Distal protection device

Information

  • Patent Grant
  • 8679148
  • Patent Number
    8,679,148
  • Date Filed
    Monday, September 10, 2012
    12 years ago
  • Date Issued
    Tuesday, March 25, 2014
    10 years ago
Abstract
A distal protection device comprising a catheter having a first strut movable from a collapsed configuration to an expanded configuration having a first dimension and a second strut movable from a collapsed configuration to an expanded configuration having a second dimension larger than the first dimension. Movement of the first strut deploys filter material to a first position having a first deployed dimension and movement of the second strut to a first position deploys filter material to a second deployed dimension larger than the first expanded dimension.
Description
BACKGROUND

1. Technical Field


This application relates to a vascular device and more particularly to a vascular device for capturing embolic material during surgical procedures.


2. Background of Related Art


During vascular surgical procedures such as stenting, angioplasty, thrombectomy, and atherectomy, embolic material such as plaque and blood clots can become dislodged. Dislodgement of such embolic material can cause the emboli to flow downstream to lodge in the vascular system, thereby occluding the flow of oxygenated blood to the brain or other vital organs. Such occlusion can compromise peripheral circulation resulting in amputation, or result in heart attack, stroke or even death.


Techniques to cut the debris into smaller sizes, such as by use of lasers, have had significant drawbacks, such as the inability to ensure all the debris is cut into sufficiently small fragments. If some of the fragments remain too large, then occlusion of the vessels can occur causing the problems and risks enumerated above.


Attempts have been made to place a device distal (downstream) of the stenosis, thrombus, etc. to capture the emboli. Such distal protection devices typically are collapsible for insertion and expandable once in the vessel. Some devices are in the form of an expandable balloon which is inserted within the vessel inside a sheath. When the sheath is withdrawn, the balloon is expanded to block emboli. These balloon devices even in the collapsed position increase the profile of the device since they are wrapped on the outside of the device. In other distal protection devices, a wire is covered by a membrane. These wires extend laterally from the device and may not enable the membrane to block the entire region of the vessel. Failure to expand to a geometry to block the entire region can result in the unwanted passage of debris which can cause vessel occlusion and the aforementioned adverse consequences.


The need therefore exists for an improved distal protection device. Such device would have a reduced profile to facilitate insertion and to better enable placement of the device distal of the emboli to block potential downstream flow. The device would also be easy to manipulate and sufficiently fill the vessel area to ensure all passage is blocked. The device would further be configured to avoid unwanted collapse during use.


It would also be desirable to provide a distal protection device which meets the above criteria plus has the advantage of accommodating various sized blood vessels. There is a tradeoff between providing large expansion of a distal protection device to block large blood vessels while ensuring that such large expansion would not damage a small blood vessel. Therefore, it would be advantageous to provide a single device which can expand sufficiently to effectively block embolic material without damaging the vessel, thus avoiding having to use different devices to accommodate different vessel sizes.


SUMMARY

The present invention overcomes the problems and deficiencies of the prior art. The present invention provides a distal protection device comprising a catheter having a first strut movable from a collapsed configuration to an expanded configuration and a second strut axially spaced from the first strut and movable from a collapsed configuration to an expanded configuration. The first strut has a first dimension and the second strut has a second dimension larger than the first dimension. The first and second struts are separately deployable. Movement of the first strut deploys filtering material to a first position having a first deployed dimension and movement of the second strut to a first position deploys filtering material to a second deployed dimension larger than the first deployed dimension.


In one embodiment, the same filtering material overlies both the first and second strut. In another embodiment, separate filtering materials overly the first strut and the second strut, but preferably the same type of material. In one embodiment, the material is a wire braid composed of a shape memory metal.


In one embodiment, the first strut is positioned proximal of the second strut. In another embodiment, the first strut is positioned distal of the second strut. Preferably, the struts are formed from a laser cut tube.


Preferably, the first and second struts are deployed laterally of the catheter and each form loops opening in a direction substantially aligned with blood flow such that the plane of the loop opening is substantially transverse to the direction of blood flow and substantially parallel to a transverse axis of the catheter.


