The invention relates to a distance measuring device and a method for determining a distance with the distance measuring device.
Distances can be measured between a measuring device and an object without a physical contact between the device and the object by optical methods. In these methods, the object is illuminated by a light source of the device and the light back reflected from the object is then captured by a light detector of the device.
Distances can for example be determined by periodically modulating the light intensity which is emitted from the light source and by measuring the phase difference between the emitted light and the back reflected light arriving on the detector. However, due to the periodicity of the light intensity, this method results in an ambiguous distance measurement. Distances can be unambiguously determined by measuring the time of flight between the emission of a light pulse and the arrival of a back reflected light pulse on the detector.
Ambient light, for example sun-light, can interfere with the distance measurement and therefore result in a reduction of the precision for the distance measurement. Conventionally, a background measurement is carried out without illuminating the object with the light pulse. The background measurement leads to an irregular operation of the light source. The irregular operation is disadvantageous because it results in a reduction of the life time of the light source and in fluctuations of the parameters of the light pulses, in particular intensity, pulse width, rise times and/or fall times. These fluctuations cause a reduction of the precision for the distance measurement.
It is an object of the invention to provide a distance measuring device and a method for measuring a distance with the distance measuring device, wherein the distance can be measured with a high precision.
The distance measuring device according to an aspect of the invention includes a light source configured to illuminate an object with light pulses having a duration Tp, at least one photo element configured to capture the light pulses after being back reflected from the object, a trigger generator configured for controlling the emission of the light pulses and for activating the photo element during temporal integration gates, wherein the photo element is adapted to output a signal value U at the end of each integration gate with the signal value U being proportional to the energy of the light arriving on the photo element during its activation. The trigger generator stores a trigger scheme to control the emission of the light pulses such that a sequence of the light pulses including four consecutive light pulses consisting of two light pulses having an intensity Ie,l and two light pulses having an intensity Te,h being higher than Ie,l is emitted and that the repetition rate 1/Δrep of the light pulses is constant, and to activate the photo element such that the delays between the integration gates and the emission start points in time of the four light pulses are such that the light pulses arriving on the photo element are captured such that one arriving light pulse corresponding to the intensity Ie,l and one arriving light pulse corresponding to the intensity Ie,h are captured by the photo element within first integration gates with an integration start point in time T1,s and an integration end point in time T1,e as well as the other arriving light pulse corresponding to the intensity Ie,l and the other arriving light pulse corresponding to the intensity Ie,h are captured by the photo element within second integration gates with an integration start point in time T2,s and an integration end point in time T2,e, wherein the delay for the first integration gates is chosen such that either T1,s or T1,e is between Δtof and Δtof+Tp and the delay for the second integration gates is chosen such the respective light pulses are at least partially within the second integration gates, wherein T1,s, T1,e, T2,s, T2,e are the delays from the emission start point in time and Δtof is the first point in time the arriving light pulses arrive on the photo element, and a processing unit adapted to calculate the distance between the distance measuring device and the object by using the difference of the signal values U being output at the end of the first integration gates and the difference of the signal values U being output at the end of the second integration gates. The duration T1,e-T1,s of the first integration gates can be equal to or can be different from the duration T2,e-T2,s of the second integration gates.
The method according to an aspect of the invention for determining a distance with the distance measuring device includes the steps of: a) illuminating the object with the sequence of the light pulses; b) capturing one arriving light pulse corresponding to the intensity Ie,l within one of the first integration gates, and outputting a signal value U1 at the end of the first integration gate; c) capturing the other arriving light pulse corresponding to the intensity Ie,l within one of the second integration gates, and outputting a signal value U2 at the end of the second integration gate; d) capturing one arriving light pulse corresponding to the intensity Ie,h within the other first integration gate and outputting a signal value U3 at the end of the first integration gate; e) capturing the other arriving light pulse corresponding to the intensity Ie,h within the other second integration gate and outputting a signal value U4 at the end of the second integration gate; f) calculating the distance between the distance measuring device and the object by using the difference of the signal values U2 and U1 and the difference of the signal values U4 and U3.
In order to arrange the integration gates with respect to the emission start point in time, a distance range in which the object can be located is predetermined. From the distance range Tp, T1,s and T1,e can be chosen such that T1,s or T1,e is between Δtof and Δtof+Tp for all possible distances of the distance range. T2,s and T2,e can then be chosen such that the respective light pulses are at least partially within the second integration gates for all possible distances of the distance range.
