1. Field of the Invention
The present invention pertains to distal protection catheters for filtering embolic debris. More precisely, the present invention pertains to distal protection filters including a refinement to the filter frame.
2. Description of the Related Art
Heart disease is a major problem in the United States and throughout the world. Conditions such as atherosclerosis result in blood vessels becoming blocked or narrowed. This blockage can result in lack of oxygenation of the heart, which has significant consequences since the heart muscle must be well oxygenated in order to maintain its blood pumping action.
Occluded, stenotic, or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated and the restriction of the vessel is opened. During an atherectomy procedure, the stenotic lesion may be mechanically cut away from the blood vessel wall using an atherectomy catheter.
During angioplasty and atherectomy procedures, embolic debris can be separated from the wall of the blood vessel. If this debris enters the circulatory system, it could block other vascular regions including the neural and pulmonary vasculature, both of which are highly undesirable. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel. Because of this debris, a number of devices, termed distal protection devices, have been developed to filter out this debris.
The present invention pertains to distal protection filter assemblies. More particularly, the present invention pertains to distal protection filter frames. A filter frame may include a plurality of struts or ribs and a crown or mouth portion. The crown portion may be adapted and configured to have a distal protection filter coupled thereto.
A number of different mandrels may be used to manufacture the filter frame. For example, a mandrel may include a proximal region, a distal region, and a middle region. In addition, the mandrel may include grooves for holding the filter frame in place. Further, the mandrel may include openings leading to a guidewire channel or a screw dip rod.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.
Filter frame 12 may be comprised of metal such as nickel-titanium alloy or stainless steel and configured to have one or more struts 18 coupled to an elongate shaft or guidewire 20, and a crown defining mouth portion 22 coupled to filter material 14. Frame 12 may be self-expanding so that frame 12 will expand to engage and generally conform to the internal lumen a blood vessel 16 when being delivered (e.g., from a delivery catheter or sheath).
Distal protection filter material 14 may be coupled to guidewire 20 proximate a distal end of guidewire 20. Filter material 14 and guidewire 20 may generally comprise a number of configurations known to those skilled in the appropriate art. Filter material 14 may be comprised of a polyurethane sheet and include at least one opening that may be, for example, formed by known laser techniques. The holes or openings are sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity.
Filter 10 may be generally cone-shaped, and have a proximal and a distal end. The distal end may be a narrow, “V”-shaped end and is secured to guidewire 20 and/or frame 12. Alternatively, filter 10 may be cylindrical with a relatively rounded distal end. Filter 10 operates between a closed collapsed profile and an open radially-expanded deployed profile for collecting debris in a body lumen. In an expanded profile, the mouth is opened and struts 18 extend radially outwardly to support the mouth. Struts 18 may be coupled to guidewire 20 by a strut coupling member 23. A number of differing configurations of filter material 14 may be substituted without departing from the spirit of the invention.
In addition, a portion of frame 12 may be comprised of or plated with radiopaque materials. Radiopaque materials are understood to be capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during an intravascular procedure. This relatively bright image aids the user of distal protection assembly 10 in determining the location of frame 12 with respect to the patient's vascular anatomy. Radiopaque materials may include, but are not limited to, gold, platinum, tungsten alloy, and plastic material loaded with a radiopaque filler.
Struts or ribs 18 may be pre-curved during manufacturing to include a first curved portion 24. When frame 12 is collapsed within a delivery sheath, stress on frame 12 may longitudinally deform or strain frame 12. Curved portion 24 has a constant radius so that when frame 12 is collapsed, stress and/or strain forces are evenly distributed longitudinally throughout frame 12. According to this embodiment, the peak strain within struts 18 and/or frame 12 when frame 12 may be minimized by including curved portion 24.
Struts 18 and crown portion 22 may be continuous and be joined by a second curved portion 26. Similarly to curved portion 24, portion 26 is also curved to minimize peak strain near crown portion 26. However, the radius of curvature of curved portion 26 may be variable or include portions where the radius varies. In addition, crown portion 22 extends between a distal end 28 and a plurality of strut intersection points 30. Struts 18 may extend from points 30 and be coupled to guidewire 20.
It should be noted that the number of struts 18 and points 30 can be altered without departing from the scope of the present invention. For example, frame 12 may include two, three, four, five, six, or more points. It is believed that increasing the number of struts 18 and/or points 30 would decrease the expansion ratio of frame 12. For example, increasing the number of points 30 from four to six would increase the inside diameter of frame 12. Different diameter sizes may be favored when performing an intravascular procedure within different blood vessels.
