The present disclosure relates to superheater or reheater tubes used in utility and industrial steam generators; more particularly, the present disclosure relates to a means for joining dissimilar metal portions of such tubes.
Certain types of utility and industrial steam generators (boilers) include one or more banks of tubing, known as superheaters or reheaters, in which steam temperature is raised above the saturated temperature level. In designing a superheater or reheater, selection of tube materials is an important consideration. The material used in the tubes must be selected to withstand the stresses associated with the steam temperatures and pressures to which the tubes will be subjected. Codes such as, for example, the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code dictate the allowable stresses for various superheater and reheater tube materials. At the same time, the selection of tube material must take into account the manufacturing cost of the tube. In general, the greater the allowable stress of a material, the higher its cost. Thus, proper material selection for superheater and reheater tubes requires consideration of both allowable stress and cost.
One way of reducing tube cost while meeting allowable stress requirements is to manufacture each superheater and reheater tube from different materials, with each material being selected based on the required allowable stress for that portion of the tube. That is, one portion of the tube is manufactured from a lower cost, lower allowable stress material, while another portion of the same tube is manufactured from a higher cost, higher allowable stress material. For example, a portion of a tube located in a relatively high temperature region of the boiler may be manufactured in accordance with ASTM International (ASTM) standard A213 Grades TP304, TP309, TP310, TP347 which are relatively high cost, austenitic stainless steel tubes, while a portion of the same tube located in a relatively low temperature region of the boiler may be manufactured in accordance with ASTM A213 Grade T22 or Grade T11, which are relatively low cost, ferritic steel tubes. (There may be several variants of each of these grades that may also be used.) In this manner, tube cost is reduced below that which would be required to manufacture the tube entirely from the higher cost material.
The manufacture of such composite-material superheater or reheater tubes typically requires that the two, dissimilar metal tube segments be joined together by a single weld, known as a dissimilar metal weld (DMW). However, performing a DMW is a difficult process that must be done by specially trained welders. As a result, the DMWs are time consuming and costly. Furthermore, DMWs are known failure points in superheater and reheater tubes, which result in decreased life of the tubes. While not wanting to be bound by theory, it is believed that the failure of DMWs is caused at least in part by differences in thermal expansion of the dissimilar metals. This mismatch is believed to result in high shear strains at the interface between the two different metals, and, with cycling, these strains can cause intergranular cracking within the weaker material.
Failure of DMWs between the dissimilar metals used in composite-material superheater and reheater tubes constitutes a cause of forced outages in boilers. Utilities and research institutes spend millions of dollars each year replacing and analyzing DMWs to identify root causes of failures and to develop remedies. Typical remedies include modified weld preparations and more carefully controlled welding processes, both of which increase the time and cost to perform the DMW. Thus, there remains a need for a means of joining dissimilar metal portions of superheater or reheater tubes that eliminates the need for DMWs.
The above-described and other drawbacks and deficiencies of the prior art are overcome or alleviated by a method of forming a tube joint for joining dissimilar metal sections of a superheater or reheater tube, the method comprising: providing a first metal having substantially the same chemical composition as a metal used to form one of the sections of the superheater or reheater tube; providing a second metal having substantially the same chemical composition as a metal used to form the other of the sections of the superheater or reheater tube, the chemical composition of the second metal being different than that of the first metal; and applying a hot isostatic press process to the first and second metals to provide a tube joint having a first end formed from the first metal and a second end formed from the second metal.
In another aspect, there is provided a method of joining dissimilar metal sections of a superheater or reheater tube, the method comprising: providing a first metal having substantially the same chemical composition as a metal used to form a first section of the superheater or reheater tube; providing a second metal having substantially the same chemical composition as a metal used to form a second section of the superheater or reheater tube, the chemical composition of the second metal being different than that of the first metal; applying a hot isostatic press process to the first and second metals to provide a tube joint having a first end formed from the first metal and a second end formed from the second metal; welding the first end of the tube joint to the first section of the superheater or reheater tube; and welding the second end of the tube joint to the second section of the superheater or reheater tube to join the first and second sections of the superheater or reheater tube.
