high-impact, rigid polymeric material. In such and like instances, the back end 30B of each rigid elongate member 30 can be provided with means for securely attaching the flexible conduit, such as the barbed end 70 shown in
In the preferred configuration, means should be provided to prevent the elongate means from being prematurely moved into its open position, as well as prevent it from being moved too far past its open and/or closed positions. While such means will vary depending on the ultimate configuration of the fluid sampling device, the embodiment represented in
For applications having comparatively strict sterility requirements (e.g., biopharmaceutical applications), the present invention is preferably embodied in kit form, comprising, enclosed within sterile packaging, the following principal kit contents: (a) a pre-sterilized port insert constructed in accordance with any embodiment described and/or otherwise enabled herein; (b) a supply of pre-sterilized flexible tubing, preferably “pre-cut to length”, connected or connectable to the elongate members of said port insert; and (c) a supply of pre-sterilized sample containers connected or connectable to said flexible tubing, the pre-sterilized sample containers also constructed in accordance with any embodiment described and/or otherwise enabled herein. It is preferred that the kit be pre-assembled and then sterilized in its bag or container, using well known means such as gamma radiation, ethylene oxide gas, and the like.
The provision of the present invention in kit form advances certain objectives either not possible or difficult to accomplish otherwise. Foremost, the kit assures that all its contents are pre-sterilized, and essentially remain so until use. Further, ease of installation, assembly, and operation are improved since all kit contents are pre-selected, pre-sized, and pre-matched to assure proper fit and assembly. And, along similar lines, a kit-based approach promotes standardization of the kit's contents, as well as their .manufacture and packaging, leading to reduced product costs, fostering the product's “disposability”, and broadening the accessibility of the technology to the public.
Optionally, the kit may also contain, for example, means for locking the port insert within the port provided on a host fluid receptacle (e.g., collar 40); accessories and other means used for assembling the fluid sampling device (e.g., clamps, connectors, junctions, manifolds, and the like); means for mounting, fixing, and/or positioning the assembled fluid sampling device relative to the host receptacle (e.g., adhesive strips, fasteners, brackets, and the like); and a disposal bag for disposing a spent fluid sampling device. These and other optional kit contents, if included, are all sterilized in their packaging. Both the principal and optional kit contents can be provided, if desired, individually or collectively wrapped (i.e., in groups) within said sterile packaging, thus providing additional sterile barriers.
Although certain embodiments of the invention are disclosed., those skilled in the art, having the benefit of the teaching of the present invention set forth herein, can affect numerous modifications thereto. These modifications are to be construed as encompassed within the scope of the present invention as set forth in the appended claims.
This application is a Divisional Patent Application of U.S. Application Ser. No. 11/878,126, filed on Jul. 20, 2007, which is a Continuation Patent Application of U.S. application Ser. No. 11/415,264, filed on May 1, 2006, now U.S. Pat. No. 7,293,475, granted on Nov. 13, 2007, which is a Divisional Patent Application of U.S. application Ser. No. 10/746,030, filed on Dec. 23, 2003, now U.S. Pat. No. 7,293,477, granted on Nov. 13, 2007.
Number | Name | Date | Kind |
---|---|---|---|
214367 | Colvin | Apr 1879 | A |
988378 | Olson | Apr 1911 | A |
1503132 | Prator | Jul 1924 | A |
1585163 | Milner | May 1926 | A |
1831457 | Larsen | Nov 1931 | A |
1852445 | Calkins et al. | Apr 1932 | A |
2012836 | Talbot et al. | Aug 1935 | A |
2122991 | Polston | Jul 1938 | A |
2240888 | Hageline | May 1941 | A |
2426808 | Auer | Dec 1943 | A |
2712881 | Mathisen | May 1951 | A |
2642256 | Stehlin | Jun 1953 | A |