Struts 132 provide additional support for filter material 14. According to this embodiment, when frame 12 is coupled to filter material 14, struts 132 may be adapted and configured to follow the contour of filter material 14 and provide structural support along the length thereof. At a distal end, struts 132 may be coupled to the distal end of filter material 14 and/or be coupled to guidewire 20. Similarly to
Middle region 38 includes grooves 46 adapted and configured for holding at least a portion of filter frame 12. Grooves 46 are curved such that disposing crown portion 22 within grooves 46 may lead to the formation of second curved portion 26. In addition, the transition from the relatively straight middle region 38 to the tapered proximal region 40 may lead to the formation of first curved portion 24, although pre-curving may be desirable if the transition between proximal region 40 and middle region 38 bends more sharply than desired.
In use, the planar configurations shown in
Heat setting may be used to set the shape of frame 12 (and frame 112). For example, frame 12 may be comprised of a shape memory alloy that can be heat set. Thus, frame 12 may be disposed about mandrel 34 and heated to set the shape of frame 12 to conform to the shape of mandrel 34. According to this embodiment, mandrel 34 (and subsequently described mandrels) may be comprised of materials that would resist heat deformation such as stainless steel. Once heat set, frame 12 deformed to an alternate shape will return to the heat set shape after force used to deform frame 12 is removed. It may be desirable to heat set frame 12 in the expanded configuration such that delivery of filter 10 from within a relatively small delivery sheath permits frame 12 to self-expand when the delivery sheath is withdrawn.
It should be noted that mandrel 34 may be hollow such that guidewire 20 may pass therethrough with opposing end extending from distal tip 42 and proximal tip 44. This embodiment may simplify the process of coupling struts 18 (or struts 132) to guidewire 20 if desired by establishing proper alignment. This step may similarly achieved independently of mandrel 34.
When used for frame 112, the above steps occur analogously to what is described above. In addition, struts 132 extend between middle region 38 and distal region 36 wherein struts 132 taper toward the center. The distal ends of struts 132 may be disposed near distal tip 42 where they may be coupled to guidewire 20.
Once frame 12 or 112 is properly configured, filter material 14 may be coupled thereto. For example, suitable filter materials may be molten or partially molten and frame 12 or 112 may be coupled to filter material 14 by dipping distal region 36 (or 136) into the suitable filter materials 14 as described above. It should be appreciated that a person of ordinary skill in the art would be familiar with suitable filter materials and method for coupling filter material 14 to frame 12.
Filter frame 112 may be coupled to mandrel 234 such that crown portion 122 is disposed about middle region 238 and struts 132 are disposed within grooves 246 and extend toward distal tip 242. Screw dip rod 256 may be actuated so as to pass over and hold or set the shape of crown portion 122 into a generally circular configuration. Then, heat may be used to set the shape similarly to what is described above. Struts 132 may be coupled to guidewire 20 that may pass through mandrel 234 and exit therefrom at distal tip 242. Filter material 14 may be formed in a manner similar to what is described above.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
3472230 | Fogarty | Oct 1969 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4425908 | Simon | Jan 1984 | A |
4590938 | Segura et al. | May 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4650466 | Luther | Mar 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4807626 | McGirr | Feb 1989 | A |
4842579 | Shiber | Jun 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4921478 | Solano et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5100423 | Fearnot | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5224953 | Morgentaler | Jul 1993 | A |
5324304 | Rasmussen | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5330484 | Gunther | Jul 1994 | A |