The device may further comprise an actuating member slidably positioned within the catheter such that initial movement initially moves either the first strut or second strut from the collapsed position to the expanded configuration to form a loop. In a preferred embodiment, further movement of the actuating member moves the remaining collapsed strut to the expanded configuration to also form a loop.


The present invention also provides a distal protection device comprising a tube having a plurality of cutouts forming at least one distal elongated strut and at least one proximal elongated strut. The struts are movable from a retracted (collapsed) to an expanded position. Filter material overlies at least a portion of the struts and an actuating member is operatively connected to a portion of the tube wherein movement of the actuating member moves the portion of the tube to thereby move the distal elongated strut and the proximal elongated strut to the expanded position.


In a preferred embodiment, movement of the actuating member in a first direction retracts the portion of the tube to compress and thereby expand the elongated struts and movement of the actuating member in a reverse direction advances the portion of the tube to move the elongated strut to the retracted position.


In one embodiment the distal elongated strut(s) has a length greater than a length of the proximal elongated strut(s) such that upon expansion the distal elongated strut expands to a transverse dimension greater than a transverse dimension of the proximal strut. In another embodiment, the distal elongated strut(s) has a length smaller than a length of the proximal elongated strut(s) such that upon expansion the distal elongated strut expands to a transverse dimension smaller than a transverse dimension of the proximal strut.


In one embodiment, the filter material comprises a first material positioned over the distal elongated strut(s) and a separate material, preferably of the same composition (type), positioned over the proximal elongated strut(s). In another embodiment, the filter material overlies both the distal and proximal elongated struts. In one embodiment, the filter material comprises a wire braid composed of a shape memory material. In one embodiment, the filter material automatically moves back from an expanded position to a collapsed position upon movement of the at least one strut to the retracted position.


Preferably, the elongated struts form loops having a loop opening lying in a plane substantially transverse to a longitudinal axis of the tube and substantially parallel to a transverse axis of the tube.


The present invention also provides a distal protection device comprising a catheter having a tube formed with cutouts therein to form a first set of elongated struts and a second set of elongated struts. The elongated struts are movable between a retracted (collapsed) position and an expanded position wherein the distance between the proximal end and distal end of the struts in the retracted position is a first distance and the distance between the proximal end and distal end of the struts in the expanded position is a second distance less than the first distance. In the expanded position, the struts form loops with an opening lying in a plane substantially parallel to a transverse axis of the catheter and substantially transverse to the direction of blood flow. Filter material is deployable by the loops of the struts. The first set of struts is separately movable from the second set of struts to the expanded position to enable selective actuation of the set of struts to accommodate different sized vessels.


In one embodiment, the first set of elongated struts has a smaller buckling force than the second set of elongated struts such that upon actuation of an actuating member, the first set of elongated struts buckles fully to its expanded position and upon further actuation, the second set of elongated struts buckles fully to its expanded position.


In one embodiment, the tube forms first and second collars, and an actuating member is connected to the second collar such that the actuating member retracts the second collar to compress and thereby expand the elongated struts, and the first collar further acts as a stop.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiment(s) of the present disclosure are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of a first embodiment of the distal protection device of the present invention in the collapsed position (the filtering material is removed for clarity);



FIG. 1A is an exploded view of the device of FIG. 1 (the filtering material is removed for clarity);



FIG. 1B is an enlarged view of a distal portion of the device of FIG. 1;



FIG. 2 is a transverse cross-sectional view taken along lines 2-2 of FIG. 1;



FIG. 3 is a transverse cross-sectional view taken along lines 3-3 of FIG. 1;



FIG. 3A is a longitudinal cross-sectional view of the device of FIG. 1 in the collapsed position;



FIG. 3B is a longitudinal cross-sectional view of the device of FIG. 1 showing the first set of struts and filtering material in an expanded position;



FIG. 4 is a perspective view of the distal portion of the distal protection device of FIG. 1 showing the first set of struts and first capturing (filtering) element (material) partially expanded;



