Distal end supported tissue slitting apparatus

Information

  • Patent Grant
  • 11925380
  • Patent Number
    11,925,380
  • Date Filed
    Tuesday, November 17, 2020
    3 years ago
  • Date Issued
    Tuesday, March 12, 2024
    a month ago
Abstract
Methods and systems for separating an object, such as a lead, from formed tissue are provided. Specifically, a tissue slitting apparatus is configured to engage formed tissue at a slitting engagement point. While the object is subjected to a first traction force, the tissue slitting apparatus is caused to move further into the engaged tissue and slit the tissue past the point of engagement. The slitting apparatus causes the tissue to separate along an axial direction of the length of the formed tissue and releases at least some of the force containing the object. The slitting apparatus is supported by a distal end support device configured to lock onto the lead. While supported, a slitting element of the apparatus places fibers of the formed tissue under tension and performs a lifting cut operation. The methods and systems are well suited for use in cardiac pacing or defibrillator lead explant procedures.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to devices, methods and systems for separating tissue in a patient, and more specifically, to techniques for separating tissue attached to leads in a patient.


BACKGROUND

Cardiac pacing systems typically include a pacemaker and one or more leads, which are placed inside the body of a patient. The pacemaker includes a power source and circuitry configured to send timed electrical pulses to the lead. The lead carries the electrical pulse to the heart to initiate a heartbeat, and transmits information about the heart's electrical activity to the pacemaker. The lead can include a fixation mechanism that holds the lead to the cardiac tissue. In some cases, a lead is inserted through a vein or artery (collectively vasculature) and guided to the heart where it is attached. In other instances, a lead is attached to the outside of the heart. During its time in the body, tissue can attach to the lead in the form of lesions, adhesions or scar tissue, or tissue can encase a lead. In addition, the lead and/or tissue can become attached to the vasculature wall. At times, leads may be removed from patients for numerous reasons, including but not limited to, infections, lead age, and lead malfunction. Accordingly, removal or extraction of the lead may present associated complications.


Current lead extraction techniques include mechanical traction, mechanical devices, and laser devices. Mechanical traction can be accomplished by inserting a locking stylet into the hollow portion of the lead and then pulling the lead to remove it. An example of such a lead locking device is described and illustrated in U.S. Pat. No. 6,167,315 to Coe et al., which is hereby incorporated herein by reference in its entirety for all that it teaches and for all purposes. In some cases, dilating telescopic sheaths may also be used to strip away the scar tissue adhering the lead to the body. Examples of a such devices and methods used to extract leads is described and illustrated in United States Patent Publication No. 2008/0154293 to Taylor, which is hereby incorporated herein by reference in its entirety for all that it teaches and for all purposes.


Dilation techniques typically involve pushing tissue away from the lead when the sheath is pushed longitudinally along the lead. However, this pushing technique may be difficult to implement, particularly when the lead has a tortuous path or curvature because the requisite longitudinal forces to extract the tissue from the lead in under these circumstances increase. The longitudinal forces also may require heavy counter forces on the lead, which may result in lead breakage.


Some mechanical sheaths have proposed trigger mechanisms for extending a blade from a sheath. At least some of these devices, however, involve complicated activation mechanisms and may not be well suited for negotiating the tortuous paths that exist in certain vascular or physiological environments.


Laser devices typically employ laser energy to cut the scar tissue away from the lead thus allowing for removal. Examples of such laser devices and systems are described and illustrated in U.S. Pat. Nos. 5,383,199 and 5,824,026 and 5,916,210 and 6,228,076 and 6,290,668 all of which are hereby incorporated herein by reference in their entirety for all that they teach and for all purposes.


Further complicating lead removal is the fact that in some cases, the leads may be located in, and/or attached to, the body of a patient in a structurally-weak portion of the vasculature. For instance, typical leads in a human may pass through the innominate vein, past the superior vena cava (“SVC”), and into the right atrium of the heart. A majority of tissue growth can occur along the SVC and other locations along the innominate vein where the leads make contact with the vein walls. However, tissue growth can also occur at locations within a patient where the leads make contact with arterials or other areas of the vasculature. Certain veins and arteries, and certain areas of vein and arterial walls, can be thin which can make lead removal a complicated and delicate process.


SUMMARY

A traditional approach to removing tissue from implanted leads is based on the presumption that the tissue growths are adhered directly to the surfaces of the implanted leads. As such, methods and systems have been designed to dislocate the connection between the tissue attached to the implanted device and the body of a patient. Although some tissue may remain on the lead, current methods focus on removing most of the tissue surrounding a circumference of the lead. In other words, while tissue may remain attached around the lead, current systems essentially core around this tissue surrounding the circumference of a lead to free the lead along with a section of the cored tissue to create slack for removing the lead from a patient.


Surprisingly and unexpectedly, it has been discovered that tissue growth may not adhere directly to the implanted lead but actually form a substantially cylindrical “tube” around the implanted substantially cylindrical lead at a given contact area. Contrary to conventional wisdom, the tissue growth typically does not physically adhere to the lead. For example, this tissue growth, once formed completely around a lead, forms a tubular-shaped member that essentially holds the lead and resists lead removal. The tubular-shaped section of formed tissue around an implanted device may impart a combination of connection forces/modes that prevent the removal of the device from a patient. For example, the tubular-shaped section of formed tissue, or tissue growth, may constrict, capture, and/or surround implanted leads. In some cases, the tissue growth may constrict a lead, especially if a force is applied to one end of the lead during a removal operation. In other cases, the tissue growth may capture the lead and prevent removal, by, among other things, being attached to the patient and the lead simultaneously. Additionally or alternatively, the tissue growth, during attempted lead removal, may at least partially adhere to the lead in one or more sections while completely forming around the lead.


Based upon the surprising and unexpected discovery that tissue growth may not be directly adhered to the implanted lead, alternative devices and methods may be used to extract an object from such tissue. In other words, methods and devices are disclosed herein, that are capable of exploiting the growth nature of the tissue around a lead to efficiently extract the lead from tissue that acts to hold the lead with some type of force. The tissue growth may form around the lead such that the lead is contained from free movement within a patient. For instance, the tissue growth may impart a clamping, or constrictive, force around the circumference of the lead that can prevent movement of the lead within this constrictive tissue growth. Due to the taught and constrictive nature of the tissue around the lead, the lead may be able to be removed without mechanically removing or laser ablating the entire tissue region surrounding the lead in a 360 degree, or circumferential, fashion. Rather, initiating a cut and/or slit of the tissue along a longitudinal axis of the lead may allow a surgeon to easily separate the lead from the tissue via the slit. For example, once the tissue is initially slit, a surgeon may be able to extract the lead from the tissue, by pulling the lead with the use of a lead locking, or similar, device. This lead extraction may be made possible by the initial slit reducing the restrictive forces caused by tissue growth in a given area. Lead extraction may also be effected by moving the lead against the initial slit created to tear through the tissue growth.


The tissue growth may need to be slit or cut along an entire length of tissue growth such that the tissue growth is no longer capable of imparting clamping, or constrictive, forces around the lead. Once the tissue growth is slit along its length, removal of the lead from the section of tissue growth can be achieved using various lead removal techniques, including but not limited to, traction/counter-traction applied to the lead and growth, lead locking devices, snares, sheath insertion, moving the lead against the slit portion of the tissue, and the like.


Accordingly, there is a need for a device, method and/or system such as a device that includes a tissue slitting or cutting edge that facilitates slitting a length of formed tissue surrounding a lead, and optionally a method and system capable of removing the lead from the formed tissue that captures at least a portion of an implanted lead.


The method can include the steps of cutting only a portion of a tissue growth at least substantially surrounding an implanted object in a patient and thereafter removing the implanted object. In embodiments disclosed herein, the tissue growth may be subjected to a slitting action about a partial (i.e., not complete) periphery of an internal diameter of the tissue growth. In some embodiments, the tissue growth portion cut can be no more than about 50% of a perimeter of the tissue growth adjacent to and surrounding, substantially or completely, the implanted object at any point along an encased length of the implanted object.


The tissue slitting edge may include sharpened area, point, or blade, in a static fixed and/or dynamically deployable configuration. Additionally or alternatively, the tissue slitting edge may utilize grinding mechanisms to cause a slit in the formed tissue. Additionally or alternatively, the tissue slitting edge may utilize emitted energy, such as light, thermal energy, electromagnetic energy, and/or high-pressure fluid emission to cause a slit in the formed tissue. The tissue slitting edge can be an energy device, such as a power sheath, which typically applies a form of energy at the sheath tip to cut the scar tissue away from the lead thus allowing for removal. As the sheath is pushed over the lead and comes to an area of attachment, the operator can turn on the sheath's energy source to heat or vaporize scar tissue, forming the desired slit. One of these specialized sheaths uses electrocautery, similar to what is used to cut through tissue in surgery. Another sheath has one or more tiny lasers at its tip or edge. When activated, the lasers vaporize water molecules in scar tissue within 1 mm, forming the desired slit or cut. Additionally or alternatively, dilating telescopic sheaths or inflatable balloons having a longitudinally positioned tissue slitting edge can be expanded, thereby deploying the tissue slitting edge to form the desired slit.


Accordingly, slitting devices (e.g., in the form of knife-edges, blades, planers, lasers and other electromagnetic radiation emitters, high-pressure fluid, grinders, sanders, drills, RF devices, ultrasonic devices, and the like) can be configured in various combinations and methods by which formed tissue can be removed from an implanted lead subjected to any combination of connection modes via the formed tissue.


Removal of the formed tissue, or tissue growth, from a lead may be effected by creating a slit, or cut, along a length of the tissue growth. By slitting the formed tissue along an axial portion, or length, of the tissue connected to the surgically implanted device or surgical implant, it is anticipated that the connection to the implanted lead will be severely weakened. In many cases, the tissue slitting device may allow the implanted lead to essentially peel away from the tissue previously surrounding the implanted lead, thereby releasing it from containment. These and other needs are addressed by the various aspects, embodiments, and/or configurations of the present disclosure. Also, while the disclosure is presented in terms of exemplary embodiments, it should be appreciated that individual aspects of the disclosure can be separately claimed.


The tissue slitting device includes a flexible shaft having a proximal end, a distal end, and an internal lumen having an internal diameter configured to allow a lead, lead locking device, and/or other implanted device to pass through it. The device may also include a tissue slitting tip operatively coupled with the distal end of the flexible shaft. As can be appreciated, the slitting of formed tissue can be performed by at least one of cutting, drilling, slicing, stripping, chopping, sanding, grinding, planning, abrasion, high-pressure fluid, laser ablation, and combinations thereof. It is anticipated that the tissue slitting device may be oriented within a patient via use of the flexible shaft and monitor, or a catheter-based system. In some cases, the tissue slitting device may be positioned toward the center of the vasculature, and/or proximal to a non-traumatic leading edge, such that any sharp, or working, edge is caused to contact tissue growth and not contact the vasculature.


Among other things, the slitting section of the tissue slitting device may be biased against a lead/object via spring force. Additionally or alternatively, the tissue slitting device may include a flexible portion configured to allow the tissue slitting device to move as directed within a patient.


In has been further discovered that an efficient technique for slitting tissue growth surrounding an implanted lead involves cutting the tissue from an inner portion of the tissue growth to an outer portion of the tissue growth. The inner portion may correspond to a diameter of the tissue growth that is in contact with the lead, while the outer portion of the tissue growth may be an area adjacent to an external surface of the tissue growth, where the external surface is free from attachment to the vessel wall. This action may be similar to inserting a sharpened edge and point of a knife into a tissue growth at the internal diameter of the tissue growth and then moving the blade outwardly away from the internal diameter to cause a slit in the tissue growth. Among other things, this slitting action may place the tissue fibers under tension as the sharpened edge and point of the knife engages with and/or moves into the tissue growth in a direction away from the surface of the lead. Once the tissue is slit, the tension of the tissue fibers may be released in the slitting area. Various shapes of the slitting element may assist in the slitting action (e.g., curved, linear, compound, interrupted, serrated, sinusoidal, etc.). Additionally or alternatively, the slitting element may be configured to present a sharpened edge to the tissue, while a flat or dull edge (e.g., unsharpened) may contact the lead. This configuration of the slitting element may prevent undesired damage to the lead as the slitting element is moved along the lead and/or as the slitting element slits tissue. Although the motions of moving into the tissue growth and away from the lead may be separate, it is anticipated that such motions may be combined in a compound and/or concurrent motion.


The tissue slitting device may include an end support device disposed adjacent to the distal end of the flexible shaft. It is anticipated that the end support device may be configured to provide a clamping force to a lead within the vasculature of a patient. In one example, the clamping force may be used to grasp the lead and/or provide support for a tissue slitting element disposed adjacent to the end support element. The end support device may be arranged as one or more end support elements that are capable, alone or in combination, of restricting movement of the flexible shaft of the tissue slitting device. For example, the end support device may be arranged as a collet (e.g., a chuck, vise, spring collet, etc.) having a proximal and a distal end, with at least one tapered outer surface, and a collet lumen running from the proximal to the distal end of the end support device. As can be appreciated, the collet may be separated into two or more end support elements, that when subjected to an actuation force are configured to reduce an internal diameter of the collet lumen. A reduction in dimension of the internal diameter of the collet lumen may cause at least some of the actuation force to be applied as a clamping force around a lead or other implanted object in an area defined by the collet lumen. The actuation force may be applied by a directed force transmitted via an end support device lock that is configured to contact the tapered outer surface of the collet. The tapered outer surface of the collet can direct the actuation force toward the center of the collet. In other words, the collet may be closed (i.e., reducing the internal diameter of the collet lumen) from the end support device lock contacting the tapered outer surface of the collet.