2736201 | Ohlsen et al. | Feb 1956 | A |
2767587 | Perkins | Oct 1956 | A |
2776473 | Dailey et al. | Jan 1957 | A |
2779350 | Owens | Jan 1957 | A |
2844964 | Guibert | Jul 1958 | A |
2859932 | Mackal | Nov 1958 | A |
2865394 | Presley | Dec 1958 | A |
2872817 | Pitts | Feb 1959 | A |
2952269 | Stehlin | Sep 1960 | A |
3038485 | Hosek | Jul 1961 | A |
2994224 | Brown | Aug 1961 | A |
3039482 | Goldberg | Jun 1962 | A |
3097532 | Brown et al. | Jul 1963 | A |
3390677 | Razimbaud | Jul 1965 | A |
3219047 | Kircher, III et al. | Nov 1965 | A |
3223100 | Koenig et al. | Dec 1965 | A |
3244376 | Thompson | Apr 1966 | A |
3260120 | Stilwell | Jul 1966 | A |
3276447 | Hamilton | Oct 1966 | A |
3319622 | Shiner | May 1967 | A |
3424181 | Morse | Jan 1969 | A |
3479880 | Mutter et al. | Nov 1969 | A |
3525350 | Hosek | Aug 1970 | A |
3621719 | Goodman et al. | Nov 1971 | A |
3633621 | Myers | Jan 1972 | A |
3638499 | Saint-Andre | Feb 1972 | A |
3678959 | Liposky | Jul 1972 | A |
3696932 | Rosenberg | Oct 1972 | A |
3736099 | Begg et al. | May 1973 | A |
3747411 | McDermott et al. | Jul 1973 | A |
3776042 | Werra et al. | Dec 1973 | A |
3779082 | Galloway | Dec 1973 | A |
3802782 | Natelson | Apr 1974 | A |
3848581 | Cinqualbre et al. | Nov 1974 | A |
3858449 | Singer | Jan 1975 | A |
3921456 | Newcomb, Jr. et al. | Nov 1975 | A |
3985332 | Walker | Oct 1976 | A |
4015631 | Hayes | Apr 1977 | A |
4018059 | Hatch | Apr 1977 | A |
4034775 | Slagel | Jul 1977 | A |
4055179 | Manschot et al. | Oct 1977 | A |
4061709 | Miller et al. | Dec 1977 | A |
4064003 | Newton | Dec 1977 | A |
4094197 | Harris, Sr. et al. | Jun 1978 | A |
4207922 | Andrieux et al. | Jun 1980 | A |
4244224 | Conn | Jan 1981 | A |
4294247 | Carter et al. | Oct 1981 | A |
4296759 | Joslin et al. | Oct 1981 | A |
4325401 | Ukai et al. | Apr 1982 | A |
4346609 | Diesel | Aug 1982 | A |
4353386 | Slagel | Oct 1982 | A |
4378824 | Carder, Sr. | Apr 1983 | A |
4423641 | Ottung | Jan 1984 | A |
4423642 | Kuboichi | Jan 1984 | A |
4454772 | Brunner et al. | Jun 1984 | A |
4458543 | Mieth | Jul 1984 | A |
4479393 | Shores | Oct 1984 | A |
4525127 | Welker | Jun 1985 | A |
4527436 | Jones | Jul 1985 | A |
4537593 | Alchas | Aug 1985 | A |
4557151 | Welker | Dec 1985 | A |
4569236 | Kitchen et al. | Feb 1986 | A |
4580452 | Masson | Apr 1986 | A |
4584887 | Galen | Apr 1986 | A |
4587856 | Otis | May 1986 | A |
4587887 | Shibayama et al. | May 1986 | A |
4622457 | Bradley et al. | Nov 1986 | A |
4630847 | Blenkush | Dec 1986 | A |
4657027 | Paulsen | Apr 1987 | A |
4669312 | Maurer | Jun 1987 | A |
4669321 | Meyer | Jun 1987 | A |
4704910 | Conrad | Nov 1987 | A |
4826055 | Stull | May 1989 | A |
4836236 | Ladisch | Jun 1989 | A |
4838877 | Massau | Jun 1989 | A |
4861239 | Simmons et al. | Aug 1989 | A |
4913185 | Mattei | Apr 1990 | A |
4941517 | Galloway | Jul 1990 | A |
4942901 | Vescovini | Jul 1990 | A |
4944875 | Gaignet | Jul 1990 | A |
4997108 | Hata | Mar 1991 | A |
5058619 | Zheng | Oct 1991 | A |
5095765 | Filbey et al. | Mar 1992 | A |
5117872 | Yie | Jun 1992 | A |
5158558 | Melker et al. | Oct 1992 | A |
5161417 | Strong et al. | Nov 1992 | A |
5177872 | Lewis et al. | Jan 1993 | A |
5246204 | Ottung | Sep 1993 | A |
5285999 | Scholz | Feb 1994 | A |
5296197 | Newberg et al. | Mar 1994 | A |
5360413 | Leason et al. | Nov 1994 | A |
5375477 | Neill et al. | Dec 1994 | A |
5398557 | Shimizu et al. | Mar 1995 | A |
5435339 | Hayes | Jul 1995 | A |
5452746 | Hoobyar et al. | Sep 1995 | A |
5463908 | Rosolia | Nov 1995 | A |
5468388 | Goddard et al. | Nov 1995 | A |
5474546 | Ambrisco et al. | Dec 1995 | A |
D366935 | Arthun et al. | Feb 1996 | S |
5520218 | Hlavinka et al. | May 1996 | A |
5525301 | Newberg et al. | Jun 1996 | A |
5533983 | Haining | Jul 1996 | A |
5535635 | Shaw | Jul 1996 | A |
5542305 | Hollinger | Aug 1996 | A |
5549568 | Shields | Aug 1996 | A |
5585576 | Jaeger | Dec 1996 | A |
D381067 | Karmalm | Jul 1997 | S |
5730418 | Feith et al. | Mar 1998 | A |
5747708 | Weiberth | May 1998 | A |
5755155 | Buesing | May 1998 | A |
5766462 | Jones | Jun 1998 | A |
5786209 | Newberg | Jul 1998 | A |
5820614 | Erskine et al. | Oct 1998 | A |
5829425 | Woods et al. | Nov 1998 | A |
5868433 | Matkovich | Feb 1999 | A |