FIG. 5 is a view similar to FIG. 4 showing the first set of struts and capturing element almost fully expanded;



FIG. 5A is a front view of the device of FIG. 5;



FIG. 6 is a view similar to FIG. 4 showing the first set of struts and first capturing element fully expanded and the second set of struts and second capturing (filtering) element (material) partially expanded;



FIG. 7 is a view similar to FIG. 4 showing the first and second sets of struts and first and second capturing elements fully expanded;



FIG. 8 is a view similar to FIG. 7, (both sets of struts expanded) except showing an alternate embodiment having a single capturing (filtering) element (material);



FIG. 9 is a perspective view of the distal portion of the distal protection device showing an alternate embodiment wherein the smaller capturing element is positioned distal of the larger capturing element;



FIG. 10 is a view similar to FIG. 9 showing an alternate embodiment having a single capturing element expandable by the first and second sets of struts;



FIG. 11A is a view similar to FIG. 7 showing an alternate embodiment of the capturing elements composed of a wire braid;



FIG. 11B is a perspective view of an alternate embodiment of the distal protection device having first and second sets of struts of different configuration, and shown in the collapsed configuration (the filtering material is removed for clarity);



FIGS. 11C and 11D are transverse cross-sectional views taken along lines 11C and 11D, respectively, of FIG. 11B; and



FIGS. 12 and 13 illustrate placement of the device of FIG. 1, wherein FIG. 12 shows the catheter advanced through the femoral to the carotid artery and FIG. 13 shows the device deployed in the carotid artery to block distal flow of emboli.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now in detail to the drawings where like reference numerals identify similar or like components throughout the several views, several different embodiments for capturing embolic material during surgical procedures are disclosed. In each of the embodiments, two filtering devices are provided, with each filtering device designed to block embolic material while maintaining blood flow therethrough. The filtering devices are deployable to different transverse dimensions to accommodate different size vessels as described in more detail below.


Turning first to the embodiment illustrated in FIGS. 1-7, the distal protection device 10 includes a catheter having an outer tube 11, an internal coupler 14, a distal tube 16, a first capturing element 50 and a second capturing element 60. The capturing (filtering) elements 50 and 60 are movable between collapsed and expanded positions by struts 32, 34, respectively, formed in tube 16. As shown in FIGS. 3-7, first capturing element 50 is positioned proximally of second capturing element 60. As will be explained in further detail below, the capturing elements 50, 60 expand to different diameters to accommodate different sized vessels. The struts 32, 34 are formed so that relative movement of portions of the tube 16 expands the struts 32, 34. That is, an actuating member such as a shaft or wire 22 is slidably positioned within outer tube 11 and attached to a distal portion of tube 16. When actuating wire 22 is retracted, it moves a portion of the distal tube 16 proximally to expand the struts 32, 34, as explained in more detail below. Coupler 14 connects the tube 16 to the outer tube 11. The proximal end of coupler 14 is bonded, glued or attached by other means inside the outer tube 11. The distal tube 16 is slid over the coupler 14 and bonded or glued (or otherwise attached) thereto.


Turning to the distal tube 16, the struts 32, 34 are preferably formed by elongated slots or cutouts 37, 38, respectively, in the tube 16 (see e.g. FIGS. 1 and 1A). These slots 37, 38 are preferably formed by laser cutting the tube 16 although other ways to cut the slots are also contemplated. As formed, the slots 37, and therefore the struts 32, have a smaller length than the length of the slots 38 and struts 34. In one embodiment, in the collapsed position, the length L1 of the struts 32 is about 10 mm and the length L2 of the struts 34 is about 20 mm. Other dimensions are also contemplated.


The distal tube 16 is formed so that a first collar 40 is at the terminal end 33 of struts 32 and a second collar 42 is at the terminal end 43 of struts 34 (see FIGS. 1 and 1A). Thus, struts 32 extend from proximal tube end 17 to first collar 40 and the second longer struts 34 extend from first collar 40 to second collar 42 at the end of tube 16.