According to an aspect of the invention, Δtof and Δtof+Tp are between T2,s and T2,e. For the case that T1,s is between Δtof and Δtof+Tp, the time of flight Δtof from the emission of the light pulses to the arrival of the light pulses on the photo element is calculated by:
For the case that T1,e is between Δtof and Δtof+Tp, Δtof is calculated by:
Also, according to the aspect of the invention, the durations of the first and second integration gates can be equal or can be different. If the durations are different, the duration T2,e-T2,s can be longer than the duration T1,e-T1,s to ensure that the complete light pulses are within the second integration gate.
Alternatively, according to another aspect of the invention, in case T1,s is between Δtof and Δtof+Tp, T2,s is between Δtof and Δtof+Tp, T2,e is later than Δtof+Tp and T2,s is different from T1,s, and in the case T1,e is between Δtof and Δtof+Tp, T2,e is between Δtof and Δtof+Tp, T2,s is earlier than Δtof and T2,e is different from T1,e.
For the case that T1,e is between Δtof and Δtof+Tp, Δtof is calculated by
For the case that T2,e is between Δtof and Δtof+Tp, Δtof is calculated by:
For all cases, the distance r between the distance measuring device and the object is then calculated by
r=0.5*c*Δtof (equation 5),
wherein c is the speed of light in the medium in which the distance measurement is carried out.
With the distance measuring device and the method according to an aspect of the invention, it is possible to eliminate the influence of background light, for example sun light, without taking a background measurement. The background measurement would include outputting a signal value U at the end of an integration gate without illuminating the object with a light pulse. Since it is not necessary to take the background measurement, it is possible to operate the light source with the constant repetition rate 1/Δrep, which results in a long life time of the light source. Δrep denotes the duration between two consecutive emission start points in time. Another advantage of the constant repetition rate is that the intensity fluctuations of the light pulses are reduced. Both, the elimination of the influence of the background light and the reduction of the intensity fluctuations result in a high precision for the distance measurement.
According to an aspect of the invention, the trigger scheme controls the emission of the sequence such that single light pulses having the intensity Ie,l are emitted alternating with single light pulses having the intensity Ie,h. This results in a particular regular operation of the light source which results in a particular long life time of the light source and in particular small intensity fluctuations of the light pulses. According to an aspect of the invention, the trigger scheme controls the emission of the light pulses such that the sequence includes a dummy light pulse preceding the four light pulses. Since the dummy light pulse is not used for the distance measurement, it is advantageously achieved that only light pulses with small intensity fluctuations are used for the distance measurement. According to another aspect of the invention, the trigger scheme controls the emission of the light pulses such that the sequence includes a plurality of dummy light pulses, wherein at least one dummy light pulse precedes each of the four light pulses. By using the multitude of dummy light pulses, it is possible to maintain a stable and constant repetition rate 1/Δrep and to carry out the measurements of the signal values U at a measurement frequency, even if the measurement frequency of the photo element is lower than repetition rate 1/Δrep for a stable operation of the light source.
According to an aspect of the invention, the light source includes light emitting diodes, VCSELs (vertical-cavity surface-emitting laser) and lasers or any combination thereof that are in particular configured to emit in the visible and/or infrared spectral region. According to another aspect of the invention, the distance measuring device includes a CCD chip with an image intensifier and/or a CMOS chip that includes the at least one photo element.
According to a further aspect of the invention, the light source includes a first group with at least one light emitting diode, VCSEL and/or laser and a second group with at least one light emitting diode, VCSEL and/or laser, wherein the trigger scheme controls the emission of the light pulses such that the first group emits light pulses with the repetition rate 1/Δrep and with the intensity Ie,l and such that the second group emits light pulses with the repetition rate 0.5/Δrep and with the intensity Ie,h-Ie,l so that the overlap of the emission of the first group and second group results in the light pulses with the intensity Ie,h. Here, it is advantageously achieved that the first group and the second group are operated perfectly regularly so that the life times of the first group and the second group are particularly increased.
According to an aspect of the invention, Δtof and Δtof+Tp are between T2,s and T2,e. Alternatively, according to another aspect of the invention, in case T1,s is between Δtof and Δtof+Tp, T2,s is between Δtof and Δtof+Tp, T2,e is later than Δtof+Tp and T2,s is different from T1,s, and in case T1,e is between Δtof and Δtof+Tp, T2,e is between Δtof and Δtof+Tp, T2,s is earlier than Δtof and T2,e is different from T1,e.
According to an aspect of the invention, in step a) the sequence is such that single light pulses having the intensity Ie,l are emitted alternating with single light pulses having the intensity Ie,h. The sequence preferably includes a dummy light pulse preceding the four light pulses, wherein the dummy light pulse is not used for the determination of the distance. According to an aspect of the invention, the sequence includes a plurality of dummy light pulses, wherein at least one dummy light pulse precedes each of the four light pulses, wherein the dummy light pulses are not used for the determination of the distance. According to another aspect of the invention, in step a) the sequence includes a multitude of sets of the four light pulses and a respective distance is determined for each set by repeating steps b) to f).