5885255 | Jaeger, Jr. et al. | Mar 1999 | A |
5897526 | Vaillancourt | Apr 1999 | A |
5911252 | Cassel | Jun 1999 | A |
5948998 | Witte et al. | Sep 1999 | A |
6009684 | Buesing | Jan 2000 | A |
6030578 | McDonald | Feb 2000 | A |
6032543 | Arthun et al. | Mar 2000 | A |
6068617 | Richmond | May 2000 | A |
6096011 | Trombley, III et al. | Aug 2000 | A |
6126206 | Bindokas et al. | Oct 2000 | A |
6133022 | Newberg | Oct 2000 | A |
6145810 | Connolly et al. | Nov 2000 | A |
6156025 | Niedospial, Jr. et al. | Dec 2000 | A |
6170800 | Meloul et al. | Jan 2001 | B1 |
6196522 | Yuen et al. | Mar 2001 | B1 |
6210372 | Tessmann et al. | Apr 2001 | B1 |
6221041 | Russo | Apr 2001 | B1 |
6237639 | Jougla et al. | May 2001 | B1 |
6254773 | Biltoft | Jul 2001 | B1 |
6273869 | Vaillancourt | Aug 2001 | B1 |
6306191 | McInerney et al. | Oct 2001 | B1 |
6314987 | Hay | Nov 2001 | B1 |
6345640 | Newberg | Feb 2002 | B1 |
6345645 | Kenna et al. | Feb 2002 | B1 |
D454173 | Almasian et al. | Mar 2002 | S |
6354466 | Karpisek | Mar 2002 | B1 |
6357306 | Jaeger | Mar 2002 | B1 |
6360794 | Turner | Mar 2002 | B1 |
6386137 | Riche | May 2002 | B1 |
6390127 | Schick | May 2002 | B2 |
6477906 | Peterson | Nov 2002 | B1 |
6516677 | Suter | Feb 2003 | B1 |
6558365 | Zinger et al. | May 2003 | B2 |
6568844 | Arthun et al. | May 2003 | B1 |
6601823 | Newberg | Aug 2003 | B2 |
6623631 | Graus et al. | Sep 2003 | B1 |
6648006 | Ostergaard | Nov 2003 | B1 |
6672561 | Kerg et al. | Jan 2004 | B2 |
6699229 | Zinger et al. | Mar 2004 | B2 |
6715624 | Brockwell | Apr 2004 | B2 |
6779575 | Arthun | Aug 2004 | B1 |
6860162 | Jaeger | Mar 2005 | B1 |
6871669 | Meyer et al. | Mar 2005 | B2 |
6902144 | deCler | Jun 2005 | B2 |
6916012 | Newberg | Jul 2005 | B2 |
7137974 | Almasian et al. | Nov 2006 | B2 |
7195181 | Steingass et al. | Mar 2007 | B2 |
7272981 | Bigalke | Sep 2007 | B2 |
7273550 | Gutman et al. | Sep 2007 | B2 |
7293475 | Furey et al. | Nov 2007 | B2 |
7293477 | Furey et al. | Nov 2007 | B2 |
7350535 | Liepold et al. | Apr 2008 | B2 |
7473360 | Hoffman et al. | Jan 2009 | B2 |
7488446 | Meyer et al. | Feb 2009 | B2 |
7578205 | Belongia | Aug 2009 | B2 |
7578936 | Gaignet et al. | Aug 2009 | B2 |
7597683 | Myhrberg et al. | Oct 2009 | B2 |
RE41169 | Arthun | Mar 2010 | E |
7753340 | Liepold et al. | Jul 2010 | B2 |
7815362 | Myhrberg et al. | Oct 2010 | B2 |
7921740 | Furey et al. | Apr 2011 | B2 |
7927316 | Proulx et al. | Apr 2011 | B2 |
7959754 | Arthun | Jun 2011 | B2 |
8029023 | Arthun et al. | Oct 2011 | B2 |
8167480 | Myhrberg et al. | May 2012 | B2 |
8281961 | Martin | Oct 2012 | B2 |
20020129858 | Meyer et al. | Sep 2002 | A1 |
20030188588 | Jaeger | Oct 2003 | A1 |
20050016620 | Proulx et al. | Jan 2005 | A1 |
20050035597 | Bamberger et al. | Feb 2005 | A1 |
20050090797 | Almasian et al. | Apr 2005 | A1 |
20050132821 | Furey et al. | Jul 2005 | A1 |
20050150546 | Liepold et al. | Jul 2005 | A1 |
20050285066 | Huang | Dec 2005 | A1 |
20060081804 | Cong | Apr 2006 | A1 |
20060086922 | Jensen et al. | Apr 2006 | A1 |
20060091060 | Gutman et al. | May 2006 | A1 |
20060142730 | Proulx et al. | Jun 2006 | A1 |
20060201263 | Furey et al. | Sep 2006 | A1 |
20060211995 | Myhrberg et al. | Sep 2006 | A1 |
20060243942 | Liepold et al. | Nov 2006 | A1 |
20060272432 | Belongia | Dec 2006 | A1 |
20070106264 | Proulx et al. | May 2007 | A1 |
20070193375 | Pandori et al. | Aug 2007 | A1 |
20070253287 | Myhrberg et al. | Nov 2007 | A1 |
20080000820 | Mitchell | Jan 2008 | A1 |
20080022785 | Furey et al. | Jan 2008 | A1 |
20080087860 | Vaillancourt et al. | Apr 2008 | A1 |
20080185552 | Myhrberg et al. | Aug 2008 | A1 |
20080277878 | Arthun et al. | Nov 2008 | A1 |
20090019952 | Furey et al. | Jan 2009 | A1 |
20090054758 | Dunseath | Feb 2009 | A1 |
20090101575 | Alburty et al. | Apr 2009 | A1 |
20090250157 | Arthun | Oct 2009 | A1 |
20100123094 | Zumbrum | May 2010 | A1 |
20100133459 | Zumbrum | Jun 2010 | A1 |
20100290311 | Myhrberg et al. | Nov 2010 | A1 |
20100326212 | Furey et al. | Dec 2010 | A1 |
20110197989 | Proulx et al. | Aug 2011 | A1 |
20110253233 | Hillier et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
101022875 | Aug 2007 | CN |
2161702 | Jun 1973 | DE |
3215799 | Nov 1983 | DE |
3633431 | Apr 1988 | DE |