A radiopaque tip 27 is attached, e.g. by soldering, to the second or distal collar 42. This tip 27 guides the catheter and enables imaging of the catheter.


Inner actuating shaft or wire 22 is positioned within the outer tube 11 and is connected at its distal end to the collar 42 of distal tube 16. The proximal end 17 of the tube 16 can be fixed to tube 11 and/or coupler 14. Thus, sliding movement of the actuating wire 22 slides the collars 40, 42 proximally to compress the struts 32, 34. That is, upon proximal movement of the actuating wire 22 in the direction of the arrow of FIG. 4, the collars 40, 42 move proximally, thus forcing struts 32 and 34 outwardly as shown in FIGS. 4-7. Initially, upon retraction of wire 22, struts 32 will buckle first as shown in FIG. 5 since due to their reduced length the buckling force is less than the buckling force of the longer struts 34. The struts 32 will continue to buckle until the proximal surface 49 of collar 40 abuts the distal surface 15 of coupler 14. (See FIG. 5 which shows almost complete expansion of the struts 32, the remaining expansion corresponding to the remaining distance between proximal surface 49 and distal surface 15). Thus, coupler 14 (or collar 40) acts as a stop.


To further lower the buckling force, the shorter struts could be made thinner than the longer struts, such as shown for example in FIGS. 11B, 11C, and 11D, wherein struts 32″ have a diameter less than the diameter or thickness of the longer struts 34″ of device 10″.


The buckling forces can also be changed by modifying the resistance of movement of the respective collars.


Referring to FIG. 6, after struts 32 buckle, further proximal movement of actuating wire 22 continues to move collar 42 as movement of collar 40 is stopped by abutment with coupler 14. That is, since proximal movement of collar 40 at this point is stopped by abutment of collar 40 with the surface 15 of inner coupler 14, further proximal movement will further retract only collar 42, causing longer struts 34 to buckle outwardly to their fully expanded position shown in FIG. 7. Thus, the reduction of the distance between the collars 40, 42 forces the struts to compress and extend radially outwardly as shown in FIG. 7.


The expansion movement of the struts 32, 34 causes the overlying filter material 50, 60 to be deployed, moving to an expanded position. As shown, the filter material 50, 60 can be a polymeric membrane, such as polyurethane or PET, which is expanded by the struts 32, 34. A mouth or opening 52, 62 (see FIGS. 4 and 6) is provided at the proximal end of the filter material The polymeric material would have small holes dimensioned for allowing blood flow while blocking embolic material. Thus, embolic material exceeding a certain size carried by the blood is captured with smaller particles flowing through the holes or pores in the membrane. Alternatively, as shown in FIG. 11A, the filter of device 110 can be a tightly wound metal braided material such as shape memory metal, e.g. Nitinol. Thus, braided filtering material 150 overlies struts 132 and braided filtering material 160 overlies struts 134. The filtering material 150, 160 can also include a mouth or opening. Actuating member 122 moves the collars 140, 142 in the same manner as actuating member 22 of FIG. 1.


Preferably, the filtering material will be selected so that after it is radially stretched to an expanded configuration to block and capture flow of embolic material, it automatically retracts once the struts 32, 34 are moved to their collapsed position, as described in more detail below. In one embodiment, such as shown in the embodiments of FIGS. 1-7, a first filter material overlies struts 32 and a separate second filter material overlies struts 34. The separate material is preferably of the same type of material, however alternately it could be composed of a different material. In an alternate embodiment, shown in FIG. 8, rather than two separate filters, a single filtering material 64 is provided. One portion 65 of filter material 64 overlies struts 34 in its entirety while portion 63 overlies only a portion of struts 32, leaving an opening 67. Similarly, in the embodiment of the braided material, two separate elements can be provided as in FIG. 11A or alternatively a single filtering element could be provided overlying both sets of struts.