In yet another aspect, there is provided a method of forming a tube joint for joining dissimilar metal sections of a superheater or reheater tube, the method comprising: providing a first end portion formed from a first metal having substantially the same chemical composition as a metal used to form one of the sections of the superheater or reheater tube; providing a second end portion formed from a second metal having substantially the same chemical composition as a metal used to form the other of the sections of the superheater or reheater tube, the chemical composition of the second metal being different than that of the first metal; providing powdered metals between the first and second end portions; and applying a hot isostatic press process to bond the powdered metals with the first and second end portions and provide a tube joint having a first end formed from the first metal and a second end formed from the second metal. The powdered metals are selected from one of: a mixture of the first and second metals, a third metal having a different chemical composition than the first and second metals, and a mixture of the first, second, and third metals. In one embodiment, the first metal is a ferritic steel, the second metal is an austenitic stainless steel, and the third metal is a nickel-based alloy.
Referring now to the appended drawings wherein like items are numbered alike in the various Figures:
As can be seen in
However, if the second section 14 of the tube 10 is located in a relatively low temperature region of the boiler it may be manufactured from a different metal such as, for example the second section 14 may be manufactured in accordance with ASTM A213 Grade T22 or Grade T11, which are relatively low cost, ferritic steel tubes. The table below provides the chemical compositions for each of these ASTM grades, which are also described in ASTM A213 (ASME SA213) “Specifications For Seamless Ferritic And Austenitic Alloy Steel Boiler Superheater And Heat Exchanger Tubes”, available from ASTM International of West Conshohocken, Pa.
Referring to
Referring to
To facilitate welding and to ensure a smooth fluid (steam) flow through the tube joint 16, the inside and outside diameters 24, 26 at the first end 20 may be substantially equal to the inside and outside diameters of the first tube section 12 (
The tube joint 16 is formed using a hot isostatic press (HIP) process. As used herein, a “hot isostatic press process” is a process wherein powdered metal or a metal preform is subjected to heat and pressure simultaneously to bond the metal and reduce or eliminate internal voids. The HIP process can be used directly to consolidate powdered metals or supplementary to further densify a cold pressed, sintered, or cast preform.
Referring to
During the HIP process, the container 34 is subjected to elevated temperature and a high vacuum to remove air and moisture from the powder 40. The container 34 is then sealed and inert gas is applied (as indicated at 44) at high, isostatic pressures and elevated temperatures, which results in the removal of internal voids and creates a strong metallurgical bond between the once powdered metal 40 (now solid), and the materials of the first and second cylindrical end portions 30, 32. The pressures and temperatures used in the HIP process are dependent on the type and quantity of metal used and the duration during which the pressure and temperature are applied. For example, pressures may range from about 40 to about 300 MPa (6,000-44,000 psi) and temperatures may range from about 500 to about 3,000° C. (900-5400° F.). After the HIP process, the container 34 and cylinder 42 are removed to reveal a preform of the tube joint 16, which may be machined into the desired shape.
In conventional welding, a heat-affected zone spans into both parts being welded together. Carbon permeates into both zones during the welding process. The heat form the welding process causes the carbon to create carbide compounds. These carbide compounds tend to fuse together over time creating brittle regions in the weld and adjacent heat-affected zones. These regions are then prone to cracking.
The HIP process fuses the metals into a solid unit in a vacuum environment. It does not create significant amount of carbides and therefore does not develop the brittle regions as is common in prior art welding. This results in a more consistent, higher-quality weld.
While
In
For example, the best results were found using a first and second metals 50, 52 of an austenitic stainless steel and a ferritic steel, respectively, and the section 56 formed from a powdered nickel-based alloy such as, for example, Inconel® 625, which is commercially available from Special Metals Corporation of New Hartford, N.Y. A “nickel-based” alloy is an alloy whose main constituent is nickel. In another example, the section 56 may be formed from a 50%/50% (by weight) or other ratio mixture of the first and second metals 50, 52.