3701250 | Jul 1988 | DE |
8812723 | Dec 1988 | DE |
100 39 196 | Feb 2002 | DE |
603 10 700 | Oct 2007 | DE |
0103396 | Mar 1984 | EP |
0107579 | May 1984 | EP |
0154002 | Sep 1985 | EP |
0508749 | Oct 1992 | EP |
0510355 | Oct 1992 | EP |
0576380 | Dec 1993 | EP |
0 468 957 | Jun 1994 | EP |
0 684 050 | Nov 1995 | EP |
0691492 | Jan 1996 | EP |
1008359 | Jun 2000 | EP |
1231699 | Aug 2002 | EP |
1321699 | Jun 2003 | EP |
1329210 | Jul 2003 | EP |
1 499 382 | Nov 2003 | EP |
1 548 420 | Jun 2005 | EP |
1370788 | Nov 2005 | EP |
0858589 | Dec 2005 | EP |
1 962 076 | Aug 2008 | EP |
943132 | Nov 1963 | GB |
1381391 | Jan 1975 | GB |
1418046 | Dec 1975 | GB |
1463303 | Feb 1977 | GB |
1479226 | Jul 1977 | GB |
1511240 | May 1978 | GB |
1 573 482 | Aug 1980 | GB |
2 327 369 | Jan 1999 | GB |
2 365 511 | Feb 2002 | GB |
42-15498 | Sep 1967 | JP |
44-4942 | Feb 1969 | JP |
49-112631 | Sep 1974 | JP |
58-131802 | Aug 1983 | JP |
59-38278 | Mar 1984 | JP |
2-052667 | Feb 1990 | JP |
2-71728 | Mar 1990 | JP |
02-118276 | May 1990 | JP |
2-121679 | Oct 1990 | JP |
3-141948 | Jun 1991 | JP |
6-10845 | Feb 1994 | JP |
6-023045 | Feb 1994 | JP |
06-327772 | Nov 1994 | JP |
07-051371 | Feb 1995 | JP |
8-502339 | Mar 1996 | JP |
08-168535 | Jul 1996 | JP |
9-154945 | Jun 1997 | JP |
9-512892 | Dec 1997 | JP |
11-141713 | May 1999 | JP |
11-270705 | Oct 1999 | JP |
11-514741 | Dec 1999 | JP |
2000-55792 | Feb 2000 | JP |
2001-170188 | Jun 2001 | JP |
2001-269401 | Oct 2001 | JP |
2002-510996 | Apr 2002 | JP |
2004-332797 | Nov 2004 | JP |
2005-181336 | Jul 2005 | JP |
2005-519825 | Jul 2005 | JP |
4332106 | Jul 2005 | JP |
2006-516723 | Jul 2006 | JP |
2008-185218 | Aug 2008 | JP |
20092965 | Jan 2009 | JP |
2009192540 | Aug 2009 | JP |
649954 | Feb 1979 | SU |
8602450 | Apr 1986 | WO |
9012972 | Nov 1990 | WO |
9100215 | Jan 1991 | WO |
9408173 | Apr 1994 | WO |
9419086 | Sep 1994 | WO |
9530856 | Nov 1995 | WO |
9630076 | Oct 1996 | WO |
9716715 | May 1997 | WO |
9845188 | Oct 1998 | WO |
9850105 | Nov 1998 | WO |
9903568 | Jan 1999 | WO |
9906089 | Feb 1999 | WO |
9926580 | Jun 1999 | WO |
0078472 | Dec 2000 | WO |
03090843 | Nov 2003 | WO |
WO 03090842 | Nov 2003 | WO |
2005012775 | Feb 2005 | WO |
2006022816 | Mar 2006 | WO |
2006026253 | Mar 2006 | WO |
2008048511 | Apr 2008 | WO |
2008136720 | Nov 2008 | WO |
2013011231 | Jan 2013 | WO |
Entry |
---|
European Search Report, EP 1548420, Mar. 13, 2006. |
Notice of Rejection with English Translation, JP2003-587467, Jul. 24, 2007. |
International Search Report for PCT/US03/12927 dated Aug. 6, 2003. |
International Preliminary Examination Report for PCT/US03/12927 dated Feb. 11, 2004. |
International Search Report for PCT/US03/13073 dated Aug. 6, 2003. |
Lynx Trademark Reg. No. 2,831,931. |
European Search Report EP 1548420 A3, dated Mar. 13, 2006. |
International Search Report for PCT/US03/12924, dated Aug. 6, 2003. |
Gore's Preliminary Invalidity Contentions to Plaintiff Millipore Corporation, Document No. 21, filed Oct. 29, 2009 in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765 DPN. |
Janetchek, R., “Capsule Filters & Disposable Sterile Processing Systems”, Pharmaceutical Processing, p. 8 (Jan. 2001). |
Charter Medical, Ltd., Bioprocess Products, “New Quality of Data for Bioprocessings Bags”, Pharmaceutical Processing, p. 8 (Jan. 2002). |
Greene, R., et al., “Disposable Equipment: A Mainstay in Bioprocessing”, Chemical Engineering Progress, pp. 10-11 (Nov. 2002). |
Wendt, D., “Disposable processing systems: how suppliers are meeting today's biotech challenges from fluid handling to filtration”, Biopharm International, p. 18 (July 2003). |
Haughney, H., et al., “Taking Disposable Processing to the Next Level”, Biopharm Trends, pp. 20-22 (Jun. 2004). |
Tingley, S., “Plastic factory: Disposable biopharmaceutical manufacturing takes a giant leap forward”, Alternative Manufacturing, pp. S4-S9 (Feb. 2003). |
Tingley, S., “Plastic factory, Part II: The final pieces of the disposable puzzle”, Alternative Manufacturing, pp. 12-14 (Jun. 2003). |
Aranha, H., et al., “Disposable processing gains you a competitive edge: enhancing manufacturing capacity with disposable filters, connectors, and membrane chromatography”, Biopharm International, p. 50 (Oct. 2003). |