Referring back to the struts 32, 34, in the initial collapsed configuration, struts 32 and 34 are aligned with the outer surface of the distal tube 16 (and collars 40, 42) which is aligned with outer tube 11 to enable smooth insertion into the vessel and keep the overall insertion profile at a minimum. Proximal struts 32, when moved from a collapsed (retracted) position to an extended (expanded) position, each form a looped configuration, the loops designated by reference numeral 38. Thus, the struts 32 are forced out laterally to bend into a loop 38 (see FIG. 5). End 47A extends proximally and end 47B extends distally. The expanded loop 38 thus, has an opening 39 preferably lying in a plane substantially perpendicular to the longitudinal axis and substantially parallel to the transverse axis of the catheter. That is, the loop opening 39 lies in a plane substantially transverse to the direction of blood flow so the loop opening is substantially in line with the blood flow. In one embodiment, the loop opening plane can be at 90 degrees to the longitudinal axis. In another embodiment, it can be offset so it is at angle of less than 90 degrees, but preferably greater than about 45 degrees. In such embodiment, each strut 32 extends such that the loop opening 39 is slightly offset from the direction of the transverse axis of the catheter (and tube 16) but is still open generally in the direction of blood flow (for example, a 60 degree angle). Thus, in this embodiment, a central longitudinal axis extending through the loop opening could be at a small angle rather than parallel to the longitudinal axis of the tube 16, preferably less than 45 degrees to maintain the opening substantially in the direction of blood flow.


The formation of the loop stretches the membrane or filtering element to block the flow of material. In the membrane or braid, windows can be provided with enlarged openings for blood flow, with the membrane or braid blocking flow of materials exceeding the pore size. Alternatively, the material can have an open mouth region as illustrated and described above.


The shorter struts 32 preferably form two looped regions 39 when expanded so the filter material stretches in two directions. When slidable wire 22 is retracted in the direction of the arrow of FIG. 4 so the struts 32 buckle as described above, two looped regions are formed, one on one side of the catheter and the second looped wire region on the other side of the catheter, preferably about 180 degrees apart as depicted in FIG. 5. This double looped configuration causes the filter material to be expanded on opposing sides of the tube 16 and preferably blocking a 360 degree area. Although two struts 32 are shown, more struts 32 could be provided. Also, alternatively a single strut could be provided.


The second longer struts 34 form four looped regions 41 when expanded since four struts 34 are provided. When slidable wire 22, is retracted in the direction of the arrow and the struts 34 buckle as described above, four looped regions are formed, preferably about 90 degrees apart, causing filter material to be expanded radically on multiple sides of the tube 16 as illustrated in FIG. 7 and preferably blocking a 360 degree area. As in the loops of struts 32, the loops 38 open generally in a direction of blood flow, with the openings in the loop being substantially parallel to the transverse axis of the tube 16, and the loop opening plane being substantially perpendicular to the longitudinal axis and transverse to the direction of blood flow. As in loops 39, the plane of the opening of loop 38 in one embodiment is 90 degrees with respect to the longitudinal axis and parallel to the transverse axis. In another embodiment it is offset to form an angle of less than 90 degrees, but preferably greater than 45 degrees. Although four loops are shown, fewer or greater number of struts could be utilized.


In the alternate embodiments of FIGS. 9 and 10, the distal protection device 210 has shorter length struts distal of the larger struts. More specifically, referring first to FIG. 9, distal protection device 210 has two elongated struts 232 positioned distal of elongated struts 234. Actuating wire or shaft 222 is pulled proximally to retract collars 242, 240 to expand the respective struts 232, 234. Struts 232 buckle first, followed by buckling of longer struts 234.


Filtering material 250 overlying struts 232 is expanded to a smaller dimension than filtering material 260 overlying struts 234. In the alternate embodiment of FIG. 10, instead of the separate filtering materials, a single filtering material 270 overlies struts 232′ and 234′ of distal protection device 210′. Otherwise the embodiment of FIGS. 9 and 10 are the same and corresponding parts are designated “prime”. Alternatively, both sets of struts can begin to buckle simultaneously, or the longer struts can begin to buckle first, followed by additional expansion of the shorter struts first. The longer struts, however, would not fully expand until the shorter struts fully expand.