In some embodiments, the one or more end support elements may be arranged as spring steel elements that are configured in a first position biased toward a center of the collet lumen. The bias of the spring steel elements may reduce a portion of the collet lumen internal diameter, such that the collet lumen internal diameter is less than an outer diameter associated with a lead, or implanted object. As a lead is run through the flexible shaft to the collet lumen of the tissue slitting device, the lead may force the spring steel elements into a second position away from the center of the collet lumen. In turn, the biasing force applied by the spring steel elements to the lead may cause at least a partial restriction of lead movement.


A cutting surface, or slitting element, of the tissue slitting device may be configured to move along with the end support device lock. In other words, the slitting element may be operatively connected to the end support device and/or the end support device lock. For example, a slitting element may be disposed proximal to the distal end of the end support device, and as the end support device lock engages the end support device, and/or closes an internal diameter of the collet lumen, the slitting element may move in a direction toward the distal end of the end support device. In some cases, the movement of the slitting element may be a ratio of the movement of the end support device lock (e.g., 4:1, 2:1, 1:1, 1:2, 1:4, 1:16, and/or ranges therebetween). Additionally or alternatively, the slitting element may be configured to move after a movement of the end support device and/or end support device lock. The movement of the slitting element may be caused by one or more of a pin and groove, cam profile, wedge, expanding member, and the like. As can be appreciated, such movements may be controlled as to speed, acceleration, distance, angle, dwell, return action, relative movement, etc. In one example, the end support device may be caused to close upon, and apply at least one clamping force to, a lead after which the slitting element may move. This movement can be achieved in a cam arrangement by providing a dwell for the slitting element at a first section of the cam profile. It is anticipated that various combinations and movements relative to the end support device may be used to achieve a distal end supported slitting action via the slitting element.


In addition, the slitting element may be operatively connected to, and arranged to pivot about, a pivot area to achieve a sweeping and/or arced cutting action of a cutting surface of the slitting element. In one embodiment, the sweeping cutting action may be achieved by moving the slitting element about a pivot area having at least one of a pivot point, flexure, flexure area, cantilevered member, four-bar mechanism, compound mechanism, and the like. As can be appreciated, the pivot area may be located distal to or proximal to a cutting surface of the slitting element. In some cases, the pivot area of the slitting element may be attached to the end support device, the end support device lock, and/or the flexible shaft of the tissue slitting apparatus. In any event, the slitting element is configured to provide at slit a region of the tissue growth by cutting into the tissue growth while the slitting element is supported by the end support device. For example, the tissue slitting device, or apparatus, may be presented adjacent to a tissue growth along a lead. The tissue slitting device may anchor to the lead via actuating the end support device. Once anchored, the slitting element may move toward and engage the tissue growth. As the tissue slitting element engages the tissue growth the slitting element may continue to move further into the tissue growth and/or provide an arced cutting action. Additionally or alternatively, the slitting element may wedge into an area between the lead and the tissue growth as it moves toward the tissue growth, and cut in an arced motion in a direction away from the lead toward an outside region of the tissue growth. This sweeping motion can allow the slitting element to first contact tissue at least partially surrounding a lead in an area where the tissue growth, and the tissue fibers, may be placed under tension. The tension of the fibers may be caused by the slitting element as it stretches the fibers away from the lead during its movement when in contact with the tissue. Among other things, the tension placed on the tissue growth fibers provide a taught area for the cutting surface to engage and cut along. In some embodiments, the slitting element may return along to a first position after a cutting action has been made. This action may be achieved via the one or more movement elements disclosed herein.


The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xn, Y1-Ym, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Zo).


The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.


A “lead” is a conductive structure, typically an electrically insulated coiled wire. The electrically conductive material can be any conductive material, with metals and intermetallic alloys common. The outer sheath of insulative material is biocompatible and biostable (e.g., non-dissolving in the body) and generally includes organic materials such as polyurethane and polyimide. Lead types include, by way of non-limiting example, epicardial and endocardial leads. Leads are commonly implanted into a body percutaneously or surgically.


A “surgical implant” is a medical device manufactured to replace a missing biological structure, support, stimulate, or treat a damaged biological structure, or enhance, stimulate, or treat an existing biological structure. Medical implants are man-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. In some cases implants contain electronics, including, without limitation, artificial pacemaker, defibrillator, electrodes, and cochlear implants. Some implants are bioactive, including, without limitation, subcutaneous drug delivery devices in the form of implantable pills or drug-eluting stents.


The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.


It should be understood that every maximum numerical limitation given throughout this disclosure is deemed to include each and every lower numerical limitation as an alternative, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this disclosure is deemed to include each and every higher numerical limitation as an alternative, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this disclosure is deemed to include each and every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.



FIG. 1 shows an exemplary patient vasculature in section with implanted lead and multiple locations of tissue growth in accordance with some embodiments of the present disclosure;



FIG. 2A shows a detail section view of a patient vasculature and implanted lead subjected to a traction force in a first path in accordance with some embodiments of the present disclosure;



FIG. 2B shows a detail section view of a patient vasculature and implanted lead subjected to a traction force in second path in accordance with some embodiments of the present disclosure;



FIG. 2C shows a detail section view of a patient vasculature and implanted lead subjected to a traction force in third path in accordance with some embodiments of the present disclosure;



FIG. 3 shows a section view of a curved area of vasculature with tissue growth formed around an implanted lead in accordance with embodiments of the present disclosure;



FIG. 4 shows a cross-sectional view of the curved area of vasculature of FIG. 3 taken along line A-A;



FIG. 5A shows a cross-sectional view of an area of vasculature with a tissue slitting device introduced in accordance with embodiments of the present disclosure;



FIG. 5B shows a cross-sectional view of an area of vasculature with a tissue slitting device engaging formed tissue in accordance with embodiments of the present disclosure;



FIG. 5C shows a cross-sectional view of an area of vasculature with a tissue slitting device slitting formed tissue in accordance with embodiments of the present disclosure;



FIG. 6A shows a section view of a curved area of vasculature with a tissue slitting device first introduced in accordance with embodiments of the present disclosure;



FIG. 6B shows a section view of a curved area of vasculature with a tissue slitting device in a first slitting position in accordance with embodiments of the present disclosure;



FIG. 6C shows a section view of a curved area of vasculature with a tissue slitting device in a second slitting position in accordance with embodiments of the present disclosure;



FIG. 6D shows a section view of a curved area of vasculature with a tissue slitting device in a third slitting position in accordance with embodiments of the present disclosure;



FIG. 7A shows a side view of a tissue slitting apparatus in a first position in accordance with embodiments of the present disclosure;



FIG. 7B shows a side view of a tissue slitting apparatus in a second position in accordance with embodiments of the present disclosure;



FIG. 7C shows a side view of a tissue slitting apparatus in a third position in accordance with embodiments of the present disclosure;



FIG. 8 shows an end view of a tissue slitting device inside an area of vasculature in accordance with embodiments of the present disclosure; and



FIG. 9 is a flow diagram depicting a tissue slitting method in accordance with embodiments of the present disclosure.





It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the disclosure or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the disclosure is not necessarily limited to the particular embodiments illustrated herein.


DETAILED DESCRIPTION

Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Embodiments of the present disclosure are directed to tissue slitting or cutting devices and methods of using tissue slitting devices to remove an implanted lead from within the vascular system of a patient. Among other things, the method of removing an implanted lead from formed tissue may include causing at least a partial separation of tissue that lies along an axial length of the implanted lead. In some embodiments, the tissue may be slit or cut along an entire length of the tissue growth to enable removal of the implanted lead. In other embodiments, the tissue may be slit or cut along a section of the tissue growth to allow an implanted lead to be removed from a patient.


While the phrases “tissue slitting edge” or “tissue cutting edge” are used in this disclosure, it is not limited to a blade or other cutting surface. These phrases are further intended to encompass any modality for slitting or cutting tissue, including the various modalities discussed herein. Nonlimiting examples include not only a sharpened area, point, or blade but also an abrasive or cutting wire or fiber, atherotomes (microsurgical blades) mounted on an inflatable (cutting) balloon, a grinder, high intensity light such as produced by a laser, thermal or infrared energy, electromagnetic energy, and/or high-pressure fluid.



FIG. 1 depicts an exemplary patient 102 with an implanted lead 104 running along the left innonimate vein 112 past the superior vena cava (“SVC”) and connected into, or about, the right ventricle of the heart 106. Along the length of the lead 104 at least one formed tissue growth 108 is shown where the tissue 108 may completely surround a section of the lead 104. In a typical lead 104 explant procedure, the one or more of the tissue growths 108 may act to contain the lead 104. For example, the tissue 108 may impart one or more forces (e.g., constrictive, shear, compression, and the like) on the lead 104 that may act to prevent successful removal of the lead 104 when subjected to a traction force 120.



FIGS. 2A-C show examples of an implanted lead 104 subjected to a traction force via different paths in a patient 102 vasculature. Accordingly, the methods and/or devices disclosed in conjunction with any of the FIGS. 2A-C may equally apply to all instances disclosed.



FIG. 2A shows a detail view of a heart 106 having an implanted lead 104 subjected to a traction force 120 in a first path in accordance with embodiments of the present disclosure. In some embodiments, a lead 104 explant procedure may involve removing the lead from a patient 102 via one or more paths. For example, a lead-locking, or other traction, device may be engaged with the lead 104 and then used to pull the lead 104 from a patient. However, in some cases the lead 104 may be contained by a formed tissue growth 108 that resists the traction force 120 applied to the lead 104. As can be appreciated, subjecting the lead 104 to excessive traction forces 120 may cause a tear inside the patient 102 where the tissue is attached to the vasculature. In one example, a tissue growth 108 may form along a critical area of the vasculature, such as the SVC curve 116, of a patient. If this critical area is torn during a lead 104 explant procedure, the result can be fatal to the patient 102.


Complicating the lead 104 removal process is the fact that the tissue growth 108 surrounding a lead 104 may attach to a vessel in a curved portion of the vasculature. Removal of the lead 104 from such a curved portion of vasculature can present a challenge when introducing tissue removal devices alone or in conjunction with traction devices. In some cases, the tissue removal devices include sharp edges, aggressive tips, or imprecise actuation mechanisms that can puncture the thin walls of a patient 102 vasculature. It is an aspect of the present disclosure to orient a tissue slitting working end adjacent to the unconnected, or tissue free, side 124 of a vessel wall. This orientation can prevent puncture and/or damage occurring to the vasculature at the tissue connected side 128 of the vessel wall.


Referring now to FIG. 2B a detail section view of a patient vasculature and implanted lead 104 subjected to a traction force 120 in second path in accordance with some embodiments of the present disclosure is shown. In some instances, at least one end of the lead 104 may be directed inside a patient 102 for removal via a path within the vasculature. Direction of the lead 104 may be effected via a snaring tool, lead-locking device, traction device, combinations thereof, and the like. As shown in FIG. 2B, the lead 104 is directed toward the general direction of a patient's femoral artery via the inferior vena cava. The lead 104 may be directed in the manner shown to provide additional tearing forces on the tissue growth 108 by the lead 104 being subjected to a traction force 120. In one embodiment, the tissue growth 108 may be at least partially slit and the tearing forces created by pulling the lead 104 along the traction force 120 line cause the lead 104 to separate from the tissue growth 108. In other embodiments, a tissue slitting device may be run along the lead 104 to the tissue growth 108 via the femoral artery.


In some embodiments, the lead 104 may be captured and pulled such that the pull force causes the lead 104 to turn inside a patient 102. This mode of capture and pulling may cause a bending at a first connection point between the tissue growth 108 and the lead 104. When the tissue slitting device is engaged with the tissue growth 108, the assistive bending force provided by the traction force 120 can aid in slitting the tissue growth 108. For instance, the bending force may cause a stretching of the tissue growth 108 where the lead engages with the tissue growth 108. This stretching of tissue may assist in the slitting operation by causing tension on the fibers of the tissue growth 108 that, when slit, pull away from the tissue slitting device engagement area. As can be expected, the slitting operation may be performed in any area within a patient that is capable of receiving a tissue slitting device.



FIG. 2C shows a detail section view of a patient vasculature and implanted lead 104 subjected to a traction force 120 in third path in accordance with some embodiments of the present disclosure. Similar to FIGS. 2A and 2B, the lead 104 may be directed along a path in the patient vasculature. In this case, the lead 104 may be directed toward the general direction of a patient's jugular vein.


As can be appreciated, the path chosen for removal of a lead 104 from a patient 102 may depend on one or more of the orientation of the lead 104 within a patient 102, the state of the at least one tissue growth 108, the lead removal device used, and the tissue slitting device used. In some cases, the lead 104 (e.g., pacing, defibrillator, etc.), or other object, may have moved after implantation. In these scenarios, the lead 104 may have to be captured via some other method. In some embodiments, a capturing tool equipped with a lasso, snare, or other lead grasping element may need to be inserted into the patient 102. As can be expected, the capturing tool may be inserted into the patient 102 via any number of the veins and/or arteries that are interconnected to the lead 104 location in the vasculature. For example, the lead 104 may be grasped via a capturing tool that has been inserted through a patient's femoral artery and led to the point of the vasculature where the lead's 104 free end may be located.


In some embodiments, rather than attach a separate mechanical traction device, the capturing tool may be used to provide traction force 120 during the tissue slitting operation. In accordance with embodiments of the present disclosure, the lead may be grasped via a capturing tool, or lead-locking device, and/or removed via some other pathway in the vasculature. In other words, the lead may be accessed via one or more veins, arteries, chambers, biological channels, and/or other sections of the vasculature of a patient 102.