Millipore's Initial Infringement Contentions, Document No. 19, filed Oct. 8, 2009 in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765 DPW. |
Gore's Preliminary Non-Infringement contentions to Plaintiff Millipore Corporation, Document No. 20, filed Oct. 29, 2009 in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765 DPW. |
Lynx ST Connectors http://www.millipore.com/catalogue/module/c9131 dated Oct. 30, 2009. |
Pure-Flo Hygienic diaphragm valves, actuators, and switch packages, http://www.ittpureflo.com/valvetype.html dated Oct. 30, 2009. |
About Fluid Line Technology, http://www/fluidlinetech.com/aboutus.html dated Oct. 30, 2009. |
Valves, Gemu Valves and Distrivutor, Diaphragm Valves, Sanitary Valves, Aseptic Valves, Valves and Fittings, http://www.casellasales.com, dated Oct. 30, 2009. |
Allegro Single-use Systems—Recommended Capsule Filters and Membranes, http://www.pall.com/variants/print/biopharm—48022.asp dated Oct. 30, 2009. |
Colder Products—Quick Couplings & Fittings for Industrial Applications—Industrial Products, http://www.colder.com/Markets/Industrial/IndustrialProducts/tabid/821/Default.aspx?ProductId=22, dated Oct. 30, 2009. |
International Preliminary Examination Report for PCT/US03/12924 dated Jul. 8, 2004. |
NovAseptic—How to Use NA sampling system, http://www.novaseptic.se/main.as?typ=6 dated Feb. 13, 2002. |
Steam-In-Place Bag Connector, http://www.fluidcomponents.net/tc—tech.html, download on Feb. 18, 2010. |
Pharmenta AptiPort Sampling Valve, http://www.web.archive.org/web/20031029084907/http://www.pharmenta.com/aptiport.htm, dated Feb. 18, 2010. |
MicrobiologicalAnalysis (Sampling Equipment)—Sampling Ports, p. 130, date unknown. |
Novaseptum Liquid Sampling System—Totally Enclosed System No Cross Contamination Presterilized Disposable Unit Pyrogen Free, p. 1-4, date unknown. |
Landon, R., et al., “Process PharmaTEC International”, issue Jun. 2004 (RP1007EN00), pp. 16-17 (Nov. 2004). |
Daily Business Briefing—“Entegris Introduces the First All Teflon PFA” dated Apr. 16, 2002. |
Block, S.S. “Disinfection, Sterilization, and Preservation (Fourth Edition)”, Lea & Febiger, ISBN:0-8121-1364-0 (1991). |
Memorandum and Order, Document No. 70, dated Sep. 20, 2010, in the United States District Court for the District of Massachusetts, Civil Action No: 09-10765-DPW. |
Notice of Allowance dated Feb. 16, 2011 in co-pending U.S. Appl. No. 11/878,126. |
Japanese Communication dated Dec. 1, 2010 in corresponding foreign application. |
European communication dated Oct. 29, 2010 in a co-pending foreign application (EP10179151.5). |
European communication dated Oct. 29, 2010 in a co-pending foreign application (EP10179183.8). |
Indian communication dated Oct. 18, 2010 in a co-pending foreign application (IN1444/DELNP/2004). |
Notice of Allowance dated Dec. 7, 2010 in co-pending U.S. Appl. No 10/500,077. |
Japanese communication dated Jul. 27, 2010 in co-pending foreign application (JP2008-070904). |
Office Action dated Oct. 7, 2010 in co-pending U.S. Appl. No. 11/584,301. |
Office Action mailed Aug. 25, 2011 in co-pending U.S. Appl. No. 11/350,384. |
Gore's Third Supplemental Response to Millipore's First Set of Interrogatories [Interrogatory No. 11], Civil Action No. 11-346-SLR, United States District Court for the District of Delaware, dated Dec. 21, 2011, part 1—pp. 1-43; part 2—pp. 44-85 with Exhibits A-E (334 pages), Exhibits F-G (115 pages) and Exhibits H-I (114 pages). (Note due to the size limitations this is uploaded into 5 parts). |
Process Worldwide-PharmaTEC Jun. 2004, dated Jun. 2004, “Bridging the gap; A case study in the validation of hybrid connectors”, 3-pages. |
Gore's First Supplemental Response to Millipore's First Set of Interrogatories [Interrogatory Nos. 11, 15 and 16], Civil Action No. 11-346-SLR, United States District Court for the District of Delaware, dated Nov. 1, 2011, 86-pages. |
File history of U.S. Appl. No. 78/140,217, filed Jul. 1, 2002, 53-pages. |
Office Action dated Apr. 6, 2010 in corresponding U.S. Appl. No. 11/878,126. |
Millipore Publication, NovAseptic, NovaSeptum Liquid Sampling System, dated Nov. 2001, P75185, Rev. B.(Bates stamp—WLG-DEL00040809-WLG-DEL00040813), 6 pages. |