In the preferred embodiment, the catheter has a length of about 135 cm to about 300 cm. The diameter of the catheter is preferably about 0.010 inches to about 0.030 inches and more preferably about 0.018 inches to enable low profile insertion into the vessel. The first capturing element 50, when expanded, preferably has a diameter from about 1 mm to about 4 mm. The second capturing element 60, when expanded, preferably has a diameter from about 4 mm to about 9 mm.


In use, if the vessel is a smaller size, e.g., 2 mm, only the smaller capturing element 50 would be deployed. If the vessel is a larger size, after deployment of the first capturing element 50, the second capturing element 60 would be deployed in the manner described above.


To withdraw the device 10, the actuating wire 22 is pushed distally to advance collars 40, 42 to retract the loops as the struts 32, 34 return to their collapsed positions to enable the filter material to return to the initial low profile collapsed insertion position. In a preferred embodiment, the filter is made of a material that would return automatically from its stretched position to the original collapsed position when the wire 22 is pushed distally. One way this could be achieved is by use of the shape memory material with a memorized position in the collapsed position. This passive self-contraction would avoid the need for insertion of a separate device or sheath over the filter material to cover it for removal, thus reducing the overall profile of the instrumentation necessary for the procedure. That is, in the preferred embodiment, the wire 22 and thus the struts 32, 34 are expanded by active control while the filter material would automatically retract without other assistance.


In another embodiment, the filter material can be attached to the struts 32, 34 and thereby move with the actuating wire 22 between the collapsed and expanded positions.


Being part of a guidewire, in use, the distal protection devices described herein, can be used for initial introduction of a catheter. The distal protection device could also be placed within a catheter after the guidewire for introducing the catheter is withdrawn. The catheter can then be withdrawn and another catheter, such as a stent delivery catheter, could be inserted over the distal protection device. As other catheters can be inserted over the device, it further functions as a guidewire.



FIGS. 12-13 show the positioning of the distal protection device 10 of the present invention in a larger vessel when deployment of the larger struts is desirable. These Figures show the device 10 inserted by way of example, as the other devices described herein can be inserted and placed in a similar manner. Device 10 of FIG. 1 is shown deployed in the carotid artery “c”. The introducer is inserted through the femoral vein “f” as shown in FIG. 12. The device 10 is advanced through the femoral vein to the carotid artery “c”. Once positioned at the desired site, the actuating wire is retracted as described above to deploy both sets of struts 32, 34 to the looped configuration to expand the filter material 50 and larger filter material 60 to block emboli in the artery.


It should be appreciated that the terms “first and second” as used herein are used for the readers' convenience. Also, proximal refers to the region closer to the user and distal to the region further from the user, again used for the readers' convenience.


While the above description contains many specifics, those specifics should not be construed as limitations on the scope of the disclosure, but merely as exemplifications of preferred embodiments thereof. For example, different filter materials can be utilized such as polymeric material, a composite of a polymeric material and metallic material or metal fibers, an elastomeric material, or a composite of elastomeric and metallic material. (Examples of polymeric material include polyester, PET, LDPE (low density polyethylene), HDPE; examples of elastomeric material include silicon and urethane; examples of metallic materials include stainless steel and shape memory Nitinol). Those skilled in the art will envision many other possible variations that are within the scope and spirit of the disclosure as defined by the claims appended hereto.