FIG. 3 shows a section view of a curved area of vasculature with tissue growth 108 formed around an implanted lead 104 in accordance with embodiments of the present disclosure. The tissue growth 108 may completely surround a section of the lead 104 and even be attached to a vessel wall at a tissue connected side 128 of the vasculature. In some cases, the tissue growth 108 may not be adhered to at least one free side 124 of a vessel, such that a vessel opening 126 exists where bodily fluid may pass through the vessel unobstructed. Surprisingly and unexpectedly, it has been discovered that the tissue growth 108, before attempted lead extraction, is commonly at least substantially free of and even more commonly completely free of attachment to the lead 104.



FIG. 4 shows a cross-sectional view of the curved area of vasculature of FIG. 3 taken along line A-A. In some embodiments, reference may be made to the tissue growth 108 forming a tube 132 (or cylindrical or sock-like structure) around the implanted lead 104. Previous methods have been disclosed that are directed to separating the tissue around the lead 104 in the area defined by the tube 132. It is an aspect of the present disclosure to provide one or more methods and devices to effectively separate the tissue growth 108 along a length of the lead to release the lead 104 from the containing forces of the tissue growth 108. In some embodiments, the tissue growth 108 may be slit at a portion of the tissue growth 108 where the thickness of tissue is minimal between the lead 104 and the open area 126 of the vessel.


In embodiments disclosed herein, the tissue growth 108 may be subjected to a slitting action about a partial (i.e., not complete) periphery of an internal diameter of the tissue growth 108. Stated another way, at any selected point along the tissue growth 108 or tube 132 the amount of the adjacent tissue cut or slit 130 to free the lead 104 is commonly no more than about 50%, more commonly no more than about 25%, more commonly no more than about 10%, and even more commonly no more than about 5% of the diameter of the tissue growth 108 or tube 132. The length of the cut or slit 130 in the tissue growth 108 or tube 132 is commonly at least about 50%, more commonly at least about 75%, more commonly at least about 90%, and even more commonly at least about 95% of the total length of the portion of the lead 104 surrounded by the tissue growth 108 or tube 132 along an actual and projected line of the cut or slit.



FIGS. 5A-C show a cross-section of a vessel where a tissue slitting device 504 is progressively engaged with a tissue growth 108. As shown, the tissue slitting device causes a section of the tissue growth 108 to separate from a portion of the lead 104 allowing the forces containing the lead 104 to be severely weakened and/or eliminated.


Referring to FIG. 5A a cross-sectional view of an area of vasculature with a tissue slitting device 504 introduced therein in accordance with embodiments of the present disclosure is shown. The tissue slitting device 504 includes a tissue slitting tip 508 that is configured to separate tissue growth 108. In one embodiment, the tissue slitting tip 508 may be oriented such that a slitting operation is performed on the thinnest section of tissue growth 108 between the lead 104 and the open area 126 of the vessel. Orientation of the tissue slitting device 504 may be achieved in operation via a fluoroscopy and/or other monitoring devices and the use of one or more radiopaque markers on the tissue slitting device 504. Once the tissue slitting device 504 is oriented, the tissue slitting device 504 may contact the tissue growth 108 at an engagement area 510.


In any of the embodiments disclosed herein, the tissue slitting device may include an imaging system configured to provide an image from within the vasculature of a patient 102. It is anticipated that the imaging system may be disposed adjacent to the distal tip of the tissue slitting device. Examples of such imaging systems may include, but are in no way limited to, technology incorporating Intravascular Ultrasound (“IVUS”), Optical Coherence Tomography (“OCT”), radio imaging, magnetic tracking, three-dimensional (“3D”) imaging, and other technologies that may be used to obtain an image within a patient.



FIG. 5B shows a cross-sectional view of an area of vasculature with a tissue slitting device 504 engaging formed tissue 108 in accordance with embodiments of the present disclosure. As the tissue slitting device 504 engages the tissue growth 108 the tissue slitting device 504, may slit the tissue growth 108 by splitting, cutting, tearing, grinding, sanding, ablating, and/or otherwise causing a separation of tissue at the engagement area 510.



FIG. 5C shows a cross-sectional view of an area of vasculature with a tissue slitting device 504 slitting formed tissue 108 in accordance with embodiments of the present disclosure. As shown in FIG. 5C, the tissue growth 108 is separated along a section of the lead 104 about the engagement area 510. In some embodiments, the tissue slitting device may be subsequently removed from the tissue growth 108 by moving the lead 104 in the direction of the separated tissue.



FIGS. 6A-D show a section view of a curved area of vasculature where an embodiment of a tissue slitting device 604 is progressively engaged with a tissue growth 108. As shown, the tissue slitting device 604 causes a section of the tissue growth 108 to separate from a portion of the lead 104 allowing the forces containing the lead 104 to be severely weakened and/or eliminated.



FIG. 6A shows a section view of a curved area of vasculature with a tissue slitting device 604 first introduced in accordance with embodiments of the present disclosure. The tissue slitting device 604 is indexed into position via a directional force 618 adjacent to the tissue growth 108. The directional force 618 may be applied to the tissue slitting device 604 via one or more mechanical actuators, electrical actuators, manual positioning, and combinations thereof.


In some embodiments, the tissue slitting device 604 includes a flexible shaft having a proximal end, a distal end 612, and an internal lumen 616 having an internal diameter configured to allow a lead, lead locking device, and/or other implanted device to pass through it. The device may also include a tissue slitting tip 608 operatively attached to the distal end 612 of the flexible shaft. As can be appreciated, the slitting of formed tissue can be performed by at least one of cutting, drilling, slicing, stripping, chopping, sanding, grinding, planning, abrasion, high-pressure fluid, laser ablation, and combinations thereof. In one embodiment, the tissue slitting tip 608 of the tissue slitting device 604 may be described in conjunction with the tissue slitting apparatus 704 of FIGS. 7A-9. For example, the tissue slitting tip 608 may correspond to the slitting element 716 of the tissue slitting apparatus 704. It is anticipated that the tissue slitting device 604 may be oriented within a patient via use of the flexible shaft and monitor, or a catheter-based system. In some cases, the tissue slitting device 604 may be positioned toward the center of the vasculature, and/or proximal to a non-traumatic leading edge, such that any sharp, or working, edge is caused to contact tissue growth 108 and not contact the vasculature (e.g., the tissue connected side 128 wall and the free side 124 wall of a vessel).


Additionally or alternatively, the tissue slitting tip 608 and effective slitting section of the tissue slitting device 604 may be biased against a lead 104 via spring force. In some embodiments, the tissue slitting device 604 may include a flexible portion configured to allow the tissue slitting device 604 to move as directed within a patient.



FIG. 6B shows a section view of a curved area of vasculature with a tissue slitting device 604 in a first slitting position in accordance with embodiments of the present disclosure. As the tissue slitting device 604 is directed into the tissue growth 108, the tissue slitting tip 608 causes the tissue growth 108 to separate along the engagement area 610. The separated tissue 614 allows the tissue slitting device 604 to be further engaged with the tissue growth 108. Additionally or alternatively, the separated tissue 604, by releasing forces containing the lead, can allow the lead 104 to be moved about the area of the tissue slitting tip 608.



FIG. 6C shows a section of a curved area of vasculature with the tissue slitting device 604 in a second slitting position in accordance with embodiments of the present disclosure. As the tissue slitting device 604 is indexed in a direction 618 into the tissue growth 108 the tissue slitting device 604 separates tissue along an axial length of at least one side of the lead 104. In some embodiments, the lead 104 may be subjected to a traction force 120 that may be opposite to the index direction 618 of the tissue slitting device 604. This applied traction force 120 may assist in pulling the lead 104 away from the tissue growth 108 as the lead 104 is separated from containing tissue growth 108.



FIG. 6D shows a section view of a curved area of vasculature with a tissue slitting device 604 in a third slitting position in accordance with embodiments of the present disclosure. In general, the tissue slitting device 604 is indexed further into the tissue growth 108 such that the tissue growth 108 is almost completely separated from the lead 104 along a length of the tissue growth 108. In some embodiments, slitting at least a portion of the tissue growth 108 may allow the lead 104 to be removed in an explant procedure. For instance, the lead 104 may be subjected to a traction force 120 to pull the lead 104 away from any remaining the tissue growth 108. Additionally or alternatively, the lead 104 may be pulled against the remaining tissue growth 108 that surrounds the lead 104. In other embodiments, the tissue slitting device 604 may be indexed along the entire length of the tissue growth 108 to completely separate the tissue growth 108 from encapsulating, or surrounding, the lead 104.



FIGS. 7-9 are directed to embodiments of a tissue slitting device that include one or more cutting features that are configured to cut at least a portion of a tissue growth 108 along a lead 104 implanted in a patient 102. It should be appreciated that at least one portion of the descriptions accompanying each of the aforementioned figures, namely FIGS. 1-6D, may be used to describe one or more of the features (e.g., methods, systems, tissue slitting devices, components, problems, solutions, arrangements, and the like) associated with the ensuing description. Additionally or alternatively, the ensuing description may apply to one or more features of FIGS. 1-6D.


In any of the embodiments disclosed herein the cutting surface may be guarded by a mechanical sheath. A mechanical sheath may include at least one surface that acts to guard and/or protect a cutting surface from being accidentally exposed to one or more sensitive areas of the vasculature during navigation of a tissue slitting device within a patient 102. In one embodiment, a mechanical sheath may at least partially shroud a portion of a cutting surface with a compliant material (e.g., silicone, polyurethane, rubber, polymer, combinations thereof, and the like). It is anticipated that the compliant material may be compressed when subjected to an operation force. The compression of the compliant material may subsequently expose the cutting surface of the tissue slitting device.


In another embodiment, the mechanical sheath may include a non-compliant material (e.g., metal, carbon fiber, plastic, resin, combinations thereof, and the like) that is configured to at least partially shroud a portion of a cutting surface. The non-compliant material mechanical sheath may be configured to at least partially shroud the cutting surface via a compliant member (e.g., spring, flexure, compliant material, combinations thereof, etc.) in connection with the non-compliant member that maintains a shrouded position of the non-compliant material mechanical sheath. Upon subjecting the non-compliant material mechanical sheath to an operational force, the operational force may be directed to the compliant member, which subsequently exposes the cutting surface from the mechanical sheath.


Referring now to FIG. 7A, a tissue slitting apparatus 704 is shown in a first position in accordance with embodiments of the present disclosure. In some embodiments, the tissue slitting apparatus 704 comprises a flexible shaft 708, an inner lumen 712, at least one slitting element 716 having at least one cutting surface 718, a pivot area 720, a mechanical sheath 724, an end support device 728, an end support device lock 732, and an actuation guide arrangement 736. In some embodiments, the tissue slitting apparatus may include an actuation element 710. The inner lumen 712 can be disposed between the proximal and distal end of the tissue slitting device 704, and may include a lumen of the flexible shaft 708 and/or the end support device 728 (e.g., a collet lumen). In some embodiments, the inner lumen 712 may be configured to allow a lead 104 and/or other objects to pass therethrough (e.g., a lead-locking device, traction device, snare tool, etc). As can be appreciated, the tissue slitting apparatus 704 may be indexed and/or guided along the lead 104 via the inner lumen 712 of the apparatus 704.


The tissue slitting apparatus 704 may be configured to engage with the tissue growth 108 in a patient 102 at a distal tip of the apparatus 704. In some embodiments, the distal tip of the apparatus 704 may be equipped with a slitting element 716 configured to cut the tissue growth 108. Additionally, the slitting element 716 may be configured to part the tissue as it cuts. As the slitting element 716 is moved into the tissue growth 108, the cutting surface 718 of the slitting element 716 may sever the tissue while simultaneously parting it along at least one side of the cutting surface 718.


In any of the embodiments disclosed herein, disposition of the slitting element 716 of the tissue slitting apparatus 704 may be arranged as one or more shapes, angles, and dimensions. In one embodiment, the slitting element 716 may be arranged at an angle ranging from 10 to 50 degrees from a plane that is coincident with at least two points on an axis running along the lumen 712 of the tissue slitting device 704. As can be appreciated, the slitting element 716 cutting surface 718 of the tissue slitting apparatus 704 may be defined by its axial length from the distal end of the apparatus 704. In one embodiment, the axial length of the cutting surface 718 of the slitting element 716 may range from 0.025″ to 1.500″. In another embodiment, the axial length of the cutting surface 718 of the slitting element 716 may range from 0.050″ to 0.750″.


In some embodiments, the end support device 728 may be configured to provide a clamping force to a lead 104 within the vasculature of a patient 102. In one example, the clamping force may be used to grasp the lead 104 and/or provide support for the slitting element 716 disposed adjacent to the end support device 728. Among other things, the end support device 728 can allow the slitting element 716 to slit tissue, while at least some of the forces provided by the slitting element 716 engaging and/or slitting tissue are at least partially supported at the distal end of the tissue slitting apparatus 704. The end support device 728 may be arranged as one or more end support elements 740 that are capable, alone or in combination, of restricting movement of the flexible shaft 708 of the tissue slitting apparatus 704. In some embodiments, the end support device 728 may include a proximal and a distal end. As can be appreciated, the end support device 728 may be attached to the distal end of a flexible shaft 708. In one embodiment, the proximal end of the end support device 728 may be attached to the distal end of the flexible shaft 708.


In some embodiments, the end support device 728 may be arranged as a collet (e.g., a chuck, vise, spring collet, etc.) having a proximal and a distal end, with at least one tapered outer surface 748, and a collet lumen 744 running from the proximal to the distal end of the end support device 728. In one embodiment, the collet lumen 744 may be coincident and/or coaxial with the inner lumen 712 of the apparatus 704. As can be appreciated, the end support device 728 may be separated into two or more end support elements 740 that, when subjected to an actuation force, are configured to reduce an internal diameter of the collet lumen 744. A reduction in dimension of the internal diameter of the collet lumen 744 may cause at least some of the actuation force to be applied as a clamping force around a lead 104 or other implanted object in an area defined by the collet lumen 144. The actuation force may be applied by a directed force transmitted via an end support device lock 732 that is configured to contact the tapered outer surface 748 of the end support device 728. The tapered outer surface 748 of the end support device 728 can direct the actuation force toward the center, and/or collet lumen 744, of the end support device 728. In other words, the end support device 728 may be closed (i.e., reducing the internal diameter of the collet lumen 744) from the end support device lock 732 contacting the tapered outer surface 748 of the end support device 728.



