1. Field of the Invention
The present invention pertains to bags used most commonly for the storage and disposal of debris and other ubiquitous waste materials and more particularly to disposal tie bags having tie flaps
2. Description of Related Art
The manufacture and use of rectangular shaped thermoplastic storage and disposal bags is well known in the art. One of the bothersome problems with the use of plain rectangular shaped storage bags is the inconvenience involved in trying to tie the bag closed. Several disposal bag brands use twistable metal wire ties, which are packaged separately along with the bags. These metal wire ties are unwieldy to use and, as a separate item, are often lost or misplaced from the bags.
A convenient user feature developed in the prior art is integral tie flaps on the bag. These tie flaps typically comprise a curved, cut-out portion at the opening of the open top of the bag. As built-in features, the tie flaps are grasped and knotted to seal the bag opening. Hence, bags that included integral tie flaps are referred to in the trade as “tie bags”. Representatives of such “tie bags” are those illustrated in U.S. Pat. Nos. 4,890,736, 5,041,317, 5,246,110, 5,683,340, 5,611,627, 5,709,641, and 6,565,794, which are characterized as having two or more tie flaps. The tie flaps are used as a closure means by tying the tie flaps together to close off the opening of the tie bag open top after the tie bag is filled with it the contents.
It has been determined, however, that the tie flaps of prior art tie bags, are often difficult to grasp and manipulate especially if the tie flaps are contaminated with slippery trash contamination such as oil or grease or moist organic contaminants. A tie bag in accordance with the principles of the present invention overcomes these difficulties. The tie flaps are characterized as being more easily and firmly graspable over tie flaps of current tie bags. These improved tie flaps provide ease of handling, improved strength and improved ease of tying over prior art tie bags.
The ease of tying and the strength of joined tie flaps of a tie bag are improved by texturizing at least one surface of each of the tie flaps of the tie bag. Embossing gripping features on the tie flaps is one example of texturizing the tie flaps. In this embodiment, the embossed tie flaps further have a film thickness greater than the film thickness in the body of the bag used for holding its contents. Texturizing the tie flaps may be accomplished through various means well known to those of ordinary skill in the art such as, for example, embossing by mating plates rolls or drums, thermoforming, high pressure hydraulic forming, or casting. Texturizing may be done during manufacture of the tie bag or may be done after the tie bag is otherwise fully formed.
Typically, the tie bags are formed from a web of flexible, plastic material that is sized and cut into individual bags having geometrically shaped tie flaps for each tie bag unit. The tie flaps of the tie bags may be cut in curvilinear shapes and, when viewed in a flattened configuration, may be overlapping or in a skewed non-overlapping arrangement as shown in U.S. Pat. Nos. 4,890,736, 5,041,317, 5,246,110, 5,683,340, 5, 611,627, 5,709,641, and, 6,565,794.
Tie bags having tie flaps with gripping features may be made in a single bag process. Separate, opposing, generally rectangular sidewalls of the tie bag, made from plastic film and each having four peripheral edges, may be coupled by first overlapping and then aligning the sidewalls and then coupling together, typically by heat sealing, three of four corresponding peripheral edges of the sidewalls. Peripheral edges are said to be corresponding when one peripheral edge is meant to align and overlap with another peripheral edge during manufacturing of the tie bags of the present invention. The corresponding fourth peripheral edges of the opposing sidewalls remain unsealed to define an opening in the open top of the tie bag. The fourth peripheral edges forming the opening of the bag are cut or slit in the geometric shape of the tie flaps before or after the tie bag is formed. In this embodiment, texturizing the gripping features on the tie flaps may be accomplished by embossing before or after the forming of the bag and before or after the cutting of the tie flaps. In one embodiment, the tie flap geometric shape profile is curvilinear, e.g., sinusoidal or serpentine. In other embodiments, the tie flap profile is rectilinear.
In an alternative single bag process, a film of plastic material is folded over to overlap and align thus integrally coupling one set of corresponding peripheral edges of the tie bag sidewalls at the fold. The fold also forms the closed bottom of the tie bag. The overlapped and aligned film of plastic material is then coupled together along two of the remaining three overlapping peripheral edges of the tie bag sidewall by heat sealing. The remaining uncoupled peripheral edges of the tie bag sidewalls define the tie bag opening in the open top of the tie bag. The tie flaps are cut and the gripping features on the tie flaps are formed before or after tie bag formation as describe.
Alternatively, tie bags having tie flaps with embossed gripping features may be conveniently made by a continuous multi-bag process in which the tie bags are manufactured from a continuous folded-over single web or overlapping double web of a polyethylene or other thermoplastic film. By heat sealing or otherwise coupling portions of the folded-over single web or overlapping double web of plastic film the coupled corresponding peripheral edges of the multiple tie bags are coupled. The tie bags are then singulated by cutting individual bags from the continuous web. The tie flaps may be cut and the gripping features on the tie flaps may be embossed before or after the tie bags are formed.