Claims
  • 1. A distal protection device comprising an elongated member having a longitudinal axis and first and second capturing elements movable with respect to the elongated member from a collapsed position to an expanded position, the first capturing element having a first transverse dimension in the expanded position and the second capturing element having a second greater transverse dimension in the expanded position, an actuating member movable to move the first and second capturing elements to the expanded position, the first and second capturing elements being separately deployable, wherein the second capturing element is distal of the first capturing element and the first capturing element is deployed prior to deployment of the second capturing element.
  • 2. The device of claim 1, wherein the actuating member is attached to a collar, and movement of the collar moves the first and second capturing elements to the expanded position.
  • 3. The device of claim 1, wherein the actuating member is slidable proximally to move the first and second capturing elements to the expanded position and slidable distally to move the first and second capturing elements to the collapsed position.
  • 4. The device of claim 1, further comprising a stop for the first capturing element, wherein contact with the stop subsequently enables the second capturing element to move to the second expanded position.
  • 5. The device of claim 1, wherein in the collapsed position the second capturing element has a length greater than a length of the first capturing element.
  • 6. The device of claim 1, wherein in the collapsed position, the first and second capturing elements are aligned with an outer surface of the elongated member.
  • 7. The device of claim 1, wherein the capturing elements include a polymeric membrane.
  • 8. The device of claim 1, further comprising a first collar and a second collar, the first collar being positioned distal of the second collar, the first and second collars movable by the actuating member to move the first and second capturing elements to the expanded position.
  • 9. The device of claim 1, wherein the first and second capturing elements include a braided material.
  • 10. The device of claim 1, wherein the first capturing element includes a first set of struts and the second capturing element includes a second set of struts, and a first filtering material overlies the first set of struts and a second filtering material overlies the second set of struts.
  • 11. The device of claim 10, wherein the first and second filtering materials are the same type of material.
  • 12. The device of claim 10, wherein the first and second filtering materials are a different type of material.
  • 13. A distal protection device comprising an elongated member having a longitudinal axis and first and second capturing elements movable with respect to the elongated member from a collapsed position to an expanded position, the first capturing element having a first transverse dimension in the expanded position and the second capturing element having a second greater transverse dimension in the expanded position, an actuating member movable to move the first and second capturing elements to the expanded position, the first and second capturing elements being separately deployable, wherein the second capturing element is distal of the first capturing element and the first capturing element has a first buckling force lower than a second buckling force of the second capturing element.
  • 14. The device of claim 13, wherein in the collapsed position, the first and second capturing elements are aligned with an outer surface of the elongated member.
  • 15. A distal protection device comprising an elongated member having a longitudinal axis and first and second capturing elements movable with respect to the elongated member from a collapsed position to an expanded position, the first capturing element having a first transverse dimension in the expanded position and the second capturing element having a second greater transverse dimension in the expanded position, an actuating member movable to move the first and second capturing elements to the expanded position, the first and second capturing elements being separately deployable, wherein one of the capturing elements is distal of the other capturing element and the first capturing element is deployed prior to deployment of the second capturing element, wherein the first capturing element has a first buckling force lower than a second buckling force of the second capturing element.
  • 16. The device of claim 15, wherein the second capturing element is proximal of the first capturing element.
Parent Case Info

This application is a continuation of application Ser. No. 12/005,257, filed on Dec. 26, 2007 now U.S. Pat. No. 8,262,691, which is a continuation of application Ser. No. 10/800,298, filed on Mar. 12, 2004, now U.S. Pat. No. 7,331,976, which claims priority from provisional application Ser. No. 60/466,491, filed Apr. 29, 2003. The entire contents of each of these applications are incorporated herein by reference.