In yet another example, the first and second metals 50, 52 may be an austenitic stainless steel and a ferritic steel, respectively, and the third metal 56 may be a mixture of an austenitic stainless steel, a ferritic steel, and a nickel alloy.
Since the transition section 56 must be able to adapt to the changes of both the first and second metal it must have physical properties that are between the physical properties of the first and second metals. For example, during the constant heating/cooling cycles, the first and second metals 50, 52 heat and cool at different rates and therefore expand and contract at different rates. This differential thermal expansion causes constant flexing and metal fatigue. Therefore, a third metal 56 having a thermal expansion rate that is between the thermal expansion rate of the first and second metals 50, 52 reduces the problem of metal fatigue and resists breaking of the joint.
Since it is expected that the joint will physically function in a similar manner, in the optimum embodiment, the third metal 56 should have bending, stillness and ductility properties between that of the first and second metals 50, 52.
The embodiment of
In
Alternatively, the sections 58, 60, and 62 may include mixtures of the first and second metals 50, 52 and at least one other metal. For example, the first and second metals 50 and 52 may be an austenitic stainless steel and a ferritic steel, respectively, and a third metal may be a nickel-based alloy such as, for example, Inconel® 625. As with the previous embodiment, section 58, which is bonded to the first metal 50, may include a greater proportion of the first metal 50, and section 62, which is bonded to the second metal 52, may include a greater proportion of the second metal 52. More specifically, the section 62 may include 50% by weight third metal and 50% by weight second metal 52; section 60 may include 100% by weight third metal; and section 58 may include 50% by weight first metal 50 and 50% by weight third metal.
The embodiment of
In
Finally, in
In each of the embodiments of
Testing was performed using round bar test specimens to represent the embodiment of
A first test specimen was subjected to a cold tensile test using a test range of 3000/6000/12,000 pounds force at a rate of 0.003±0.001 inch/inch/minute. The test specimen was 0.35 inches in diameter, 3.5 inches long, with a gauge length of 1.8 inches. The ultimate tensile strength of the sample was determined to be about 84,000 pounds/square inch (PSI), with a yield strength of about 42,000 PSI. Surprisingly, the failure of the sample occurred at the T22 steel, and not at the interface between the Inconel 625 and either the T22 or the TP347, which indicates a good bond between the different metals in the sample.
A second test specimen was subjected to creep testing at a stress of 8.0 ksi, and a temperature of 1188° F. The test specimen was ⅝ inches in diameter and about 12 inches long, with a gauge length of about 8 inches. Surprisingly, the rupture time for the sample was 2,216 hours, which is about 220% greater than the estimated rupture time for a T22 sample under the same conditions, which is about 1000 hours. While not wanting to be bound by theory, it is believed that the HIP process used to create the test specimen increased the life of the T22 material.
A third test specimen was subjected to creep fatigue testing at a thermal cycle of 149° F. to 1049° F. and a cycle rate of 12 minutes/cycle and 120 cycles/day. The test specimen was ⅝ inches in diameter and about 12 inches long, with a gauge length of about 8 inches. Under such conditions, a typical DMW is expected to fail after about 400 cycles. Surprisingly, the test specimen did not fail after 1000 cycles.
Thus, testing related to one embodiment of the tube joint 16 revealed that, at least for that embodiment, the tube joint 16 provides a greater resistance to creep fatigue than a DMW and indeed is believed to have a greater life expectancy than that of the remainder of the tube 10 (
The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the present invention in addition to those described herein will be apparent to those of skill in the art from the foregoing description and accompanying drawings. Thus, such modifications are intended to fall within the scope of the appended claims.
This application is a continuation-in-part application of co-pending U.S. utility application entitled, “DISSIMILAR METAL TRANSITION FOR SUPERHEATER OR REHEATER TUBES,” having Ser. No. 11/470,292, filed Sep. 6, 2006, Attorney Docket Number WO4/002-0, the disclosure of which is entirely incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11470292 | Sep 2006 | US |
Child | 12578976 | US |