The invention will now be described with reference to the drawings wherein:
The signal value U can be measured directly, for example if a CCD chip or CMOS image sensor is used. The charge measured at the end of the integration gate is proportional to the energy of the light arriving on the photo element during its activation and therefore the signal value U, which is proportional to the charge, is proportional to the energy of the light. On the other hand, the signal value U can be determined indirectly if the relation between a measured value and the energy of the light arriving on the photo element during its activation is known. For example, if the photo element includes a condenser that is discharged via a photodiode during the activation of the photo element, the measured value is a voltage that is approximately inversely proportional to the energy of the light arriving on the photo element during its activation.
Detection optics 21 are arranged in front of the photo element 16 in order to image a field of view 24 onto the photo element 16. Illumination optics 20 are arranged in front of the light source 15 in order to shape the light emitted by the light source 15 such that an illumination area 23 can be illuminated by the light source 15. The illumination area 23 and the field of view 24 are shaped such that the field of view 24 is substantially completely covered by the illumination area 23. The distance measuring device 14 is adapted such that the light emitted by the light source 15 impinges onto the object 22 located within the field of view 24, and arrives on the photo element 16 after being back reflected from the object 22. The illumination optics 20 and the detection optics 21 are preferably respective lenses. It is also possible to use a single lens for both the illumination optics 20 and the detection optics 21.
In
The first temporal profile diagram shows that the light source 15 emits a sequence of consecutive light pulses 7, 8. The light pulses 7, 8 have a preferably rectangular temporal profile so that the light source 15 switches the intensity of the light pulses 7, 8 at an emission start point in time 13 from a lower intensity to a higher intensity and after a pulse duration Tp from the emission start point in time 13 back to the lower intensity. The pulse duration Tp is preferably the same for all the light pulses 7, 8 and is in the order of picoseconds or nanoseconds. The repetition rate 1/Δrep for all the light pulses in the sequence is constant, wherein Δrep is the duration between two consecutive emission start points in time 13. The repetition rate 1/Δrep for the light pulses 7, 8 is from 1 Hz to 20 kHz.
In the following it is assumed that the lower intensity is zero. The sequence includes a set of four consecutive light pulses 7, 8, wherein two light pulses 7 of the four light pulses 7, 8 have the intensity Ie,l and the other two light pulses 8 the four light pulses 7, 8 have the intensity Ie,h, wherein Ie,h>Ie,l. In the sequence, a single light pulse 7 with the intensity Ie,l and a single light pulse 8 with the intensity Ie,h are always emitted alternatingly. After the emission, the light pulses 7, 8 impinge on the object 22 located within the field of view 24 and are back reflected from the object 22. Afterwards the light pulses 9, 10 arrive on the photo element 16, wherein Δtof is the first point in time from the emission start point in time 13, when the light pulses 9, 10 arrive on the photo element 16. The two light pulses 9 arriving on the photo element 16 and corresponding to the light pulses 7 with the intensity Ie,l have the intensity Ia,l, wherein Ia,l<Ie,l. The two light pulses 10 arriving on the photo element 16 and corresponding to the light pulses 8 with the intensity Ie,h have the intensity Ia,h, wherein Ia,h<Ie,h.
The third temporal profile diagram shows that the set of the four light pulses 9, 10 arriving on the photo element 16 are captured within two first integration gates 11 and two second integration gates 12. The first integration gates 11 have an integration start point in time T1,s and an end integration end point in time T1,e, wherein T1,s and T1,e are the delays from the emission start point in time 13. The second integration gates 12 have an integration start point in time T2,s and an integration end point in time T2,e, wherein T2,s and T2,e are the delays from the emission start point in time 13. One of the four light pulses 9 having the intensity Ia,l and one of the four light pulses 10 having the intensity Ia,h are captured by the photo element 16 within a respective first integration gate 11 such that T1,e is between Δtof and Δtof+Tp and that T1,s is earlier than Δtof. Alternatively, it is possible that the respective first integration gate 11 is such that T1,s is between Δtof and Δtof+Tp and that T1,e is later than Δtof+Tp. The other of the four light pulses 9 having the intensity Ia,l and the other of the four light pulses 10 having the intensity Ia,h are captured by the photo element 16 within a respective second integration gate 12 such that Δtof and Δtof+Tp are between T2,s and T2,e.