FIG. 7A shows the end support device 728 and end support device lock 732 of a tissue slitting apparatus 704 in an open condition in accordance with embodiments of the present disclosure. In other words, each of the end support elements 740 of the end support device 728 are shown in a first position (i.e., open) with an end support device lock 732 in an open state. As provided above, the end support device 728 may be arranged as a collet (e.g., a chuck, vise, spring collet, etc.) having a proximal and a distal end, with at least one tapered outer surface 748, and a collet lumen 744 running from the proximal to the distal end of the end support device 728. In some embodiments, the collet lumen 744 may be concentric with and/or coincident with an inner lumen 712 of the flexible shaft 708. It is anticipated that the collet lumen 744 may include an internal diameter sized to allow a lead 104 to pass therethrough, where the internal diameter of the collet lumen 744 is greater than an outer diameter of the lead 104 when the collet lumen 744 is in an open state.


Additionally or alternatively, the slitting element 716 may be operatively connected to, and arranged to pivot about, a pivot area 720 to achieve a sweeping and/or arced cutting action of a cutting surface 718 of the slitting element 716. In one embodiment, the sweeping cutting action may be achieved by moving the slitting element 716 about a pivot area 720 having at least one of a pivot point, flexure, flexure area, cantilevered member, four-bar mechanism, compound mechanism, and the like. As can be appreciated, the pivot area 720 may be located distal to or proximal to a cutting surface 718 of the slitting element 716. In some cases, the pivot area 720 of the slitting element 716 may be attached to the end support device 728, the end support device lock 732, and/or the flexible shaft 708 of the tissue slitting apparatus 704. In any event, the slitting element 716 is configured to provide at slit a region of the tissue growth 108 by cutting into the tissue growth 108 while the slitting element 716 is supported by the end support device 728.


It is anticipated that the slitting element 716 may be configured as a blade positioned perpendicular to the outer circumferential surface of the lead 104. The blade, or cutting surface 718, of the slitting element 716 may be configured to move along with the end support device lock 732. In other words, the slitting element 716 may be operatively connected to the end support device 728 and/or the end support device lock 732. For example, the slitting element 716 may be disposed proximal to the distal end of the end support device 728, and as the end support device lock 732 engages the end support device 728, and/or closes an internal diameter of the collet lumen 744, the slitting element 716 may move in a direction toward the distal end of the end support device 728. In some cases, the movement of the slitting element 716 may be a ratio of the movement of the end support device lock 732 (e.g., 4:1, 2:1, 1:1, 1:2, 1:4, 1:16, and/or ranges therebetween). Additionally or alternatively, the slitting element 716 may be configured to move after a movement of the end support device 728 and/or end support device lock 732.


In some embodiments, the slitting element 716 may be caused to contact the lead 104 at a circumferential surface of the lead 104 before the slitting element 716 performs a cutting action. Among other things, contact with the lead 104 may allow the slitting element 716 to cut the tissue growth 108 from a lead surface outwardly toward an open area 126 of the vessel. In other words, the circumferential surface of the lead 104 may act as a cutting reference point for the slitting element 716 to base from, and/or return to, during a progressive cutting operation.


Additionally, the slitting element 716 may be equipped with a wedge to peel the tissue away as it is being cut by the cutting surface 718 of the slitting element 716. Additionally or alternatively, the angle of the cutting surface 718, or blade, relative to the axis, and/or outer circumferential surface, of the lead 104 may be configured to achieve an adequate cutting angle in the tissue growth 108, such that the tissue 108 is slit in a manner to best achieve lead 104 removal. That is, due to the overall size of the lumen 712, a small angle itself may create a sharp leading edge sufficient to cut and slit the tissue growth 108. The angle may also create smooth translation and slitting of the remainder of the tissue as the tissue slitting apparatus 704 traverses longitudinally along a direction of the lead 104.



FIG. 7B shows a side view of a tissue slitting apparatus in a second position in accordance with embodiments of the present disclosure. For example, the tissue slitting device 704, or apparatus, may be presented adjacent to a tissue growth 108 along a lead 104. The tissue slitting apparatus 704 may anchor to the lead 104 via an actuation of the end support device 728. Once anchored, or as the apparatus is being anchored, the slitting element 716 may move toward, and even engage, a tissue growth 108. The movement of the slitting element 716 may be caused by one or more of a pin and groove, cam profile, wedge, expanding member, and the like. For example, an end support device lock 732 may be moved in a first direction 752, which can engender an actuation of an end support device 728 and a corresponding movement of a slitting element 716. In part, the movement of the slitting element 716 may be achieved by the slitting element 716 being operatively connected to the end support device 728 and/or the end support device lock 732. The movement of the slitting element 716 in the first direction 752 may expose a cutting surface 718 of the slitting element 716 from a mechanical sheath 724. As can be appreciated, such movements may be controlled as to speed, acceleration, distance, angle, dwell, return action, relative movement, etc. In one example, the end support device 728 may be caused to close upon, and apply at least one clamping force to, a lead 104 after which the slitting element 716 may move. This movement can be achieved in a cam arrangement by providing a dwell for the slitting element 716 at a first section of the cam profile. It is anticipated that various combinations and movements relative to the end support device 728 may be used to achieve a distal end supported slitting action via the slitting element 716.



FIG. 7B shows the end support device 728 and end support device lock 732 of a tissue slitting apparatus 704 in a closed condition in accordance with embodiments of the present disclosure. In some embodiments, the end support device lock 732 may be actuated via an actuation element 710 to move in a first direction 752 toward the distal end of the apparatus 704. As the end support device lock 732 is subjected to the actuation force the internal diameter of the collet lumen 744 may be reduced. For example, each of the one or more end support elements 740 may be moved toward the collet lumen as shown in FIG. 7B. A reduction in dimension of the internal diameter of the collet lumen 744 may cause at least some of the actuation force to be applied as a clamping force around a lead 104 or other implanted object in an area defined by the collet lumen 744. This force may anchor the distal end of the tissue slitting apparatus 704 to the lead 104. As disclosed herein, the actuation force may be applied by a directed force transmitted via an actuation element 710 to an end support device lock 732 that may be configured to contact the tapered outer surface 748 of the end support device 728. The tapered outer surface 748 of the end support device 728 can direct the actuation force toward the center of the collet lumen 744. In other words, the end support device 728 may be closed (e.g., by reducing the internal diameter of the collet lumen 744) from the end support device lock 732 contacting the tapered outer surface 748 of the end support device 728.



FIG. 7C shows a side view of a tissue slitting apparatus 704 in a third position in accordance with embodiments of the present disclosure. As shown, the tissue slitting element 716 being moved toward the distal end of the apparatus 704 (e.g., in the first direction 752 described in conjunction with FIG. 7B) may continue to move to a further distal position (e.g., further into a tissue growth 108) and/or provide an arced, or lifted, cutting action (e.g., over a section of the engaged tissue growth 108) shown by lift direction 756. Additionally or alternatively, the slitting element 716 may wedge into an area between the lead 104 and a tissue growth 108 as it moves toward a tissue growth 108, and cut in an arced, or lifted, motion in lift direction 756, away from the lead 104 toward an outside region of a tissue growth 126. This sweeping motion, shown by lift direction 756, can allow the slitting element 716 to first contact tissue at least partially surrounding a lead 104 in an area where the tissue growth 108, and the tissue fibers, may be placed under tension. The tension of the fibers may be caused by the slitting element 716 as it stretches the fibers away from the lead 104 during its movement when in contact with the tissue. Among other things, the tension placed on the tissue growth 108 fibers can provide a taught area for the cutting surface 718 of the slitting element 716 to engage and cut along. In some embodiments, the slitting element 716 may return to a first position (e.g., in contact with the lead 104, adjacent to the lead 104, and/or in a neutral position, etc.) after a cutting action has been made. This action may be achieved via the one or more movement elements (e.g., the actuation element 710, end support device 728, end support device lock 732, actuation guide arrangement 736, etc., and combinations thereof) as disclosed herein.


Additionally, embodiments of the tissue slitting apparatus disclosed herein may include at least one fluorescing material or marker (e.g., radiopaque band, marker, and the like). In some embodiments, the radiopaque marker may be arranged about and/or adjacent to a slitting element of the tissue slitting apparatus. The radiopaque marker, may assist in identifying a location of the slitting element 716 via a monitoring device. Examples of radiopaque markers may include, but are in no way limited to, materials and/or particles containing tantalum, tungsten, carbide, iridium, bismuth oxide, barium sulfate, cobalt, platinum and/or alloys and combinations thereof. In some embodiments, the inner lumen 712 may be configured to allow a lead 104 and/or other objects to pass therethrough (e.g., a lead-locking device, traction device, snare tool, etc). As can be appreciated, the tissue slitting apparatus 704 may be indexed and/or guided along the lead 104 via the inner lumen of the apparatus 704.



FIG. 8 shows an end view of a tissue slitting apparatus 704 inside an area of vasculature in accordance with embodiments of the present disclosure. In some embodiments, a slitting element 716 is oriented at least partially within the vasculature of a patient 102, which may allow the apparatus 704 to be routed through the vasculature without presenting sharp edges, cutting surfaces 718, or slitting elements 716 toward sensitive areas. The slitting element 716 oriented within the vasculature may allow the cutting surface 718 of slitting element 716 to be biased away from the vessel wall of a patient's vasculature. In other words, the tissue slitting element 716 may be oriented toward the tissue growth 108 in connection with the lead 104. A slitting orientation control feature 804 may be operatively attached to the tissue slitting apparatus 704 at, or adjacent to, the distal end of the apparatus 704. The slitting orientation control feature 804 may act to safely orient the slitting element 716 within a patient 102. In one embodiment, the slitting orientation control feature 804 may be connected to the mechanical sheath 724. It is anticipated that the slitting orientation control feature 804 may be arranged in a known relation to a slitting element 716. For instance, the slitting element 716 may be positioned at a dimension from a vessel wall contact edge or surface of the slitting orientation control feature 804, such that the dimension prevents the slitting element 716 from contacting a vessel wall 124, 128. As can be appreciated, the slitting orientation control feature 804 may prevent full 360 degree rotation of the tissue slitting apparatus 704 within a section of the vasculature of a patient 102. In one example, a tissue slitting apparatus 704 may be directed inside a patient 102 toward a tissue growth 108. As the apparatus 704 engages the tissue growth 108, any unwanted, or dangerous, rotation of the apparatus 704 that may present the slitting element 716 to a vessel wall 124, 128 can be prevented by the slitting orientation control feature 804 first contacting the vessel wall 124, 128. Such contact can prevent further rotation of the apparatus 704 and the slitting element 716 in a direction toward the vessel wall 124, 128 in contact with the slitting orientation control feature 804. Additionally or alternatively, the apparatus 704 may be allowed to rotate away from the vessel wall 124, 128 such that the slitting orientation control feature 804 moves toward the open area 126 (and safe section) of the vessel.


In accordance with embodiments of the present disclosure, the slitting element 716 may be advanced into the tissue growth 108. This advancement may be continuous or periodic. Additionally or alternatively, the slitting element 716 may be actuated in a direction toward and away from the tissue such that the slitting element 716 is presented to an area of the tissue growth 108, removed from the area, and re-presented to an area of the tissue growth 108 to successively cut the tissue growth 108 over a number of movements. For example, the tissue growth 108 can be cut in a similar manner to that of an axe chopping at a tree or of scissors cutting material. In any embodiment disclosed herein, fraction force may be applied to the lead 104 during the cutting of the tissue growth 108. Among other things, traction force 120 can prevent tears, punctures, and/or other catastrophic failures caused by the force exerted on the tissue growth 108 and/or adjacent vasculature by the tissue slitting apparatus 704.


It is anticipated that the slitting element 716 may be manufactured from a material with a suitable hardness for slitting tissue. In some embodiments, the slitting element 716 may be manufactured from a polymeric material with a durometer configured to cut a patient's tissue. Examples of polymeric material may include, but are not limited to, plastics, silicone, polytetrafluoroethylene (“PTFE”), polyethylene, polyurethane, polycarbonate, polypropylene, polyvinyl chloride (“PVC”), polystyrene, acetal, polyacetal, acetal resin, polyformaldehyde, and the like. In one embodiment, the slitting element 716 may be constructed from a crystalline or amorphous metal alloy. The slitting element 716 may comprise at least a portion of the distal tip of the tissue slitting apparatus 704. As can be appreciated, the slitting element 716 may comprise a metal insert. Examples of slitting element 716 metals may include, but are not limited to, steel, stainless steel (e.g., austenitic type 304, 316, martensitic type 420, 17-4, etc.), aluminum, titanium, tungsten carbide, silver, platinum, copper, and combinations thereof. In one embodiment, the metal may be hardened to, among other things, maintain a sharp edge during the tissue slitting process.


Additionally or alternatively, the slitting element 716 or cutting surface 718 may be removably attached to the distal tip of the tissue slitting apparatus 704. Benefits of a removably attached slitting element 716 allow for quick replacement of cutting surfaces 718 during lead removal procedures. As can be appreciated, the replacement of the cutting surface 718 may be initiated upon detecting that the cutting surface 718 of the slitting element 716 is dulling. In some cases the cutting surface 718 may be replaced with a different style of blade. The style of blade may be configured to suit a number of desires, including but not limited to, navigating difficult areas in a patient (e.g., using a curved blade, etc.), cutting difficult, dense, and/or hard tissue (e.g., using a serrated blade, a hardened blade, and combinations thereof, etc.), cutting tissue in confined and/or low-growth areas (e.g., using a miniature blade), and even removing the blade completely (e.g., using the tissue slitting device as a counter-traction sheath, etc.).