ITT Fluid Technology Corp, “Pure-Flo: Sample and Bleed Valves for the pharmaceutical and bioprocessing industries”, BSV-92, dated Sep. 1992 (Bates stamp WLG=DEL00039389—WLG-DEL00039394), 6-pages. |
Sani-Tech Globe & Angle Valve product information, dated Aug., 1989 (Bates stamp WLG-DEL00040302—WLG-DEL00040304), 3 pages. |
Waukesha Cherry-Burrell Manual Valves, dated May 2000 (Bates stamp CSMI000044—CSMI000066), 23-pages. |
Millipore Publication, ESP Sanitary Sample Valves, Operation and Maintenance Instructions, dated Nov. 1995, P17262, Rev. B, (WLG-DEL00039664—WLG-DEL00039678), 16-pages. |
Correspondence from T. Pender to C. Burrell dated Dec. 2, 2011 regarding C.A. No. 11-Cv-346-SLR (Bates Stamp GF000001-GF000008), 8 pages. |
Documents Produced by Third Party Casella Sales and Marketing Inc., related to W. L. Gore v. Millipore Subpoena, Nov. 2011, Bates No. CSMI000001 through CSMI000066, 65 pages. |
Final Rejection mailed Mar. 5, 2012 in co-pending U.S. Appl. No. 11/350,384. |
Final Rejection mailed Oct. 10, 2012 in corresponding U.S. Appl. No. 12/872,436. |
Office Action mailed Oct. 5, 2012 in co-pending U.S. Appl. No. 12/291,814. |
Opticap Valve: Millipore Application Note, Jul. 2000, “Gamma Compatible Sterilizing Grade Filter Capsules for Use with Disposable Manufacturing Containers”; 6-pages. |
Opticap Vent; Millipore Data Sheet, Apr. 2005, “Gamma Compatible Sterilizing-grade Durapore 0.1 um and 0.22 um Filters”, 8-pages. |
Opticap3; Millipore Corporation, Nov. 2001, Opticap TM Capsules with Mikkistak+™, Media User Guide, 4- pages. |
Japanese communication dated Jul. 27, 2010 in co-pending foreign application (JP2008-070904), 3 pages. |
Allegheny Bradford Corporation's Objections and Responses to Subpoena, Civil Action No. 1:11-cv-00346-SLR, dated Dec. 15, 2011 in the USDC for the District of Delaware, and Bates # ABC00001 through Bates # ABC00012. |
Fluid Line Technology Corporation Documents produced in Gore v. Millipore, Nov. 28, 2011, Bates # FLT000001 through Bates # FLT000103, 48 pages. |
Gore's Fourth Supplemental Response to Millipore's First Set of Interrogatories [Interrogatories Nos. 11 and 12], Civil Action No. 11-346-SLR in the USDC for the District of Delaware, dated May 9, 2012, 172 pages. |
Pure-Flo Solutions, Pure-Flo Radial Seated Tank Bottom Diaphragm Valve, Datasheet [online], ITT Industries, 2001. (2 pages). |
Casella Sales & Marketing Inc., CSMI Sample Valves. Datasheet [online], 2007, Retrieved from the Internet: www.casellasales.com (2 pages). |
“New quality of data for bioprocessing bags. (Application Area).” Pharmaceutical Processing. Jan. 2002, Charter Medical, Ltd., Bioprocess Products, Retrieved from the Internet: <URL: http://www.accessmylibrary.com/coms2/summary—0286-25022745—ITM>, pp. 1-2. |
“Rapid Aseptic Fluid Transfer System Introduction”, Stedim Biosystems. [online]. Retrieved from the Internet: <URL: http:www.stedim.com/p2A—IDS—introduction.php> (2 pages), dated Nov. 21, 2007. |
File history of U.S. Appl. No. 60/500,024, application filed Sep. 4, 2003, 23 pages. |
Preliminary Noninfringement and Invalidity Disclosures of Allpure Technologies, Inc., Document 22, filed Jul. 20, 2011 in the United States District Court for the District of Massachusetts, Civil Action No. 11-cv-10221-DPW. (15 pages). |
File history of U.S. Appl. No. 60/375,747 (application filed Apr. 26, 2002), Document 53-2, Case 1:09cv-10765 DPW, filed May 25, 2010, 50 pages. |
Office Action mailed Jun. 26, 2012 in corresponding U.S. Appl. No. 12/872,436. |
Office Action mailed Dec. 8, 2011 in co-pending U.S. Appl. No. 12/291,814. |
Final Rejection mailed Jun. 20, 2012 in co-pending U.S. Appl. No. 12/291,814. |
English translation of Chinese Communication issued Aug. 29, 2012 in co-pending Chinese patent application No. CN 201010531386. |
Japanese Communication, with English translation, dispatched Aug. 21, 2012 in co-pending Japanese patent application No. JP 2010-245357. |
Office Action mailed Aug. 29, 2012 in co-pending U.S. Appl. No. 12/902,430. |
Office Action mailed Oct. 3, 2012 in co-pending U.S. Appl. No. 13/092,566. |
Office Action mailed Dec. 21, 2012 in co-pending U.S. Appl. No. 12/638,283. |
ITT Dualrange Control Valve. Data Sheet [online], Pure-Flo. Retrieved from the Internet: www.ittpureflo.com (2 pages), document created Jan. 12, 2007 according to document properties. |