The hatched areas in the second temporal profile diagram are proportional to the energy of the light arriving on the photo element 16 during its activation. Since the signal value U is proportional to the energy of light arriving on the photo element during its activation, the signal value U is also proportional to the hatched areas. A signal value U1 is put out at the end of the first integration gate 11 that captures one of the light pulses 9 with the intensity Ia,l. A signal value U3 is output at the end of the first integration gate 11 that captures one of the light pulses 10 with the intensity Ia,h. A signal value U2 is put out at the end of the second integration gate 12 that captures the other of the light pulses 9 with the intensity Ia,l. A signal value U4 is put out at the end of the second integration gate 12 that captures the other of the light pulses 10 with the intensity Ia,h.
Furthermore,
By subtracting equation 6 from equation 7 and equation 8 from equation 9 it follows:
By equalizing the right hand sides of equation 10 and equation 11, it is then possible to derive equation 2. Equation 3 can be derived in an analogous manner. By subtracting the equations 6 to 9, the influence of background light is eliminated.
The sequence can include a dummy light pulse preceding the set of the four light pulses 7, 8, wherein the dummy light pulse is not used for the determination of a distance. In this case, the dummy light pulse has an emission start point in time that is a duration Δrep earlier than the emission start point in time 13 of the earliest of the four light pulses 7, 8.
The sequence can also include a multitude of dummy pulses preceding each of the four light pulses 7, 8 wherein the dummy light pulses are not used for the determination of a distance. In these cases, the dummy light pulses have emission start points in time that are earlier than the emission start point of the respective measurement light pulse 7, 8.
Furthermore, the sequence can include a multitude of the sets of the four light pulses 7, 8 and a respective distance is calculated for each of the sets. If the sequence includes the multitude of the sets, the repetition rate of all the light pulses is maintained constant with the repetition rate 1/Δrep. The distance measuring device 14 can include a plurality of photo elements 16 and a respective distance is determined for each of the photo elements 16.
In an exemplary embodiment, the light source includes a first group with at least one light emitting diode, VCSEL and/or laser and a second group with at least one light emitting diode, VCSEL and/or laser, wherein the emission of the light pulses is controlled such that the first group emits light pulses with the repetition rate 1/Δrep and with the intensity Ie,l and such that the second group emits light pulses with the repetition rate 0.5/Δrep and with the intensity Ie,h-Ie,l so that the overlap of the emission of the first group and second group results in the light pulses with the intensity Ie,h.
It is understood that the foregoing description is that of the exemplary embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 117 097 | Nov 2014 | DE | national |
This application is a continuation application of international patent application PCT/EP2015/076794, filed Nov. 17, 2015, designating the United States and claiming priority from German application 10 2014 117 097.0, filed Nov. 21, 2014, and the entire content of both applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6373557 | Mengel et al. | Apr 2002 | B1 |
6647205 | Kindaichi et al. | Nov 2003 | B1 |
7212278 | Doemens | May 2007 | B2 |
7623221 | Thun et al. | Nov 2009 | B2 |
8699008 | Murakami et al. | Apr 2014 | B2 |
9395440 | Schrey | Jul 2016 | B2 |
20030072051 | Myers | Apr 2003 | A1 |
20030193981 | Matveev | Oct 2003 | A1 |
20060214121 | Schrey et al. | Sep 2006 | A1 |
20080144000 | Thun | Jun 2008 | A1 |
20090135405 | Fischer | May 2009 | A1 |
20090323741 | Deladurantaye | Dec 2009 | A1 |
20100303299 | Cho | Dec 2010 | A1 |
20120230673 | Striegler | Sep 2012 | A1 |
20120249998 | Eisele | Oct 2012 | A1 |
20150234038 | Yates et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1410826 | Apr 2003 | CN |
1834687 | Sep 2006 | CN |
101114021 | Jan 2008 | CN |
202093171 | Dec 2011 | CN |
102378920 | Mar 2012 | CN |
102854510 | Jan 2013 | CN |
103605133 | Feb 2014 | CN |
19741887 | Mar 1999 | DE |
19833207 | Feb 2000 | DE |
10 2007 046 562 | Apr 2009 | DE |
102011081384 | Feb 2013 | DE |
1423731 | Oct 2006 | EP |
2014068061 | May 2014 | WO |
Entry |
---|
Office Action issued in European Patent Application No. EP 14801984.7, dated May 16, 2018 in English. |
International Search Report dated Feb. 12, 2016 of international application PCT/EP2015/076794 on which this application is based. |
M. Nazarathy et al., “Real-Time Long Range Complementary Correlation Optical Time Domain Reflectometer,” Journal of Lightwave Technology vol. 7(1): 24-38, Feb. 1989. |
D. Huang et. al., “Research of Complementary Correlation Optical Time Domain Reflectometer,” Journal of Universit of Electronic Science and Technology of China, Jun. 2005, vol. 34, No. 3 and English language Abstract thereof. |
Number | Date | Country | |
---|---|---|---|
20170307359 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2015/076794 | Nov 2015 | US |
Child | 15599110 | US |