In some embodiments, the tissue slitting apparatus 704 disclosed herein may include at least one non-traumatic leading edge disposed at the most distal end of the apparatus 704. The non-traumatic leading edge may include a distal end and a proximal end. Non-traumatic surfaces on the leading edge of the device may include but are not limited to, spheroidal, ball-nose, radiused, smooth, round, and/or other shapes having a reduced number of sharp edges. These non-traumatic surfaces may be configured to prevent accidental puncture or harmful contact with the patient 102. The non-traumatic leading edge may be configured to include a tapered and/or a wedge-shaped portion. In some cases the cross-sectional area of the tapered portion increases along a length of the non-traumatic leading edge from the distal end to the proximal end of the leading edge. A knife-edge and/or cutting surface 718 may be disposed proximal to the non-traumatic leading edge of the tissue slitting apparatus 704.


The non-traumatic leading edge may be positioned to insert into an area between the tissue growth 108 and the implanted lead 104. In some cases the tapered geometry and the arrangement of the tissue slitting apparatus 704 tip may allow the most distal portion of the non-traumatic leading edge to bias against the lead 104 and wedge under any surrounding tissue growth 108. As the non-traumatic leading edge is indexed further into the tissue growth 108, the tissue growth 108 is caused to stretch and pull away from the lead 104. Once the non-traumatic leading edge is engaged with the tissue growth 108, the cutting surface 718 of the tissue slitting apparatus 704 may be caused to slit the tissue along a length of the tissue growth 108. As can be appreciated, the slitting element 716 may include, but is not limited to, one or more cutting surfaces 718 and tissue slitting apparatus 704 disclosed herein.


Referring to FIG. 9, a tissue slitting method 900 will be described in accordance with at least some embodiments of the present disclosure. The method 900 begins at step 904 and proceeds by optionally connecting a lead-locking device or other traction device to a lead 104 (step 908). In some embodiments, the lead-locking device may be inserted into the core of an implanted lead 104. In other embodiments, a traction device may be connected to the lead 104 to provide traction on the lead 104. For instance, mechanical traction can be achieved in leads 104 by inserting a locking stylet into the lead 104 and applying a pull force onto the lead 104 via the locking stylet.


Once a traction device is attached to the lead 104, the method 900 continues by feeding the fraction device and/or the lead 104 through the internal, or inner, lumen 712 of the tissue slitting apparatus 704 (step 912). In some embodiments, a lead-locking device may be optionally used. In one embodiment, the lead 104 itself may be threaded through the inner lumen 712 of the tissue slitting apparatus 704. In any event, the lead 104 and/or the lead-locking device may be threaded through a lumen 712 associated with the tissue slitting apparatus 704. For example, the lead-locking device may be inserted through the lumen in an implanted lead 104 and attached to the internal portions of the implanted lead 104, which can be at the distal portion or proximal to the distal portion of the lead 104. The tissue slitting apparatus 704 may be part of a catheter that rides over the external portion of the lead 104 and lead-locking device and is configured to remove tissue along an axial length of the tissue 108 in contact with the lead 104.


As the tissue slitting apparatus 704 is engaged with the lead 104, a slight fraction force may be applied to the lead 104 to allow the tissue slitting apparatus 704 to guide along the lead 104. The tissue slitting apparatus 704 can be moved toward the first formed tissue growth 108 while applying a mechanical fraction force to the lead 104 itself, through a locking stylet, and/or other traction device. Mechanical traction force may be applied with appropriate force to prevent tearing the vein or artery (e.g., vessel) wall by moving the lead 104 and tissue before they are separated. In some embodiments, the tissue slitting apparatus 704 may be observed moving inside a patient 102 via a fluoroscope or other monitor. It is anticipated that the distal tip, or some other area, of the tissue slitting apparatus 704 may include a fluorescing material or marker (e.g., radiopaque band, etc., and the like as previously described). This fluorescing material or marker may be used to aid in monitoring the movement of the tissue slitting apparatus 704 when it is inside a patient 102.


Next, the method 900 continues by moving the tissue slitting apparatus 704 into contact with the formed tissue growth 108 (step 916). For example, the tissue slitting apparatus 704 may be advanced until resistance of movement along the lead 104 is detected. In one embodiment, the location of the tissue slitting apparatus may be determined using one or more imaging modality (e.g., IVUS, OCT, 3D, and others as disclosed herein, etc.). In some embodiments, the slitting element 716 of the tissue slitting apparatus 704 may be oriented toward the center of the vessel, or away from the vessel wall 124, 128 connecting the lead 104 to the vessel. In addition to preventing accidental puncture, trauma, or other damage to the delicate surfaces of the vasculature this orientation of the tissue slitting apparatus 704 may aid in the slitting and peeling away of the tissue 108 from the implanted lead 104. While applying mechanical traction force, the leading portion (of the tissue slitting apparatus 704) may include a slitting element 716 having a sharp cutting surface 718, which may be configured to cut into the tissue growth 108. As the tissue slitting apparatus 704 traverses along the lead 104, the slitting element 716 of the tissue slitting apparatus 704 may be configured to continue to separate the formed tissue 108. Additionally the slitting element 716, which may include an angle and/or tapered portion, can act to cause a stretching of the formed tissue growth 108 at the point where it engages with the tissue slitting element 716. This stretching of tissue may assist in the slitting operation by causing tension on the fibers of the tissue growth 108 that, when slit, pull back (or away) from the tissue slitting apparatus 704 engagement area.


The method 900 continues by retracting the tissue slitting apparatus 704 from a forced contact with the tissue growth 108 (step 920). In some embodiments, refracting the tissue slitting apparatus 704 may include using the imaging modality to position the tissue slitting apparatus 704 relative to the tissue growth 108. For example, once the tissue slitting apparatus 704 meets a tissue growth 108, the apparatus 704 may be slightly refracted from intimate contact with the tissue growth 108. In one embodiment, a retraction of the tissue slitting apparatus 704 may not be required to perform the method 900 provided herein.


Next, the method 900 continues by actuating the end support device lock 732, such that the end support device 728 locks onto the lead 104 (step 924). In some embodiments, locking the end support device 728 may prevent further movement of the tissue slitting apparatus 704 along the lead 104. Additionally or alternatively, the end support device lock 732 can provide support for the slitting element 716 at the distal end of the tissue slitting apparatus 704. In one embodiment, the end support device lock 732 may be actuated via a mechanical force applied from an actuation element 710. The mechanical force may be at least one of a linear translation, rotational translation, electromotive force, cam movement, and the like. As can be appreciated, the actuation force may be applied to the actuation element 710 such that the actuation force translates into a movement of the end support device lock 732. In some embodiments, the end support device lock 732 may move along an actuation guide track and/or a tapered outer surface 748 of the end support device 728. This move along the tapered outer surface 748 of the end support device 728 may cause one or more end support elements 740 to close, or reduce a collet lumen 744 diameter, such that the end support device 728 locks onto the lead 104.


The method 900 continues by actuating the slitting element 716 of the tissue slitting apparatus 704 (step 928). As the slitting element 716 is actuated, the cutting surface 718 of the slitting element 716 may be exposed from a sheathed position. For instance, the actuation of the slitting element 716 may move the cutting surface 718 from a position within the mechanical sheath 724 of the tissue slitting apparatus 704. One example of an actuation element 710 may include a shaft operatively connected to the slitting element 716. In this example, an actuation force may be applied to the actuation element 710 such that the actuation force translates into a movement of the slitting element 716. The actuation force can be at least one of a linear translation, rotational translation, electromotive force, cam movement, and the like.


Additionally or alternatively, the movement of the slitting element 716 may include one or more paths. For instance, a cam profile (e.g., a groove and pin, a cam surface and a cam follower, etc.) may be employed such that the slitting element 716 can make one or more of linear, arced, sweeping, lifting, and other movements. In some embodiments, the actuation of the slitting element 716 and the end support device lock 732 may be performed by a single actuator and/or actuation force.


In any event, it is anticipated that the slitting element 716 may introduce a cutting surface 718 to the tissue growth 108 at a point where the tissue growth 108 meets a lead 104, or other implanted object. As the cutting surface 718 moves into the tissue the slitting element 716 may lift in a direction away from the lead 104. This movement can cause the cutting surface 718 to cut the tissue. In some embodiments, and because the end support device 728 has locked onto the lead 104 at the distal end of the tissue slitting apparatus 704, the slitting element 716 may make sequential and/or sweeping cuts into the tissue growth 108 to create the slit as described herein. Among other things, the lifting motion of the slitting element 716 and cutting surface 718 can place the fibers of the tissue growth 108 under tension while the cutting surface 718 cuts the tissue of the tissue growth 108. As can be appreciated, supporting the slitting element 716 via locking the end support device 728 can allow for greater cutting forces to be applied via the slitting element 716. Once the slitting element 716 has performed the cutting operation, the slitting element 716 may return to its original position such that the cutting surface 718 is sheathed.


The method 900 continues when the tissue slitting apparatus 704 has completed the cutting operation (step 932). At this point, the end support device lock 732 may be unlocked (step 934). For instance, the steps of actuating the end support device lock 732, as described above, may be performed in reverse. In one embodiment, the end support device lock 732 may be actuated via a mechanical force applied from an actuation element 710. In some embodiments, the end support device lock 732 may move along an actuation guide track and/or a tapered outer surface 748 of the end support device 728 in a direction that may cause one or more end support elements 740 to open, or increase a collet lumen 744 diameter, such that the end support device 728 is released from a locked position. This unlocked end support device 728 can allow the tissue slitting apparatus 704 to move along the lead 104.


In the event that the tissue growth 108 is still restricting a movement of the lead 104, the steps above may be repeated with the tissue growth 108 or other tissue growths found along the length of the lead 104 (step 936). Once the lead 104 has been released from the restrictive forces of tissue growth, the method 900 may continue by removing the lead 104 through the inner lumen 712 of the tissue slitting apparatus 704 (step 940). The method ends at step 944.


In some embodiments, the tissue slitting apparatus 704 may be indexed forward (into the tissue formation 108) continuously or periodically. In other embodiments, the tissue slitting apparatus 704 may be repeatedly indexed into and removed from the engagement area of the formed tissue growth 108. It is anticipated that each time the tissue slitting apparatus 704 is indexed into the engagement area the device 704 can make a successively longer slit in the formed tissue growth 108. Actuation may be achieved via an actuator that is operatively connected to the actuation element 710. The actuator may be an electrical motor that is located at the proximal end of the flexible shaft 708. In some embodiments, the actuator may be manually operated via a mechanical movement at the proximal end of the flexible shaft 708 through the actuation element 710 connected to the slitting element 716. In any event, energy from the actuator may be transferred to at least one of the end support device lock 732, end support device 728, and the slitting element 716 via one or more of a shaft, rod, cam, bar, pin, link, groove, combinations thereof, and the like that are configured to transmit force from the proximal end of the tissue slitting apparatus 704 to the at least one of the end support device lock 732, end support device 728, and the slitting element 716.


As described above, the method may be continued by determining whether other tissue growths exist, and if so, indexing the tissue slitting apparatus 704 through each formed tissue growth 108 that is surrounding a section of the implanted lead 104 in the vasculature. Once all of the formed tissue growths 108 are slit, or separated, the tissue slitting apparatus 704 may be removed from the patient 102. Additionally or alternatively, once the slits have been made the lead 104 may be removed by applying a pull force to the lead-locking device in the same direction as the mechanical traction force previously applied to the lead 104. It is anticipated that any movement of the tissue slitting apparatus 704 may be accompanied by an applied mechanical traction force to the lead/lead-locking device.


In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.


Presented herein are embodiments of a tissue separating device, system, and method. As described herein, the device(s) may be electrical, mechanical, electro-mechanical, and/or combinations thereof.


Also, while the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.


A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others. By way of illustration, any methodology or modality of cutting tissue may be employed as described herein to effect lead removal from an encased tissue growth.


The present disclosure, in various aspects, embodiments, and/or configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations embodiments, subcombinations, and/or subsets thereof. Those of skill in the art will understand how to make and use the disclosed aspects, embodiments, and/or configurations after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and/or configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and/or configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and/or reducing cost of implementation.


The foregoing discussion has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Summary for example, various features of the disclosure are grouped together in one or more aspects, embodiments, and/or configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and/or configurations of the disclosure may be combined in alternate aspects, embodiments, and/or configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspect, embodiment, and/or configuration. Thus, the following claims are hereby incorporated into this Summary, with each claim standing on its own as a separate preferred embodiment of the disclosure.