In a continuous multi-bag process in accordance with the principles of the present invention, the multiple tie bags having tie flaps with gripping features are “blow formed” by the blown film extrusion method. In the blown film extrusion method, a continuous moving film tube of molten plastic melt is extruded from an annular die, and then stretched and expanded to a larger diameter and a reduced radial thickness by the drawing action of overhead nip rollers and internal pressure. Blowers are used to provide internal air pressure within the film tube that is utilized to control the size and thickness of the film tube. Further, air is also trained on the outside of the film tube as a cooling medium that absorbs heat from the molten plastic melt and speeds up the change in state from a molten plastic melt back to a solid plastic film. After solidification through cooling of the plastic melt forming the film tube, the film tube is collapsed into a flat double web and rolled into rolls for further processing.
The tie flaps of the tie bags of the present invention are characterized as being suitable for tying and have gripping features embossed to form a pattern imposed on one or both surfaces of the tie flaps. The gripping features form a roughened surface on the tie flaps relative to the smooth surface of the remaining portion of the tie bag sidewalls. These embossed gripping features forming the pattern on the surface of the tie flaps provide ease of bag handling, improved tie flap strength and improved ease of tie flap grasping and tying over current tie bags.
Thus, provided is a tie bag in accordance with the principle of the present invention that includes a first sidewall having four peripheral edges and a second sidewall opposing the first sidewall and having four corresponding peripheral edges. Three of the four peripheral edges of the first sidewall are coupled along a corresponding one of three of the four peripheral edges of the second sidewall with the corresponding fourth peripheral edges of the first and second sidewalls remaining unsealed to define an opening in the open top of the tie bag. Corresponding coupled peripheral edges may be coupled by heat sealing or by an integral fold that overlaps the peripheral edges of the sidewalls. The tie bag further includes at least two tie flaps coupled to the tie bag and extending from the fourth peripheral edges forming the opening of the tie bag. At least one tie flap from the at least two tie flaps extends from each of the first and second sidewalls. The tie flaps are adapted for tying one to another and each of the tie flaps includes gripping features on at least one surface.
Reference will now be made to the drawings wherein like numerals refer to like parts throughout. When considered in conjunction with the subsequent detailed description, a complete understanding of the present invention may be obtained by reference to the accompanying drawings, in which:
Referring to
In the bag forming process, the plastic melt 202 is extruded from the output gap 111A (
As shown, an annular shaped air ring cooler 106, circumscribing stalk 204, blows gaseous cooling air, as indicated by arrows 107 in
Between the position of air ring cooler 106 and the static position of the frost line region 208 of the moving film tube 200 is a rotable tangent drum 118 (
As noted, the drum outside surface 120 of rotable tangent drum 118 includes one or more circumferentially spaced apart raised ridge or rib-like projections 124 extending outwardly from the drum outside surface 120. Projections 124 are typically small relative to the diameter of tangent drum 118. In another embodiment, rotable tangent drum 118 is configured as a squirrel-cage type rotable drum formed from a wire mesh material, the wire mesh material features themselves forming the projections 124. In operation, after each portion of the moving fill tube 200 exits the air ring cooler 106 and while still in a softened, not completely solidified form, a part or strip segment 225 of each portion of moving film tube 200 contacts projections 124 as it passes over the projections 124 of tangent drum 118. As the strip segment 225 of each portion of moving film tube 200 contacts projections 124, the still soft strip segment 225 of plastic melt 202 fully sets and solidifies by conduction of heat from the plastic melt 202 to the projections 124 of the tangent drum 118. The tangent drum 118 may be chilled by various well know techniques to control the full set and solidification of the soft plastic melt 202 of strip segment 225 that contacts the projections 124 of tangent drum 118.
The part of plastic melt 202 of the strip segment 225 that contacts the projections 124 sets and solidifies before the frost line region 208 where the remaining portions of film tube 200 set and solidify. Further, when those parts of film tube 200 that contact projections 224 solidify, they cease film-thinning expansion while the remaining portions of the still softened plastic melt 202, which have not yet arrived at the frost line region 208 of film tube 200, continue radially thinning expansion. Thus, these projection contacting parts of strip segment 225 form one or more thickened raised gripping features 226 (See also
After formation of the gripping features 226, the continuous web of film tube 200 is collapsed at a collapsing frame 110 (
In another embodiment, film tube 200 is slit axially prior to winding into tube rolls 214 After formation of the gripping features 226, the continuous web of slit film tube 200 is wound into a film tube roll 214 at a winder 116. The slit single film layer of the finished web of film tube 200 is wound as a single-ply web into tube rolls 214 for later processing.
