The present disclosure relates generally to medical devices for facilitating use and placement of elongate medical tubes, such as pigtail catheters or other drainage catheters, in a body cavity or tissue of a patient, and in particular, to safety mechanisms for protecting the medical device and the practitioners using the medical device. An obturator for facilitating straightening of an elongate drainage catheter is an exemplary embodiment of such a device.
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. While various aspects of the embodiments are presented in drawings, the drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
The present disclosure is directed to an obturator device configured to be coupled with and protect a needle of a needle insertion device and to facilitate preparation and insertion of elongate medical tubes, such as pigtail catheters, in a body cavity or tissue of a patient. According to one embodiment of the present disclosure, the obturator device includes a jacket with a tapered proximal end configured to match the tapered end of a needle bevel. When the needle insertion device is in an assembled configuration, the jacket rests against and mates with the needle bevel to protect the bevel from wear, and to avoid inadvertently puncturing or piercing the elongate medical tube when the needle insertion device is used during a medical procedure. The jacket also serves to protect the practitioner from possible injury, such as by accidentally pricking himself or another with the exposed needle. The jacket and needle may be secured together via a sleeve, such as a heat-shrink tube, that encircles a mating junction of the jacket and needle. Additional details of this and other embodiments of the obturator device are described in further detail below with specific reference to the figures.
It will be appreciated by one of skill in the art having the benefit of this disclosure, that various features of the devices disclosed herein are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. Many of these features may be used alone and/or in combination with one another. It will further be appreciated by one of skill in the art having the benefit of this disclosure, that many of the features disclosed herein may be used in conjunction with other assemblies presently known or hereafter developed.
Embodiments may be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the present disclosure, as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus is not intended to limit the scope of the disclosure, but is merely representative of possible embodiments of the disclosure. In some cases, well-known structures, materials, or operations are not shown or described in detail. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The phrases “connected to,” “coupled to,” and “in communication with” are used in an expansive sense in the present disclosure and refer to any form of interaction between two or more structures, entities or components, including but not limited to mechanical, fluidic, electrical, or magnetic interaction. Two components may be coupled to each other even though they are not in direct contact with each other. For example, two components may be coupled to each other through an intermediate component.
The terms “proximal” and “distal” are used to establish a frame of reference and refer to opposite ends of a medical device, including the devices disclosed herein. As used herein, the “proximal” portion or end of a medical device is the portion nearest a practitioner during use, while the “distal” portion or end of the medical device is opposite the proximal portion (e.g., the distal portion of the medical device is furthest away the practitioner during use). For example, the proximal end of a needle assembly comprises the end nearest the practitioner during normal use, such as a hub end of the assembly, with the distal end comprising the opposite end, such as a sharpened bevel end. For other components of a needle assembly, such as an obturator or catheter, the coordinate system is based on the orientation of each component with respect to the needle when the components are in an assembled configuration. The coordinate system does not change if the components are disassembled (for example if the obturator is removed from the assembly), even if the position of that component changes with respect to the practitioner. For example a practitioner may grasp the distal end of an obturator coupled to a needle in order to remove the obturator from the assembly and the coordinate system does not change, notwithstanding the distal end of the obturator may temporarily be closer to the practitioner.
It should be understood that while the present disclosure may refer to a pigtail catheter as an example elongate medical device, a variety of elongate medical devices may be utilized with the obturator device and/or needle insertion device of the present disclosure. For example, elongate medical devices as described herein include, but are not limited to, epidural catheters, drainage catheters, interventional tools, and guidewires. Thus, specific disclosure below referencing specific elongate medical devices, such as pigtail catheters, should be understood to analogously apply to other elongate medical devices.
As is further described in detail below, in one example medical procedure, the needle insertion device 200 is inserted into a cavity or lumen 315 of the pigtail catheter 300. As the needle insertion device 200 is advanced inside the pigtail catheter 300, the obturator device 100 rides against the inside walls of the catheter 300 to smoothly guide the needle insertion device 200 through the lumen 315 and straighten out a coiled portion 325 of the pigtail catheter 300. When the pigtail catheter 300 is in a fully straightened configuration (see
With particular reference to
The face 130 at the proximal end 110 of the jacket 105 is shaped to correspond with or mirror the contours of the bevel 210 of the needle 205 so that the face 130 rests flush against the bevel 210 when the needle insertion device 200 is assembled. In other words, the shape and configuration of the needle bevel 210 may dictate the shape and configuration of the face 130 of the jacket 105. For example, in one conventional design, the needle bevel 210 is a single, angled surface that forms a tip at one end of the needle shaft 225 (see
With particular reference to
The jacket 105 may be manufactured or molded as a single, unitary body of a flexible, polymeric or synthetic material to minimize potential wear of the bevel 205 such as may occur from frictional movement or rubbing together between the jacket 105 and the bevel 205. For example, in some embodiments, the jacket 105 may be molded from polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polypropylene (PP), or other suitable plastic material to minimize wear of the bevel 205.