Moreover, though the description has included description of one or more aspects, embodiments, and/or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and/or configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims
  • 1. A tissue slitting device comprising: a shaft having a distal end, a longitudinal axis, and an inner lumen extending substantially through the shaft;an actuation guide comprising a track, wherein the track comprises a linear portion substantially parallel to the longitudinal axis of the shaft and a non-linear portion proximal to the linear portion;a cutting edge at the distal end of the shaft, wherein the cutting edge pivots on a pin that follows the track of the actuation guide; anda support element having a tapered outer surface and a lumen running therethrough, wherein the lumen of the support element is in communication with the inner lumen of the shaft.
  • 2. The tissue slitting device of claim 1 wherein the cutting edge pivots away from the longitudinal axis of the shaft as the pin travels through the non-linear portion of the guide track.
  • 3. The tissue slitting device of claim 1 wherein the cutting edge pivots away from the longitudinal axis of the shaft as the pin travels through the non-linear portion of the guide track.
  • 4. The tissue slitting device of claim 1 further comprising a tissue slitting element comprising the cutting edge and a slitting orientation control feature disposed adjacent to the distal end of the tissue slitting device, wherein the slitting orientation control feature is configured to prevent rotation of the tissue slitting element into a vessel wall of a patient.
  • 5. The tissue slitting device of claim 1 further comprising an actuation element and an end support device lock operatively connected to the actuation element that moves the end support device lock along the tapered outer surface of the support element and the movement of the end support device lock along the tapered outer surface of the support element reduces a diameter of the lumen running through the support element to provide a clamping force onto an object that is implanted in a patient.
  • 6. The tissue slitting device of claim 1 wherein the support element is arranged as a collet separated into two or more end support elements that, when subjected to an actuation force, reduce an internal diameter of the lumen running through the support element.
  • 7. The tissue slitting device of claim 1 wherein the cutting edge pivots away from a lead implanted in a patient with a lifting motion that produces tension on fibers of a tissue growth around the lead.
  • 8. A tissue slitting device for removing an object implanted in a patient, the tissue slitting device comprising: a shaft for insertion into a lumen of the patient, the shaft having a distal end, a longitudinal axis, and an inner lumen extending substantially through the shaft;an actuation guide comprising a track, wherein the track comprises a linear portion substantially parallel to the longitudinal axis of the shaft and a non-linear portion proximal to the linear portion;a cutting edge at the distal end of the shaft comprising a pin, wherein the cutting edge pivots away from the longitudinal axis of the shaft as the pin travels through the non-linear portion of the guide track; anda support element having a tapered outer surface and a lumen running therethrough, wherein the lumen of the support element is in communication with the inner lumen of the shaft.
  • 9. The tissue slitting device of claim 8 further comprising a tissue slitting element comprising the cutting edge and a slitting orientation control feature disposed adjacent to the distal end of the tissue slitting device, wherein the slitting orientation control feature is configured to prevent rotation of the tissue slitting element into a vessel wall of a patient.
  • 10. The tissue slitting device of claim 9 further comprising an actuation element and an end support device lock operatively coupled to the actuation element.
  • 11. The tissue slitting apparatus of claim 10, wherein the actuation element moves the end support device lock along the tapered outer surface of the support element, and wherein the movement of the end support device lock along the tapered outer surface of the support element reduces a diameter of the inner lumen to provide a clamping force onto the object implanted in the patient.
  • 12. The tissue slitting apparatus of claim 8 wherein the support element is arranged as a collet separated into two or more end support elements that, when subjected to an actuation force, reduce an internal diameter of the lumen running through the support element.
  • 13. The tissue slitting apparatus of claim 8 wherein the cutting edge pivots away from the object implanted in the patient with a lifting motion that produces tension on fibers of a tissue growth around the object.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/192,445, filed on Feb. 27, 2014, which claims the benefits of and priority, under 35 U.S.C. § 119(e), to U.S. Provisional Application Ser. No. 61/784,203, filed on Mar. 14, 2013, entitled “Distal End Supported Tissue Slitting Apparatus,” the entire disclosure of which is hereby incorporated herein by reference, in its entirety, for all that it teaches and for all purposes. This application is also related to U.S. patent application Ser. No. 13/828,231, filed on Mar. 14, 2013, entitled, “Tissue Slitting Methods and Systems”; Ser. No. 13/828,310, filed on Mar. 14, 2013, entitled, “Tissue Slitting Methods and Systems”; Ser. No. 13/828,383, filed on Mar. 14, 2013, entitled, “Tissue Slitting Methods and Systems”; Ser. No. 13/828,441, filed on Mar. 14, 2013, entitled, “Tissue Slitting Methods and Systems”; Ser. No. 13/828,638, filed on Mar. 14, 2013, entitled, “Lead Removal Sleeve” and Ser. No. 13/828,536, filed on Mar. 14, 2013, entitled, “Expandable Lead Jacket”. The entire disclosures of the applications listed above are hereby incorporated herein by reference, in their entirety, for all that they teach and for all purposes.