Sanitary Inline Bleed and Sample Valves. Datasheet [online], Fluid Line Technology, Retrieved from the Internet: www.fluidlinetech.com (1 page), document created on Mar. 2, 2009 according to document properties. |
“Sip-Able Sample Valve,” Datasheet [online]. Retrieved from the Internet: www.fluidlinetech.com (1 page), product offered online as early as Jun. 26, 2007, according to URL search performed on http://web.archive.org. |
Entegris Impact Asymmetric Disposable Filters, Product Information brochure, 4414-5723ENT-0511, 2006, 6 pages. |
Entegris Impact Mini Disposable Filters, Product Information brochure, 4414-2646ENT-1006, 2006, 4 pages. |
Millipore Corporation, Milli-Q Direct Water Purification System brochure, Lit. No. PB1032EN00, Jan. 2012, 8 pages. |
Millipore Corporation, Milli-Q Advantage A10 Water Purification Systems brochure, Lit. No. PB0001EN00, 2013, 12 pages. |
Japanese Communication, with English translation, mailed Feb. 5, 2013 in co-pending Japanese Patent Application No. JP 2011-179614. |
Japanese Communication, with English translation, mailed Mar. 26, 2013 in co-pending Japanese Patent Application No. 2008-288424. |
Notice of Allowance mailed Mar. 22, 2013 in co-pending U.S. Appl. No. 13/092,566. |
Notice of Allowance mailed Apr. 8, 2013 in co-pending U.S Appl. No. 12/902,430. |
Notice of Allowance mailed Apr. 22, 2013 in co-pending U.S. Appl. No. 11/584,301. |
Office Action mailed May 3, 2013 in corresponding U.S. Appl. No. 12/872,436. |
Notice of Allowance mailed Jun. 3, 2013 in co-pending U.S. Appl. No. 12/638,283. |
Memorandum and Order Denying Millipore's Motion to Alter Judgment and for Reconsideration, U S District Court for the District of Massachusetts, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Civil Action No. 09-10765-DPW, Document 83, Dated Mar. 20, 2012, 16 pages. |
Gore's Prior Art Statement with Exhibits A through I (entire document), U S District Court for the District of Delaware, W. L Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated Dec. 21, 2011, 55 pages. |
Millipore's List of Claim Terms to Be Construed and Proposed Constructions, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated May 30, 2012, 8 pages. |
Gore's List of Claim Terms and Proposed Constructions, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated May 30, 2012, 4 pages. |
Millipore's Responsive Constructions of Claim Terms, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated Jun. 20, 2012, 5 pages. |
Gore's List of Responsive Claim Constructions, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated Jun. 27, 2012, 8 pages. |
Gore's Motion for Leave to Amend Its Complaint for Declaratory Judgment, US District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR-MPT, Document 71, Dated Aug. 8, 2012, 3 pages. |
Exhibits 1 and 2 to Gore's Motion for Leave to Amend Its Complaint for Declaratory Judgment, US District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SSLR-MPT, Document 75, Redacted-Public Version, Dated Aug. 15, 2012, 241 pages. |
Plaintiff Gore's Brief in Support of Motion for Leave to Amend Its Complaint for Declaratory Judgment, US District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR-MPT, Document 76, Dated Aug. 15, 2012, Redacted—Public Version, 23 pages. |
Aesseal Environmental Technology P04U and P05U Single Bellows Component Seal Range, Jan. 2006, (Exhibit 4 to the Affidavit of Alexander H. Slocum, Ph.D., US District Court for the District of Massachusetts, EMD Millipore Corporation v. AllPure Technologies, Inc., Civil Action No. 1:11-cv-10221-DPW,Document 66-4, dated May 2, 2012), 5 pages. |
Purdue University-School of Mechanical Engineering-International Compressor Engineering Conference, article by J. W. Abar, “End Face Seals for Air-Conditioning Compressors”, 1972 (Exhibit 5 to the Affidiavit of Alexander H. Solcum, PhD, US District Court for the District of Massachusetts, EMD Millipore Corporationv. AllPure Technologies, Inc., Civil Action No. 1:11-cv-10221-DPW, Document 66-5, dated May 2, 2012), 15 pages. |
Memorandum and Order regarding Claim Construction, U S District Court for the District of Massachusetts, EMD Millipore Corporation v. Allpure Technologies, Inc., Civil Action No. 11-10221-DPW, Document 81, Dated Oct. 11, 2012, 34 pages. |