In yet another embodiment, multiple tangent drums 118 (
The tie flaps 430 may comprise curved or other geometrically shaped portions of the film making up the bag sidewalls 433. The geometric shape profile of the tie flaps 430 may be curvilinear, e.g., such as may be formed in a sinusoidal cut along the fourth peripheral edges 438 forming the opening 435 of the open top of the tie bag 400. Other shape profiles are possible such as, wave-shaped, serpentine, arc-like, zigzag, saw-toothed, and square-wave. The tie flaps 430 may be overlapping as shown or may be in a skewed non-overlapping arrangement of the individual bag units as shown in the above referenced U.S. Pat. No. 6,565,794.
Advantageously, in another single bag embodiment, bag 400 is formed from a single film layer of finished web of blow formed film tube 200 that has been slit as described above, singulated by two cuts transverse to the extrusion direction, and folded over to couple a pair of first corresponding peripheral edges 432 that form and define a bag closed bottom. The fold also places the single web of slit film tube 200 into the flat overlapping configuration shown in
The tie flaps 430 are adapted for tying one to another. The tie flaps 430 are shown as integral with and form a portion of the sidewalls 433 of the tie bag 400 with a cutout portion 439 between adjacent tie flaps 430. In the blown tube method described above, the tie flaps 430 are defined by the slit 328 (
As noted above in connection with the embodiment shown in
Representative tie bags 400, which may be improved by use of the present invention, include, but are not limited to those disclosed in U.S. Pat. Nos. 4,890,736, 5,041,317, 5,246,110, 5,683,340, 5,611,627, 5,709,641, and 6,565,794. As described in detail in U.S. Pat. No. 6,565,794, in one embodiment, the thickness of the tie flaps 430 is greater than the thickness of the sidewalls 433 of the tie bag 400.
Further, texturizing by embossing of a plurality of gripping features 226 onto tie flap 430 may be combined with the increased thickness of the tie flap 430, when present, and as described below and in detail in the above referenced U.S. Pat. No. 6,565,794, permits the user to more easily open the tie bag 400 by grasping the tie flaps 430 more readily and firmly. The tie flaps 430 may be integral extensions of the two bag sidewalls 433 of tie bag 400 and their separation by a user opens the tie bag 400. Pulling apart the embossed tie flaps 430 with a secure grip more easily permits separation of even thin thermoplastic film materials that may exhibit static cling.
Depending on the number of tie flaps 430 selected for tie bag 400, the tie flap length may be varied from about 4 inches to about 6 inches. When a tie bag 400 has four tie flaps 430, the tie flap length is typically about 4 to 5 inches for 30-gallon tie bag sizes to provide sufficient length to easily grasp the tie flap 430 for tying. For such a tie flap 430, the width of the sinusoidal shaped tie flap is typically be about 15 inches if four tie flaps are used at the opening 435 of the bag. However, these lengths and widths for the tie flaps 430 are intended as non-limiting examples only. As will be well appreciated by a person of ordinary skill in the art, tie flap length and width may be adjusted as needed for a particular application, the number of tie flaps 430 and selected use of the tie bag 400.
Methods for texturizing the tie flaps 430 include, but are not limited to, embossing by mating plates or rolls, thermoforming, high pressure hydraulic forming, casting, or the tangent wheel process described in detail above. While the entire portion of the tie flaps 430 may be subjected to a forming operation, the present invention may also be practiced by subjecting to formation only a portion thereof.
In another embodiment, the tie flap 430 may be made thicker and stronger by reinforcing the tie flap 430 by adding another film layer of plastic by coextrusion or other means so that the tie flaps 430 have a greater thickness than the remainder of the tie bag 400. The gripping features 226 may be formed more prominently in these thickened tie flaps 226 to further enhance the gripping characteristics of the gripping features 226. For example, the first film layer may be a high-density polyethylene (HDPE) and the second film layer may be an ultra-low density polyethylene (LDPE) having greater tears resistance. In this manner, the tie flap 430 can be formed from thermoplastic material having better resistance to tearing and improved embossing characteristics.
In another embodiment, with increased localized air cooling by profiling the air ring cooler 106 (
The currently plastics materials for plastic tie bags of the present invention are the various forms of polyethylene, including high density and the various forms of low density polyethylene, polypropylene and blend of these and other plastic material capable of being formed into films having a thickness of between about 0.5 mil and 3 mil. Any thermoplastic material suitable for use in making films may be used to make the present invention.
While the invention is described herein in connection with certain exemplar embodiments, there is no intent to limit the present invention to those embodiments. On the contrary, it is recognized that various changes and modifications to the described embodiments will be apparent to those skilled in the art upon reading the foregoing description, and that such changes and modifications may be made without departing from the spirit and scope of the present invention. Skilled artisans may employ such variations as appropriate, and the invention may be practiced otherwise than as specifically described herein. Accordingly, the intent is to cover all alternatives, modifications, and equivalents included within the spirit and scope of the invention. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This application claims priority to U.S. Provisional Application No. 60/939,136, filed on May 21, 2007, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60939136 | May 2007 | US |