US Referenced Citations (772)
Number Name Date Kind
1663761 Johnson Mar 1928 A
3400708 Scheidt Sep 1968 A
3521640 Carey Jul 1970 A
3614953 Moss Oct 1971 A
3805382 Benedict Apr 1974 A
3831274 Horrocks Aug 1974 A
3858577 Bass et al. Jan 1975 A
4051596 Hofmann Oct 1977 A
4203444 Bonnell et al. May 1980 A
4246902 Martinez Jan 1981 A
4274414 Johnson et al. Jun 1981 A
4311138 Sugarman Jan 1982 A
4471777 McCorkle, Jr. Sep 1984 A
4517977 Frost May 1985 A
4559927 Chin Dec 1985 A
4566438 Liese et al. Jan 1986 A
4567882 Heller Feb 1986 A
4576162 McCorkle Mar 1986 A
4582056 McCorkle et al. Apr 1986 A
4598710 Kleinberg et al. Jul 1986 A
4627436 Leckrone Dec 1986 A
4641912 Goldenberg Feb 1987 A
4646738 Trott Mar 1987 A
4662869 Wright May 1987 A
4674502 Imonti Jun 1987 A
4718417 Kittrell Jan 1988 A
4729763 Henrie Mar 1988 A
4754755 Husted Jul 1988 A
4767403 Hodge Aug 1988 A
4844062 Wells Jul 1989 A
4862886 Clarke Sep 1989 A
4881550 Kothe Nov 1989 A
4911148 Sosnowski et al. Mar 1990 A
4943289 Goode et al. Jul 1990 A
4988347 Goode et al. Jan 1991 A
4997424 Little Mar 1991 A
5011482 Goode et al. Apr 1991 A
5013310 Goode et al. May 1991 A
5030207 Mersch et al. Jul 1991 A
5031634 Simon Jul 1991 A
5041108 Fox et al. Aug 1991 A
5114403 Clarke et al. May 1992 A
5139494 Freiberg Aug 1992 A
5139495 Daikuzono Aug 1992 A
5148599 Purcell Sep 1992 A
5152744 Krause et al. Oct 1992 A
5186634 Thompson Feb 1993 A
5201316 Pomeranz et al. Apr 1993 A
5207683 Goode et al. May 1993 A
5230334 Klopotek Jul 1993 A
5250045 Bohley Oct 1993 A
5263928 Trauthen et al. Nov 1993 A
5275609 Pingleton et al. Jan 1994 A
5290275 Kittrell et al. Mar 1994 A
5290280 Daikuzono Mar 1994 A
5290303 Pingleton et al. Mar 1994 A
5353786 Wilk Oct 1994 A
5358487 Miller Oct 1994 A
5373840 Knighton Dec 1994 A
5377683 Barken Jan 1995 A
5383199 Laudenslager et al. Jan 1995 A
5395328 Ockuly et al. Mar 1995 A
5396902 Brennen et al. Mar 1995 A
5423330 Lee Jun 1995 A
5423806 Dale et al. Jun 1995 A
5431674 Basile Jul 1995 A
5456680 Taylor et al. Oct 1995 A
5460182 Goodman et al. Oct 1995 A
5466234 Loeb et al. Nov 1995 A
5468238 Mersch Nov 1995 A
5470330 Goldenberg et al. Nov 1995 A
5484433 Taylor et al. Jan 1996 A
5507751 Goode et al. Apr 1996 A
5562694 Sauer et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5573531 Gregory Nov 1996 A
5575797 Neubauer et al. Nov 1996 A
5605539 Buelna et al. Feb 1997 A
5620414 Campbell et al. Apr 1997 A
5620451 Rosborough Apr 1997 A
5632749 Goode et al. May 1997 A
5651781 Grace Jul 1997 A
5665051 Quick Sep 1997 A
5667473 Finn et al. Sep 1997 A
5682199 Lankford Oct 1997 A
5697936 Sbipko et al. Dec 1997 A
5700270 Peyser Dec 1997 A
5707389 Louw et al. Jan 1998 A
5718237 Haaga Feb 1998 A
5725523 Mueller Mar 1998 A
5735847 Gough et al. Apr 1998 A
5746738 Cleary et al. May 1998 A
5766164 Mueller et al. Jun 1998 A
5782823 Mueller Jul 1998 A
5807399 Laske et al. Sep 1998 A
5814044 Hooven Sep 1998 A
5823971 Robinson et al. Oct 1998 A
5824026 Diaz Oct 1998 A
5825958 Gollihar Oct 1998 A
5863294 Alden Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5879365 Whitfield et al. Mar 1999 A
5893862 Pratt et al. Apr 1999 A
5899915 Saadat May 1999 A
5906611 Dodick et al. May 1999 A
5910150 Saadat Jun 1999 A
5916210 Winston Jun 1999 A
5931848 Saadat Aug 1999 A
5941893 Saadat Aug 1999 A
5947958 Woodard et al. Sep 1999 A
5951543 Brauer Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5970982 Perkins Oct 1999 A
5972012 Ream et al. Oct 1999 A
5980515 Tu Nov 1999 A
5980545 Pacala et al. Nov 1999 A
5989243 Goldenberg Nov 1999 A
6007512 Hooven Dec 1999 A
6010476 Saadat Jan 2000 A
6019756 Mueller et al. Feb 2000 A
6022336 Zadno-Azizi et al. Feb 2000 A
6027450 Brown et al. Feb 2000 A
6027497 Daniel et al. Feb 2000 A
6033402 Tu et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6051008 Saadat et al. Apr 2000 A
6066131 Mueller et al. May 2000 A
6080175 Hogendijk Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6117128 Gregory Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6123718 Tu Sep 2000 A
6126654 Giba et al. Oct 2000 A
6129897 Daikuzono Oct 2000 A
6136005 Goode et al. Oct 2000 A
6139543 Esch et al. Oct 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6152918 Padilla et al. Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159203 Sinofsky Dec 2000 A
6159225 Makower Dec 2000 A
6162214 Mueller et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167315 Coe et al. Dec 2000 A
6174307 Daniel et al. Jan 2001 B1
6190352 Haarala et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6193650 Ryan et al. Feb 2001 B1
6203537 Adrian Mar 2001 B1
6210400 Hebert et al. Apr 2001 B1
6228052 Pohndorf May 2001 B1
6228076 Winston et al. May 2001 B1
6235044 Root et al. May 2001 B1
6241692 Tu et al. Jun 2001 B1
6245011 Dudda et al. Jun 2001 B1
6251121 Saadat Jun 2001 B1
6258083 Daniel et al. Jul 2001 B1
6290668 Gregory et al. Sep 2001 B1
6315774 Daniel et al. Nov 2001 B1
6324434 Coe et al. Nov 2001 B2
6368318 Visuri et al. Apr 2002 B1
6395002 Ellman et al. May 2002 B1
6398773 Bagaoisan et al. Jun 2002 B1
6402771 Palmer et al. Jun 2002 B1
6402781 Langberg et al. Jun 2002 B1
6419674 Bowser et al. Jul 2002 B1
6419684 Heisler et al. Jul 2002 B1
6423051 Kaplan et al. Jul 2002 B1
6428539 Baxter et al. Aug 2002 B1
6428556 Chin Aug 2002 B1
6432119 Saadat Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6454741 Muni et al. Sep 2002 B1
6454758 Thompson et al. Sep 2002 B1
6461349 Elbrecht et al. Oct 2002 B1
6478777 Honeck et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6485485 Winston et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6500182 Foster Dec 2002 B2
6512959 Gomperz et al. Jan 2003 B1
6527752 Bosley et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6554779 Viola et al. Apr 2003 B2
6558382 Jahns et al. May 2003 B2
6565583 Deaton et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6569082 Chin May 2003 B1
6575997 Palmer et al. Jun 2003 B1
6592607 Palmer et al. Jul 2003 B1
6595982 Sekino et al. Jul 2003 B2
6599296 Gillick et al. Jul 2003 B1
6602241 Makower et al. Aug 2003 B2
6607547 Chin Aug 2003 B1
6610046 Usami et al. Aug 2003 B1
6610066 Dinger et al. Aug 2003 B2
6613013 Haarala et al. Sep 2003 B2
6620153 Mueller et al. Sep 2003 B2
6620160 Lewis et al. Sep 2003 B2
6620180 Bays et al. Sep 2003 B1
6641590 Palmer et al. Nov 2003 B1
6652480 Imran et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663621 Winston Dec 2003 B1
6663626 Truckai et al. Dec 2003 B2
6669685 Rizoiu et al. Dec 2003 B1
6673090 Root et al. Jan 2004 B2
6687548 Goode Feb 2004 B2
6702813 Baxter et al. Mar 2004 B1
6706018 Westlund et al. Mar 2004 B2
6706052 Chin Mar 2004 B1
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712826 Lui Mar 2004 B2
6772014 Coe et al. Aug 2004 B2
6802838 Loeb et al. Oct 2004 B2
6805692 Muni et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6855143 Davison Feb 2005 B2
6858027 Redtenbacher et al. Feb 2005 B2
6860860 Viola Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6871085 Sommer Mar 2005 B2
6884240 Dykes Apr 2005 B1
6887238 Jahns et al. May 2005 B2
6893450 Foster May 2005 B2
6913612 Palmer et al. Jul 2005 B2
6962585 Poleo et al. Nov 2005 B2
6966906 Brown Nov 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6979319 Manning et al. Dec 2005 B2
6989028 Lashinski et al. Jan 2006 B2
6999809 Currier et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7029467 Currier et al. Apr 2006 B2
7033335 Haarala et al. Apr 2006 B2
7033344 Imran Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7077856 Whitman Jul 2006 B2
7092765 Geske et al. Aug 2006 B2
7104983 Grasso et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7117039 Manning et al. Oct 2006 B2
7149587 Wardle et al. Dec 2006 B2
7151965 Osypka Dec 2006 B2
7189207 Viola Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7192430 Truckai et al. Mar 2007 B2
7204824 Moulis Apr 2007 B2
7214180 Chin May 2007 B2
7226459 Cesarini et al. Jun 2007 B2
7238179 Brucker et al. Jul 2007 B2
7238180 Mester et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7264587 Chin Sep 2007 B2
7273478 Appling et al. Sep 2007 B2
7276052 Kobayashi et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7306588 Loeb et al. Dec 2007 B2
7326226 Root et al. Feb 2008 B2
7328071 Stehr et al. Feb 2008 B1
7344546 Wulfman et al. Mar 2008 B2
7357794 Makower et al. Apr 2008 B2
7359756 Goode Apr 2008 B2
7369901 Morgan et al. May 2008 B1
7392095 Flynn et al. Jun 2008 B2
7396354 Rychnovsky et al. Jul 2008 B2
7398781 Chin Jul 2008 B1
7449010 Hayase et al. Nov 2008 B1
7462167 Kratz et al. Dec 2008 B2
7485127 Nistal Feb 2009 B2
7494484 Beck et al. Feb 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7509169 Eigler et al. Mar 2009 B2
7510524 Vayser et al. Mar 2009 B2
7510576 Langberg et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7513892 Haarala et al. Apr 2009 B1
7526342 Chin et al. Apr 2009 B2
7537602 Whitman May 2009 B2
7540865 Griffin et al. Jun 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7559941 Zannis et al. Jul 2009 B2
D600792 Eubanks et al. Sep 2009 S
7591790 Pflueger Sep 2009 B2
7597698 Chin Oct 2009 B2
7606615 Makower et al. Oct 2009 B2
7611474 Hibner et al. Nov 2009 B2
7637904 Wingler et al. Dec 2009 B2
7645286 Catanese et al. Jan 2010 B2
7648466 Stephens et al. Jan 2010 B2
7651503 Coe et al. Jan 2010 B1
7651504 Goode et al. Jan 2010 B2
D610259 Way et al. Feb 2010 S
D611146 Way et al. Mar 2010 S
7674272 Torrance et al. Mar 2010 B2
7695485 Whitman et al. Apr 2010 B2
7695512 Lashinski et al. Apr 2010 B2
7697996 Manning et al. Apr 2010 B2
7713231 Wulfman et al. May 2010 B2
7713235 Torrance et al. May 2010 B2
7713281 Leeflang et al. May 2010 B2
7722549 Nakao May 2010 B2
7740626 Takayama et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
D619252 Way et al. Jul 2010 S
D619253 Way et al. Jul 2010 S
7758594 Lamson et al. Jul 2010 B2
7758613 Whitman Jul 2010 B2
D621939 Way et al. Aug 2010 S
7766923 Catanese et al. Aug 2010 B2
7780682 Catanese et al. Aug 2010 B2
7780694 Palmer et al. Aug 2010 B2
7794411 Ritchart et al. Sep 2010 B2
7798813 Harrel Sep 2010 B1
7801624 Flannery et al. Sep 2010 B1
7803151 Whitman Sep 2010 B2
7806835 Hibner et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7815655 Catanese et al. Oct 2010 B2
7842009 Torrance et al. Nov 2010 B2
7845538 Whitman Dec 2010 B2
7858038 Andreyko et al. Dec 2010 B2
7875018 Tockman et al. Jan 2011 B2
7875049 Eversull et al. Jan 2011 B2
7890186 Wardle et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7896879 Solsberg et al. Mar 2011 B2
7896891 Catanese et al. Mar 2011 B2
7905889 Catanese et al. Mar 2011 B2
7909836 McLean et al. Mar 2011 B2
7914464 Burdorff et al. Mar 2011 B2
7914542 Lamson et al. Mar 2011 B2
D635671 Way et al. Apr 2011 S
7918230 Whitman et al. Apr 2011 B2
7918803 Ritchart et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7935146 Langberg et al. May 2011 B2
7938786 Ritchie et al. May 2011 B2
7942830 Solsberg et al. May 2011 B2
7951071 Whitman et al. May 2011 B2
7951158 Catanese et al. May 2011 B2
7963040 Shan et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7974710 Seifert Jul 2011 B2
7981049 Ritchie et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981128 To et al. Jul 2011 B2
7988726 Langberg et al. Aug 2011 B2
7991258 Temelkuran et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7993350 Ventura et al. Aug 2011 B2
7993351 Worley et al. Aug 2011 B2
7993359 Atwell et al. Aug 2011 B1
8007469 Duffy Aug 2011 B2
8007488 Ravenscroft Aug 2011 B2
8007503 Catanese et al. Aug 2011 B2
8007506 To et al. Aug 2011 B2
8016748 Mourlas et al. Sep 2011 B2
8016844 Privitera et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8021373 Whitman et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8043309 Catanese et al. Oct 2011 B2
RE42959 Saadat et al. Nov 2011 E
8052616 Andrisek et al. Nov 2011 B2
8052659 Ravenscroft et al. Nov 2011 B2
8056786 Whitman et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8070762 Escudero et al. Dec 2011 B2
8090430 Makower et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100920 Gambale et al. Jan 2012 B2
8118208 Whitman Feb 2012 B2
8126570 Manning et al. Feb 2012 B2
8128577 Viola Mar 2012 B2
8128636 Lui et al. Mar 2012 B2
8133214 Hayase et al. Mar 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8142446 Shan Mar 2012 B2
RE43300 Saadat et al. Apr 2012 E
8157815 Catanese et al. Apr 2012 B2
8186559 Whitman May 2012 B1
8187204 Miller et al. May 2012 B2
8187268 Godara et al. May 2012 B2
8192430 Goode et al. Jun 2012 B2
8202229 Miller et al. Jun 2012 B2
8206409 Privitera et al. Jun 2012 B2
8211118 Catanese et al. Jul 2012 B2
8216254 McLean et al. Jul 2012 B2
8235916 Whiting et al. Aug 2012 B2
8236016 To et al. Aug 2012 B2
8239039 Zarembo et al. Aug 2012 B2
8241272 Arnold et al. Aug 2012 B2
8251916 Speeg et al. Aug 2012 B2
8252015 Leeflang et al. Aug 2012 B2
8257312 Duffy Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8273078 Muenker Sep 2012 B2
8295947 Lamson et al. Oct 2012 B2
8303511 Eigler et al. Nov 2012 B2
8323240 Wulfman et al. Dec 2012 B2
8326437 Cully et al. Dec 2012 B2
8333740 Shippert Dec 2012 B2
8333776 Cheng et al. Dec 2012 B2
8337516 Escudero et al. Dec 2012 B2
8343167 Henson Jan 2013 B2
8343187 Lamson et al. Jan 2013 B2
8353899 Wells et al. Jan 2013 B1
8361094 To et al. Jan 2013 B2
8364280 Marnfeldt et al. Jan 2013 B2
8372098 Tran Feb 2013 B2
8394110 Catanese et al. Mar 2013 B2
8394113 Wei et al. Mar 2013 B2
8425535 McLean et al. Apr 2013 B2
8632558 Chin et al. Jan 2014 B2
20010005789 Root et al. Jun 2001 A1
20010016717 Haarala et al. Aug 2001 A1
20010025174 Daniel et al. Sep 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010041899 Foster Nov 2001 A1
20020002372 Jahns et al. Jan 2002 A1
20020007204 Goode Jan 2002 A1
20020010475 Lui Jan 2002 A1
20020010487 Evans et al. Jan 2002 A1
20020016628 Langberg et al. Feb 2002 A1
20020026127 Balbierz Feb 2002 A1
20020042610 Sliwa et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020065543 Gomperz et al. May 2002 A1
20020068954 Foster Jun 2002 A1
20020077593 Perkins et al. Jun 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020103477 Grasso et al. Aug 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020123785 Zhang et al. Sep 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020156346 Kamrava et al. Oct 2002 A1
20020183735 Edwards et al. Dec 2002 A1
20020188278 Tockman et al. Dec 2002 A1
20030009146 Muni et al. Jan 2003 A1
20030009157 Levine et al. Jan 2003 A1
20030050630 Mody et al. Mar 2003 A1
20030050631 Mody et al. Mar 2003 A1
20030055444 Evans et al. Mar 2003 A1
20030055445 Evans et al. Mar 2003 A1
20030065312 Owa Apr 2003 A1
20030065316 Levine et al. Apr 2003 A1
20030069575 Chin et al. Apr 2003 A1
20030073985 Mueller et al. Apr 2003 A1
20030078562 Makower et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030105451 Westlund et al. Jun 2003 A1
20030125619 Manning et al. Jul 2003 A1
20030144594 Gellman Jul 2003 A1
20030167056 Jahns et al. Sep 2003 A1
20030181935 Gardeski et al. Sep 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030229323 Haarala et al. Dec 2003 A1