US Referenced Citations (132)
Number Name Date Kind
2556783 Wallace Jun 1951 A
4425908 Simon Jan 1984 A
4873978 Ginsburg Oct 1989 A
5100423 Fearnot Mar 1992 A
5108419 Reger et al. Apr 1992 A
5192286 Phan et al. Mar 1993 A
5421832 Lefebvre Jun 1995 A
5626602 Gianotti et al. May 1997 A
5658296 Bates et al. Aug 1997 A
5720764 Naderlinger Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5848964 Samuels Dec 1998 A
5941896 Kerr Aug 1999 A
5972019 Engelson et al. Oct 1999 A
5984947 Smith Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6027520 Tsugita et al. Feb 2000 A
6056770 Epstein et al. May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6080178 Meglin Jun 2000 A
6096053 Bates Aug 2000 A
6123715 Amplatz Sep 2000 A
6129739 Khosravi Oct 2000 A
6146396 Kónya et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6224620 Maahs May 2001 B1
6245088 Lowery Jun 2001 B1
6258115 Dubrul Jul 2001 B1
6264672 Fisher Jul 2001 B1
6277139 Levinson et al. Aug 2001 B1
6290710 Cryer et al. Sep 2001 B1
6336934 Gilson et al. Jan 2002 B1
6338735 Stevens et al. Jan 2002 B1
6340364 Kanesaka Jan 2002 B2
6346116 Brooks et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6364900 Heuser Apr 2002 B1
6368338 Kónya et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6391044 Yadav et al. May 2002 B1
6425909 Dieck et al. Jul 2002 B1
6482222 Bruckheimer et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6500191 Addis Dec 2002 B2
6530939 Hopkins et al. Mar 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6551268 Kaganov et al. Apr 2003 B1
6558405 McInnes May 2003 B1
6562058 Seguin et al. May 2003 B2
6569184 Huter May 2003 B2
6582448 Boyle et al. Jun 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6592606 Huter et al. Jul 2003 B2
6592616 Stack et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6616680 Thielen Sep 2003 B1
6620182 Khosravi et al. Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638294 Palmer Oct 2003 B1
6645220 Huter et al. Nov 2003 B1
6645223 Boyle et al. Nov 2003 B2
6652505 Tsugita Nov 2003 B1
6652554 Wholey et al. Nov 2003 B1
6652557 MacDonald Nov 2003 B1
6656202 Papp et al. Dec 2003 B2
6656203 Roth et al. Dec 2003 B2
6656207 Epstein et al. Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663652 Daniel et al. Dec 2003 B2
6695813 Boyle et al. Feb 2004 B1
6695865 Boyle et al. Feb 2004 B2
6706053 Boylan et al. Mar 2004 B1
6706055 Douk et al. Mar 2004 B2
6716231 Rafiee et al. Apr 2004 B1
6726701 Gilson et al. Apr 2004 B2
6726702 Khosravi Apr 2004 B2
6726703 Broome et al. Apr 2004 B2
6740061 Oslund et al. May 2004 B1
6743247 Levinson et al. Jun 2004 B1
6746469 Mouw Jun 2004 B2
6755847 Eskuri Jun 2004 B2
6761727 Ladd Jul 2004 B1
6761732 Burkett et al. Jul 2004 B2
6773448 Kusleika et al. Aug 2004 B2
6818006 Douk et al. Nov 2004 B2
6837898 Boyle et al. Jan 2005 B2
6840950 Stanford et al. Jan 2005 B2
6911036 Douk et al. Jun 2005 B2
6918921 Brady et al. Jul 2005 B2
6929652 Andrews et al. Aug 2005 B1
6936059 Belef Aug 2005 B2
7331976 McGuckin et al. Feb 2008 B2
8262691 McGuckin et al. Sep 2012 B2
20010011182 Dubrul et al. Aug 2001 A1
20020087187 Mazzocchi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020183783 Shadduck Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20020193826 McGuckin et al. Dec 2002 A1
20020193827 McGuckin et al. Dec 2002 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030045898 Harrison et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030065355 Weber Apr 2003 A1
20030078605 Bashiri et al. Apr 2003 A1
20030100917 Boyle et al. May 2003 A1
20030100918 Duane May 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20040049223 Nishtala et al. Mar 2004 A1
20040193206 Gerberding et al. Sep 2004 A1
20040215222 krivoruchko Oct 2004 A1
20050101988 Stanford et al. May 2005 A1
20050177187 Gray et al. Aug 2005 A1
20050216052 Mazzocchi et al. Sep 2005 A1
Foreign Referenced Citations (4)
Number Date Country
WO-9601591 Jan 1996 WO
WO-0007521 Feb 2000 WO
WO-0007655 Feb 2000 WO
WO0145590 Jun 2001 WO
Related Publications (1)
Number Date Country
20130006296 A1 Jan 2013 US
Provisional Applications (1)
Number Date Country
60466491 Apr 2003 US
Continuations (2)
Number Date Country
Parent 12005257 Dec 2007 US
Child 13608890 US
Parent 10800298 Mar 2004 US
Child 12005257 US