5354310 | Garnie et al. | Oct 1994 | A |
5376100 | Lefebvre | Dec 1994 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423742 | Theron | Jun 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5536242 | Willard et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5713853 | Clark et al. | Feb 1998 | A |
5713949 | Jayaraman | Feb 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5728066 | Daneshvar | Mar 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5795322 | Bouewijn | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5925016 | Chornenky et al. | Jul 1999 | A |
5925060 | Forber | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5935139 | Bates | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013085 | Howard | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6117154 | Barbut et al. | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6494909 | Greenhalgh | Dec 2002 | B1 |
6565599 | Hong et al. | May 2003 | B1 |
20020004667 | Adams et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
28 21 048 | Jul 1980 | DE |
34 17 738 | Nov 1985 | DE |
40 30 998 | Oct 1990 | DE |
199 16 162 | Oct 2000 | DE |
0 200 688 | Nov 1986 | EP |
0 293 605 | Dec 1988 | EP |
0 411 118 | Feb 1991 | EP |
0 427 429 | May 1991 | EP |
0 437 121 | Jul 1991 | EP |
0 472 334 | Feb 1992 | EP |
0 472 368 | Feb 1992 | EP |
0 533 511 | Mar 1993 | EP |
0 655 228 | Nov 1994 | EP |
0 686 379 | Jun 1995 | EP |
0 696 447 | Feb 1996 | EP |
0 737 450 | Oct 1996 | EP |
0 743 046 | Nov 1996 | EP |
0 759 287 | Feb 1997 | EP |
0 771 549 | May 1997 | EP |
0 784 988 | Jul 1997 | EP |
0 852 132 | Jul 1998 | EP |
0 934 729 | Aug 1999 | EP |
1 127 556 | Aug 2001 | EP |
2 580 504 | Oct 1986 | FR |
2 643 250 | Aug 1990 | FR |
2 666 980 | Mar 1992 | FR |
2 694 687 | Aug 1992 | FR |
2 768 326 | Mar 1999 | FR |
2 020 557 | Jan 1983 | GB |
8-187294 | Jul 1996 | JP |
764684 | Sep 1980 | SU |
WO 8809683 | Dec 1988 | WO |
WO 9203097 | Mar 1992 | WO |
WO 9414389 | Jul 1994 | WO |
WO 9424946 | Nov 1994 | WO |
WO 9601591 | Jan 1996 | WO |
WO 9610375 | Apr 1996 | WO |
WO 9619941 | Jul 1996 | WO |
WO 9623441 | Aug 1996 | WO |
WO 9633677 | Oct 1996 | WO |
WO 9717100 | May 1997 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9742879 | Nov 1997 | WO |
WO 9802084 | Jan 1998 | WO |
WO 9802112 | Jan 1998 | WO |
WO 9823322 | Jun 1998 | WO |
WO 9833443 | Aug 1998 | WO |
WO 9834673 | Aug 1998 | WO |
WO 9836786 | Aug 1998 | WO |
WO 9838920 | Sep 1998 | WO |
WO 9838929 | Sep 1998 | WO |
WO 9839046 | Sep 1998 | WO |
WO 9839053 | Sep 1998 | WO |
WO 9846297 | Oct 1998 | WO |
WO 9847447 | Oct 1998 | WO |
WO 9849952 | Nov 1998 | WO |
WO 9850103 | Nov 1998 | WO |
WO 9851237 | Nov 1998 | WO |
WO 9855175 | Dec 1998 | WO |
WO 9909895 | Mar 1999 | WO |
WO 9922673 | May 1999 | WO |
WO 9923976 | May 1999 | WO |
WO 9925252 | May 1999 | WO |
WO 9930766 | Jun 1999 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9942059 | Aug 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 9944542 | Sep 1999 | WO |
WO 9955236 | Nov 1999 | WO |
WO 9958068 | Nov 1999 | WO |
WO 0007521 | Feb 2000 | WO |
WO 0007655 | Feb 2000 | WO |
WO 0009054 | Feb 2000 | WO |
WO 0016705 | Mar 2000 | WO |
WO 0049970 | Aug 2000 | WO |
WO 0053120 | Sep 2000 | WO |
WO 0067664 | Nov 2000 | WO |
WO 0067665 | Nov 2000 | WO |
WO 0067666 | Nov 2000 | WO |
WO 0067668 | Nov 2000 | WO |
WO 0067669 | Nov 2000 | WO |
WO 0105462 | Jan 2001 | WO |
WO 0108595 | Feb 2001 | WO |
WO 0108596 | Feb 2001 | WO |
WO 0108742 | Feb 2001 | WO |
WO 0108743 | Feb 2001 | WO |
WO 0110320 | Feb 2001 | WO |
WO 0115629 | Mar 2001 | WO |
WO 0121077 | Mar 2001 | WO |
WO 0121100 | Mar 2001 | WO |
WO 0126726 | Apr 2001 | WO |
WO 0135857 | May 2001 | WO |
WO 0143662 | Jun 2001 | WO |
WO 0147579 | Jul 2001 | WO |
WO 0149208 | Jul 2001 | WO |
WO 0149209 | Jul 2001 | WO |
WO 0149215 | Jul 2001 | WO |
WO 0149355 | Jul 2001 | WO |
WO 0152768 | Jul 2001 | WO |
WO 0158382 | Aug 2001 | WO |
WO 0160442 | Aug 2001 | WO |
WO 0162184 | Aug 2001 | WO |
WO 0167989 | Sep 2001 | WO |
WO 0170326 | Sep 2001 | WO |
WO 0172205 | Oct 2001 | WO |
WO 0187183 | Nov 2001 | WO |
WO 0189413 | Nov 2001 | WO |
WO 0191824 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030176885 A1 | Sep 2003 | US |