With particular reference to
In the illustrated configuration, the distal portion 160 of the mandrel 150 is seated and retained within the cavity 120 of the jacket 105, and the arcuate proximal portion 165 extends outwardly from the proximal end 110 of the jacket 105 in a longitudinal direction. In other embodiments the mandrel 150 may be coupled to the jacket 105 in a variety of ways. For example, the jacket 105 may comprise a solid member and the mandrel 150 may be forced into the jacket 105 to couple the components. In some such embodiments, the mandrel 150 may be heated to faciltate insertion and bonding. Other methods of coupling, including use of adhesive, other interference or friction fits, and use of radial restrains or other fasteners are within the scope of this disclosure.
In some embodiments, for example, the mandrel 150 may be retained in position within the jacket 105 by a frictional force between the interior walls of the jacket 105 and the outer surface of the mandrel 150. For example, the mandrel 150 may be machined or manufactured with an outer diameter dimensioned in relation to the diameter of the cavity 120 to create an interference or frictional fit between the mandrel 150 and the jacket 105. In such an arrangement, the mandrel 150 may be inserted into the cavity 120 of the jacket 150 and retained in position by frictional forces. In other embodiments, the mandrel 150 may instead be rigidly or adhesively coupled to the interior walls of the jacket 105 to further secure and prevent inadvertent removal of the mandrel 150.
The arcuate proximal portion 165 of the mandrel 150 may be configured to maintain the mandrel 150 within a needle lumen. As is explained in further detail below with respect to
The arcuate portion 165 of the mandrel 150 is also shown in the side view of the obturator device of
Regardless of the form or shape of the arcuate portion 165, 165′, 165″ the mandrel may thus provide a spring force to help maintain the obturator within a needle. In some embodiments the arcuate portion 165, 165′, 165″ may be configured to provide resistance to withdrawal of the obturator from a needle such that the withdrawal force is between 0.10 lbs and 2.0 lbs, including between 0.10 lbs and 1.8 lbs, between 0.5 lbs and 1.5 lbs, forces of less than 2 lbs, less than 1.75 lbs, less than 1.5 lbs, less than 1 lbs, less than 0.5 lbs, or less than 0.25 lbs.
With particular reference to
The obturator device 100 further includes a sleeve 175 encircling at least a portion of the jacket 105. In some embodiments, the sleeve 175 may extend to and wrap around the distal end 115 of the jacket 105 to further protect the distal end 115 and facilitate entry and maneuvering of the needle insertion device 200 when inserted into the pigtail catheter 300. The sleeve 175 may have an inner diameter that is larger than the outer diameter of the jacket 105 to allow the sleeve 175 to slide over and sit against the jacket 105. The sleeve 175 extends beyond the proximal end 110 and face 130 of the jacket 105 so that when the needle insertion device 200 is assembled, the sleeve 175 helps form a tight seal at the mating junction between the face 130 of the jacket 105 and the bevel 210 of the needle 205. Additional details of the assembled configuration are described below with reference to
In some embodiments, the sleeve 175 may be a heat-shrink tube or other shrinkable plastic tube that shrinks when heat is applied to wrap tightly around the jacket 105 and is mechanically held in place by its tight fit. The heat-shrink tube may be adhesive-lined to form a secure seal around the jacket 105 and the bevel 210 (and portion of the needle shaft 225) to prevent moisture, debris, dust, or other foreign materials from entering the lumen 215. In other embodiments, the sleeve 175 may instead be rubber, neoprene, or other suitable material that may be fitted around the jacket 105 and bevel 210. In such embodiments, the sleeve 175 may be retained in position via a mechanical grip of the sleeve 175 with the jacket 105 and needle shaft 225.
Embodiments wherein the obturator device 100 is secured to a needle only by friction between the sleeve 175 and the needle are within the scope of this disclosure, as are embodiments wherein the entire securement force is provided by an arcuate bend in the mandrel 150 (such as arcuate portion 165 of
With reference to
As mentioned previously, the arcuate proximal end 165 of the mandrel 150 bears against the internal wall 220 of the needle shaft 225 to retain the obturator device 100 in position. The diameter of the cavity 120 of the jacket 105 may be equal or substantially equal to the diameter of the needle lumen 215 to minimize slop or backlash of the mandrel 150 within the cavity 120 and/or the lumen 215 when the needle insertion device 200 is assembled.
Once the jacket 105 is positioned against the bevel 210, the sleeve 175 may be positioned over the jacket 105 from the distal end 115 and advanced toward the mating junction between the jacket 105 and the bevel 210. To help further secure the jacket 105 to the needle 205 and to minimize any rough edges that may be present at the mating junction, the sleeve 175 extends over the mating junction and at least onto a portion of the needle shaft 225. In embodiments where the sleeve 175 is a heat-shrink tube, heat may be applied to shrink the sleeve 175 around the jacket 105 and the needle shaft 225 to secure the components of the needle insertion device 200.