20030229353 Cragg Dec 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040010248 Appling et al. Jan 2004 A1
20040015193 Lamson et al. Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040049208 Hill et al. Mar 2004 A1
20040054368 Truckai et al. Mar 2004 A1
20040054388 Osypka Mar 2004 A1
20040059348 Geske et al. Mar 2004 A1
20040059404 Bjorklund Mar 2004 A1
20040064024 Sommer Apr 2004 A1
20040068256 Rizoiu et al. Apr 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040093016 Root et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040102804 Chin May 2004 A1
20040102841 Langberg et al. May 2004 A1
20040111101 Chin Jun 2004 A1
20040116939 Goode Jun 2004 A1
20040116992 Wardle et al. Jun 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040138528 Richter et al. Jul 2004 A1
20040138562 Makower et al. Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040143284 Chin Jul 2004 A1
20040147911 Sinofsky Jul 2004 A1
20040147912 Sinofsky Jul 2004 A1
20040147913 Sinofsky Jul 2004 A1
20040153096 Goode et al. Aug 2004 A1
20040153098 Chin et al. Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040158236 Thyzel Aug 2004 A1
20040172116 Seifert et al. Sep 2004 A1
20040176840 Langberg et al. Sep 2004 A1
20040181249 Torrance et al. Sep 2004 A1
20040216748 Chin Nov 2004 A1
20040220519 Wulfman et al. Nov 2004 A1
20040225280 Horrigan Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040235611 Nistal Nov 2004 A1
20040236312 Nistal et al. Nov 2004 A1
20040236397 Coe et al. Nov 2004 A1
20040243123 Grasso et al. Dec 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20040254534 Bjorkman et al. Dec 2004 A1
20040260322 Rudko et al. Dec 2004 A1
20040267276 Camino et al. Dec 2004 A1
20040267304 Zannis et al. Dec 2004 A1
20050004644 Kelsch et al. Jan 2005 A1
20050025798 Moulis Feb 2005 A1
20050027199 Clarke Feb 2005 A1
20050027337 Rudko et al. Feb 2005 A1
20050038419 Arnold et al. Feb 2005 A9
20050060030 Lashinski et al. Mar 2005 A1
20050065561 Manning et al. Mar 2005 A1
20050090748 Makower et al. Apr 2005 A1
20050096643 Brucker May 2005 A1
20050096740 Langberg et al. May 2005 A1
20050131399 Loeb et al. Jun 2005 A1
20050149104 Leeflang et al. Jul 2005 A1
20050149105 Leeflang et al. Jul 2005 A1
20050165288 Rioux et al. Jul 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050222607 Palmer et al. Oct 2005 A1
20050228402 Hofmann Oct 2005 A1
20050228452 Mourlas et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050259942 Temelkuran et al. Nov 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050283143 Rizoiu Dec 2005 A1
20050288596 Eigler et al. Dec 2005 A1
20050288604 Eigler et al. Dec 2005 A1
20050288654 Nieman et al. Dec 2005 A1
20050288722 Eigler et al. Dec 2005 A1
20060004317 Mauge et al. Jan 2006 A1
20060052660 Chin Mar 2006 A1
20060084839 Mourlas et al. Apr 2006 A1
20060100663 Palmer et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060167417 Kratz et al. Jul 2006 A1
20060173440 Lamson et al. Aug 2006 A1
20060217755 Eversull et al. Sep 2006 A1
20060229490 Chin Oct 2006 A1
20060235431 Goode et al. Oct 2006 A1
20060247751 Seifert Nov 2006 A1
20060253179 Goode et al. Nov 2006 A1
20060265042 Catanese et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060287574 Chin Dec 2006 A1
20070015964 Eversull et al. Jan 2007 A1
20070016130 Leeflang et al. Jan 2007 A1
20070021812 Manning et al. Jan 2007 A1
20070049929 Catanese et al. Mar 2007 A1
20070050003 Zarembo et al. Mar 2007 A1
20070078500 Ryan Apr 2007 A1
20070083217 Eversull et al. Apr 2007 A1
20070100410 Lamson et al. May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070129710 Rudko et al. Jun 2007 A1
20070142846 Catanese et al. Jun 2007 A1
20070197861 Reiley et al. Aug 2007 A1
20070198020 Reiley et al. Aug 2007 A1
20070232981 Ravenscroft et al. Oct 2007 A1
20070276412 Catanese et al. Nov 2007 A1
20070293853 Truckal et al. Dec 2007 A1
20080004643 To et al. Jan 2008 A1
20080004644 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080004646 To et al. Jan 2008 A1
20080004647 To et al. Jan 2008 A1
20080015625 Ventura et al. Jan 2008 A1
20080021484 Catanese et al. Jan 2008 A1
20080021485 Catanese et al. Jan 2008 A1
20080033232 Catanese et al. Feb 2008 A1
20080033456 Catanese et al. Feb 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080033488 Catanese et al. Feb 2008 A1
20080039833 Catanese et al. Feb 2008 A1
20080039872 Catanese et al. Feb 2008 A1
20080039874 Catanese et al. Feb 2008 A1
20080039875 Catanese et al. Feb 2008 A1
20080039876 Catanese et al. Feb 2008 A1
20080039889 Lamson et al. Feb 2008 A1
20080039893 McLean et al. Feb 2008 A1
20080039894 Catanese et al. Feb 2008 A1
20080045986 To et al. Feb 2008 A1
20080051756 Makower et al. Feb 2008 A1
20080058759 Makower et al. Mar 2008 A1
20080071341 Goode et al. Mar 2008 A1
20080071342 Goode et al. Mar 2008 A1
20080097378 Zuckerman Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080103439 Torrance et al. May 2008 A1
20080103446 Torrance et al. May 2008 A1
20080103516 Wulfman et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080125748 Patel May 2008 A1
20080147061 Goode et al. Jun 2008 A1
20080154293 Taylor Jun 2008 A1
20080154296 Taylor et al. Jun 2008 A1
20080183163 Lampropoulos et al. Jul 2008 A1
20080194969 Werahera Aug 2008 A1
20080195128 Orbay Aug 2008 A1
20080208105 Zelickson et al. Aug 2008 A1
20080221560 Arai et al. Sep 2008 A1
20080228208 Wulfman et al. Sep 2008 A1
20080249516 Muenker Oct 2008 A1
20080262516 Gambale et al. Oct 2008 A1
20080275497 Palmer et al. Nov 2008 A1
20080275498 Palmer et al. Nov 2008 A1
20080281308 Neuberger et al. Nov 2008 A1
20080287888 Ravenscroft Nov 2008 A1
20080306333 Chin Dec 2008 A1
20090012510 Bertolero et al. Jan 2009 A1
20090018523 Lamson et al. Jan 2009 A1
20090018553 McLean et al. Jan 2009 A1
20090034927 Temelkuran et al. Feb 2009 A1
20090036871 Hayase et al. Feb 2009 A1
20090054918 Henson Feb 2009 A1
20090060977 Lamson et al. Mar 2009 A1
20090071012 Shan et al. Mar 2009 A1
20090076522 Shan Mar 2009 A1
20090131907 Chin et al. May 2009 A1
20090157045 Haarala et al. Jun 2009 A1
20090182313 Auld Jul 2009 A1
20090187196 Vetter Jul 2009 A1
20090192439 Lamson et al. Jul 2009 A1
20090198098 Okada Aug 2009 A1
20090204128 Lamson et al. Aug 2009 A1
20090221994 Neuberger et al. Sep 2009 A1
20090222025 Catanese et al. Sep 2009 A1
20090227999 Willis et al. Sep 2009 A1
20090234378 Escudero et al. Sep 2009 A1
20090319015 Horn-Wyffels Dec 2009 A1
20100004606 Hansen et al. Jan 2010 A1
20100016836 Makower et al. Jan 2010 A1
20100030154 Duffy Feb 2010 A1
20100030161 Duffy Feb 2010 A1
20100030262 McLean et al. Feb 2010 A1
20100030263 Cheng et al. Feb 2010 A1
20100049225 To et al. Feb 2010 A1
20100063488 Fischer et al. Mar 2010 A1
20100125253 Olson et al. May 2010 A1
20100137873 Grady et al. Jun 2010 A1
20100160952 Leeflang et al. Jun 2010 A1
20100191165 Appling et al. Jul 2010 A1
20100198194 Manning et al. Aug 2010 A1
20100198229 Olomutzki et al. Aug 2010 A1
20100217277 Truong Aug 2010 A1
20100222737 Arnold et al. Sep 2010 A1
20100222787 Goode et al. Sep 2010 A1
20100240951 Catanese et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268175 Lunsford Oct 2010 A1
20100280496 Shippert Nov 2010 A1
20100324472 Wulfman Dec 2010 A1
20100331793 Tulleken Dec 2010 A1
20110004238 Palmer et al. Jan 2011 A1
20110009957 Langberg et al. Jan 2011 A1
20110022057 Eigler et al. Jan 2011 A1
20110028959 Chasan Feb 2011 A1
20110034790 Mourlas et al. Feb 2011 A1
20110040238 Wulfman et al. Feb 2011 A1
20110040312 Lamson et al. Feb 2011 A1
20110040315 To et al. Feb 2011 A1
20110040326 Wei et al. Feb 2011 A1
20110046648 Johnston et al. Feb 2011 A1
20110054493 McLean et al. Mar 2011 A1
20110060349 Cheng et al. Mar 2011 A1
20110071440 Torrance et al. Mar 2011 A1
20110105947 Fritscher-Ravens et al. May 2011 A1
20110106004 Eubanks et al. May 2011 A1
20110106099 Duffy et al. May 2011 A1
20110112548 Fifer et al. May 2011 A1
20110112562 Torrance May 2011 A1
20110112563 To et al. May 2011 A1
20110112564 Wolf May 2011 A1
20110118660 Torrance et al. May 2011 A1
20110144423 Tong et al. Jun 2011 A1
20110144425 Catanese et al. Jun 2011 A1
20110151463 Wulfman Jun 2011 A1
20110152607 Catanese et al. Jun 2011 A1
20110152906 Escudero et al. Jun 2011 A1
20110152907 Escudero et al. Jun 2011 A1
20110160747 McLean et al. Jun 2011 A1
20110160748 Catanese et al. Jun 2011 A1
20110166564 Merrick et al. Jul 2011 A1
20110178543 Chin et al. Jul 2011 A1
20110190758 Lamson et al. Aug 2011 A1
20110196298 Anderson et al. Aug 2011 A1
20110196355 Mitchell et al. Aug 2011 A1
20110196357 Srinivasan Aug 2011 A1
20110208207 Bowe et al. Aug 2011 A1
20110213398 Chin et al. Sep 2011 A1
20110218528 Ogata et al. Sep 2011 A1
20110238078 Goode et al. Sep 2011 A1
20110238102 Gutfinger et al. Sep 2011 A1
20110245751 Hofmann Oct 2011 A1
20110257592 Ventura et al. Oct 2011 A1
20110270169 Gardeski et al. Nov 2011 A1
20110270170 Gardeski et al. Nov 2011 A1
20110270289 To et al. Nov 2011 A1
20110300010 Jarnagin et al. Dec 2011 A1
20110301417 Mourlas et al. Dec 2011 A1
20110301626 To et al. Dec 2011 A1
20120035590 Whiting et al. Feb 2012 A1
20120041422 Whiting et al. Feb 2012 A1
20120053564 Ravenscroft Mar 2012 A1
20120065466 Slater Mar 2012 A1
20120065659 To Mar 2012 A1
20120083810 Escudero et al. Apr 2012 A1
20120083826 Chao et al. Apr 2012 A1
20120095447 Fojtik Apr 2012 A1
20120095479 Bowe et al. Apr 2012 A1
20120097174 Spotnitz et al. Apr 2012 A1
20120123411 Ibrahim et al. May 2012 A1
20120136341 Appling et al. May 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120165861 Palmer et al. Jun 2012 A1
20120191015 Zannis et al. Jul 2012 A1
20120209173 Hayase et al. Aug 2012 A1
20120215305 Le et al. Aug 2012 A1
20120239008 Fojtik Sep 2012 A1
20120245600 McLean et al. Sep 2012 A1
20120253229 Cage Oct 2012 A1
20120265183 Tulleken et al. Oct 2012 A1
20120323252 Booker Dec 2012 A1
20120323253 Garai et al. Dec 2012 A1
20120330292 Shadduck et al. Dec 2012 A1
20130006228 Johnson et al. Jan 2013 A1
20130035676 Mitchell et al. Feb 2013 A1
20130085486 Boutoussov et al. Apr 2013 A1
20130096582 Cheng et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20140031800 Ben Oren et al. Jan 2014 A1
20140081252 Bowe et al. Mar 2014 A1
20140081289 Fiser Mar 2014 A1
20140081303 Bowe et al. Mar 2014 A1
20140081304 Bowe et al. Mar 2014 A1
20140081306 Bowe et al. Mar 2014 A1
20140081367 Hendrick et al. Mar 2014 A1
20140275982 Hendrick et al. Sep 2014 A1
20140276682 Hendrick et al. Sep 2014 A1
20140276683 Hendrick et al. Sep 2014 A1
20140276694 Hendrick et al. Sep 2014 A1
20140276695 Burton Sep 2014 A1
20140276696 Schneider Sep 2014 A1
20140276920 Hendrick et al. Sep 2014 A1
20140277037 Grace et al. Sep 2014 A1
20160022303 Fiser Jan 2016 A1
20160338727 Bowe Nov 2016 A1
20170325835 Bowe Nov 2017 A1
20170340346 Hendrick Nov 2017 A1
Foreign Referenced Citations (32)
Number Date Country
4038773 Jun 1992 DE
H05506382 Sep 1993 JP
2004516073 Jun 2004 JP
1991006271 May 1991 WO
1991017711 Nov 1991 WO
1993018818 Sep 1993 WO
1995033513 Dec 1995 WO
1999007295 Feb 1999 WO
1999049937 Oct 1999 WO
1999058066 Nov 1999 WO
2001076680 Oct 2001 WO
2002049690 May 2003 WO
2004049956 Jun 2004 WO
2004080345 Sep 2004 WO
2004080507 Sep 2004 WO
2006007410 Jan 2006 WO
2008005888 Jan 2008 WO
2008005891 Jan 2008 WO
2008042987 Apr 2008 WO
2009005779 Jan 2009 WO
2009054968 Apr 2009 WO
2009065082 May 2009 WO
2009126309 Oct 2009 WO
2011003113 Jan 2011 WO
2011084863 Jul 2011 WO
2011133941 Oct 2011 WO
2011162595 Dec 2011 WO
2012009697 Apr 2012 WO
2012098335 Jul 2012 WO
2012114333 Aug 2012 WO
2012177117 Dec 2012 WO
2013036588 Mar 2013 WO
Non-Patent Literature Citations (33)
Entry
Extended European Search Report issued in EP Application No. 13836886.5, dated Apr. 7, 2016, 6 pages.
Papaioannou, T., et al. Excimer Laser (308 nm) Recanalisation of In-Stent Restenosis: Thermal Considerations, Lasers Med Sci., 16(2):90-100, 2001. [Abstract Only].
St. Luke's Roosevelt Hospital Center. Laser Lead Extraction. Arrhythmia News, 11(2), 3 pages, 2006.
Department of Health and Ageing in Australian Government, “Horizon Scanning Technology Prioritising: Laser Extraction Systems.” 2010. 15 pages.
International Preliminary Examination Report issued in PCT/US2013/059434, completed Mar. 26, 2015, 11 pages.
International Preliminary Examination Report issued in PCT/US2013/059448, completed Mar. 26, 2015, 9 pages.
International Search Report and Written Opinion issued in PCT/US2013/059448, dated Dec. 16, 2013, 12 pages.
Kennergren et al. “Laser-Assisted Lead Extraction: the European Experience.” Europace. 2007, vol. 9, No. 8. 6 pages.
Wilkoff, Bruce et al. “Pacemaker Lead Extraction with the Laser Sheath: Results of the Pacing Lead Extraction with the Excimer Sheath (Plexes) Trial.” Journal of the American College of Cardiology, 1999. vol. 33, No. 6. 8 pages.
Decision to Grant for European Patent Application No. 07255018.9, dated Aug. 8, 2013, 2 pages.
Extended European Search Report for European Application No. 07255018.9, dated Nov. 12, 2010.
Final Action for U.S. Appl. No. 11/615,005, dated Nov. 9, 2009, 10 pages.
Final Action for U.S. Appl. No. 11/615,005, dated Nov. 21, 2013, 20 pages.
Final Action for U.S. Appl. No. 11/615,006 dated Oct. 26, 2009, 9 pages.
Intent to Grant for European Patent Application No. 07255018.9, dated Nov. 29, 2012, 7 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/059434, dated Dec. 13, 2013, 14 pages.
Notice of Allowance for European Patent Application No. 07255018.9, dated Jul. 26, 2012, 47 pages.
Notice of Allowance for Japan Patent Application No. 2007-333273, dated Jan. 16, 2014, 3 pages.
Official Action for European Application No. 07255019.7, dated Jul. 21, 2010 4 pages.
Official Action for European Patent Application No. 07255018.9, dated Jul. 19, 2011, 3 pages.
Official Action for U.S. Appl. No. 11/615,005, dated Apr. 16, 2009, 13 pages.
Official Action for U.S. Appl. No. 11/615,005, dated Feb. 11, 2011, 12 pages.
Official Action for U.S. Appl. No. 11/615,005, dated Jul. 21, 2010, 10 pages.
Official Action for U.S. Appl. No. 11/615,005, dated Mar. 14, 2013, 16 pages.
Official Action for U.S. Appl. No. 13/800,728, dated Jan. 16, 2014, 14 pages.
Official Action for U.S. Appl. No. 11/615,006 dated Apr. 24, 2009, 7 pages.
Official Action for U.S. Appl. No. 11/615,006 dated Feb. 17, 2010, 8 pages.
Official Action for U.S. Appl. No. 11/615,006 dated Jul. 20, 2010, 9 pages.
Official Action for U.S. Appl. No. 11/615,006 dated Mar. 14, 2013, 16 pages.
Official Action for U.S. Appl. No. 11/615,006 dated Nov. 22, 2013, 16 pages.
Official Action with English translation for Japan Patent Application No. 2007-333173, dated Apr. 30, 2013, 5 pages.
Official Action with English translation for Japan Patent Application No. 2007-333173, dated Aug. 13, 2012, 7 pages.
Extended European Search Report issued in EP application 13837908, dated May 5, 2016, 6 pages.
Related Publications (1)
Number Date Country
20210068859 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61784203 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14192445 Feb 2014 US
Child 16950196 US