Photographs (7 photos) of the Millipore commercially needleless sampling device; available at least as of Feb. 14, 2012, 7 pages. |
Photographs (3 photos) of the Millipore Opticap XLT base, commercially available in 2002, no earlier than Jan. 1, 2002, 3 pages. |
Photographs (3 photos) of the Millipore Opticap XL 300, commercially available in 2002, no earlier than Jan. 1, 2002, 3 pages. |
Brief for Plaintiff-Appellant, US Court of Appeals, Appeal Nos. 2011-1029, 2012-1371, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Document 40, dated Jul. 25, 2012 and filed Jul. 27, 2012 , 147 pages, submitted in 2 parts. |
Brief of Defendant-Appellee W. L. Gore & Associates, Inc., US Court of Appeals, Appeal Nos. 2011-1029, 2012-1371, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Document 52, filed Oct. 9, 2012, 75 pages. |
Reply Brief for Plaintiff-Appellant, US Court of Appeals, Appeal Nos. 2011-1029, 2012-1371, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Document 57, Dated Nov. 9, 2012, 42 pages. |
AllPure Takeone Aseptic Sampling System Overview, 2 pgs. (Deposition Exhibit dated Nov. 12, 2012). |
Amesil HF Silicone Steam Valve Aseptic Connector-Flow Control, 2 pages, Bates No. WLG00005888- WLG00005889 (WLG-DEL 00005946—WLG-DEL 00005947). |
ASI Life Sciences, three 60, Single Use Aseptic Sampling System, www.asisus.com, Jan. 10, 2013, 8 pages. |
Fluid Line Technology Corporation, Product Catalog, 32 pages, Bates No. FLT000003-FLT000034, on information and belief available as of about Nov. 2009. |
Gore Single-Use Valve, for Steam-In-Place Applications, 4 pgs. 2009. |
Gore STA-PURE Fluid Sampling System, for Single-Use Aseptic Applications, Secure Sampling for Bioprocessing Fluids, Dec. 2008, 4 pages. |
Lynx ST Connectors, Millipore Data Sheet, Lit. No. 051750EN00, Rev. E, May 2008, 4 pages. |
International Application No. PCT/US03/13073, filed Apr. 25, 2003, and Request for Express Abandonment of U.S. Appl. No. 10/423,131, filed Sep. 11, 2003, 56 pages. |
MicropreSure Sanitary Sampling Valves, Millipore Data Sheet, Lit. No. DS1006EN00, May 2005, 4 pages. |
Millipore Express SHF Hydrophilic Cartridge Filters, Data Sheet, May 16, 2013, www.millipore.com/catalogue, 2 pages. |
Millipore, Hydrophilic Durapore Cartridges and Capsules User Guide, Lit. No. RF 1510EN00, Jan. 2002, 56 pages. |
Millipore, Milliflex-P Sanitary Sampling Valves, Operation and Maintenance Instructions, Jul. 2006, 17 pages. |
NovaSeptum sampling systems, EMD Millipore Data Sheet, Jun. 2012, Lit. # DS0050EN00, Rev. E., 10 pgs. |
NovaSeptum sampling systems, Merck Millipore Data Sheet, Apr. 2013, Lit. # DS0050EN00, Rev. H., 10 pgs. |
Millipore, NovaSeptum AV Sterile Sampling System, for liquid sampling, User Guide, Lit. No. 00000069TP, Rev. A., Jun. 2006, 2 pages. |
Millipore Opticap XL and XLT Disposable Capsules, Millipore Corporation, Lit. No. PB1700EN00, Rev. B, Jun. 2004, 4 pages. |
Pharmaceutical Engineering, vol. 23, No. 3, May/Jun. 2002, pp. 1-8, “Single-Use Disposable Filling for Sterile Pharmaceuticals”, Belongia, et al. |
Redacted email, dated Jun. 4, 2012, regarding Disposable Steam Connector, 2 pages. |
Millipore Application Note, Lit. No. AN7428EN00, Rev. A, “Risk Free Connection of Sterilized Single-Use Fluid Path Assemblies to Stainless Steel SIP Systems with Lynx ST (Steam-To) Connectors”, May 2008, 8 pages. |
Millipore, Series 2000, Single Sanitary Cartridge Housing, Instructions for Installation and Maintenance, Lit. No. P35265, Rev. A, Feb., 2000, 12 pages. |
ThermoScientific, Data Sheet 053, Rev. 2, “Aseptic Connection Devices”, 2008, 2 pages. |
Final Rejection mailed Jun. 19, 2013 in co-pending U.S. Appl. No. 12/291,814. |
Notice of Allowance mailed Jul. 3, 2013 in co-pending U.S. Appl. No. 13/092,566. |
Notice of Allowance mailed Jul. 5, 2013 in co-pending U.S. Appl. No. 11/584,301. |
Number | Date | Country | |
---|---|---|---|
20090019952 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11878126 | Jul 2007 | US |
Child | 12284666 | US | |
Parent | 10746030 | Dec 2003 | US |
Child | 11415264 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11415264 | May 2006 | US |
Child | 11878126 | US |