It should be understood that in other embodiments, the sleeve 175 may be positioned around the jacket 105 prior to inserting the mandrel 150 into the lumen 215. In such embodiments, the sleeve 175 may extend over and beyond the proximal end 110 of the jacket 105 and serve as a guide for mating the jacket 105 with the bevel 210. The sleeve 175 may also help protect a person assembling the needle insertion device 200 from inadvertent injury. In this configuration, the mandrel 150 is inserted into the lumen 215 in a similar manner as described previously and advanced until the needle bevel 215 and at least a portion of the shaft 225 are adjacent the sleeve 175. At this point, the bevel 215 and the shaft 225 are inserted into the sleeve 175 and advanced toward the face 130 of the jacket 105. Once the face 130 is mated with the bevel 210, then heat may be applied to shrink the sleeve 175 and secure the mating junction as described previously.
In its assembled configuration, the needle insertion device 200 may be inserted into a pigtail catheter 300 (or other similar drainage catheter or medical device) to straighten the catheter 300 and prepare it for insertion into a patient body or cavity. The following section describes an example embodiment of a device assembly 400 with particular reference to
In an example embodiment of the device assembly 400, the needle insertion device 200 is aligned with an opening 305 on a catheter hub 310 of the catheter 300, with the distal end 115 of the jacket 105 facing the catheter opening 305. The distal end 115 of the jacket 105 is inserted into the opening 305 and advanced into a catheter lumen 315. As the needle insertion device 200 is advanced, the radiused end 125 of the jacket 105 (and the sleeve 175) rides against an internal wall (not shown) of the catheter 300. As the needle insertion device 200 is pushed further into the lumen 315, the jacket 105 straightens a coiled portion 325 of the pigtail catheter 300. The jacket 105 and the sleeve 175 protect against any inadvertent piercing or puncturing of the pigtail catheter 300 that may be caused by the needle bevel 210. The position of the jacket 105 against the bevel 210 and/or the position of the sleeve 175 around the bevel 210 may thus isolate the bevel 210 from interaction with the pigtail catheter 300.
The needle insertion device 200 is advanced into the catheter lumen 315 until the jacket 105 extends beyond an opening 330 on a distal portion 335 of the pigtail catheter 300. When the needle insertion device 200 is fully inserted, the pigtail catheter 300 is in a straightened configuration (as shown in
Prior to inserting the catheter 300 into a patient, the obturator device 100 is removed from the distal portion 335 of the catheter 300 to expose the bevel 210. In some embodiments, the obturator device 100 may be pulled distally with sufficient force to break the seal formed by the heat-shrink sleeve 175 and overcome its mechanical grip on the needle bevel 210 and shaft 225. When the obturator device 100 is removed, the mandrel 150 is also removed from within the needle lumen 215.
Accordingly, the obturator device 100 may be removed by distally displacing the obturator device 100 with respect to the needle 205. Similarly, when assembled, the obturator device 100 may simultaneously be distally displaced with respect to the catheter 300 as the obturator device 100 is removed. In the illustrated assembly, the needle 205 is removed from the catheter 300 by proximally displacing the needle 205 (for example through manipulation of the needle hub 240) with respect to the catheter 300. Thus, removal of the obturator device 100 may be completed by displacing the obturator device 100 from the catheter 300 in the opposite direction from which the needle 205 is displaced to remove the needle 205 from the catheter.
After the obturator device 100 is removed and the bevel 210 exposed, the bevel 210 may be used to pierce the patient's body and advanced together with the pigtail catheter 300 to a desired body cavity or tissue. Once the pigtail catheter 300 is positioned at its desired location, the needle shaft 225 is retracted from the lumen 215 of the catheter 300 and removed via the opening 330 on the catheter hub 310, leaving the catheter 300 in position within the body cavity or tissue.
References to approximations are made throughout this specification, such as by use of the term “substantially.” For each such reference, it is to be understood that, in some embodiments, the value, feature, or characteristic may be specified without approximation. For example, where qualifiers such as “about” and “substantially” are used, these terms include within their scope the qualified words in the absence of their qualifiers. For example, where the term “substantially straight” is recited with respect to a feature, it is understood that in further embodiments, the feature can have a precisely straight configuration.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim requires more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment.
The claims following this written disclosure are hereby expressly incorporated into the present written disclosure, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims. Moreover, additional embodiments capable of derivation from the independent and dependent claims that follow are also expressly incorporated into the present written description.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The claims and embodiments disclosed herein are to be construed as merely illustrative and exemplary, and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having ordinary skill in the art, with the aid of the present disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. The scope of the invention is therefore defined by the following claims and their equivalents.
This application claims priority to U.S. Provisional Application No. 62/086,544 filed on Dec. 2, 2014 and titled, “Distally Oriented Needle Obturator,” which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62086544 | Dec 2014 | US |