This application claims the benefit of and priority to Japanese Patent Application No. 2015-198466, filed on Oct. 6, 2015, the entire contents of which are incorporated by reference herein.
1. Field of the Invention
The present invention relates to distance-settable photoelectric sensors that can detect the presence or absence of detection objects located closer than set distances.
2. Description of the Related Art
A known distance-settable photoelectric sensor (background-suppression (BGS) photoelectric sensor) in the related art detects the presence or absence of a detection object located closer than a set distance (for example, see Japanese Unexamined Patent Application Publication No. 2010-256182). In this distance-settable photoelectric sensor, a light receiver is provided with a two-segment photodiode. By using the principle of triangulation, a detection object located closer than a set distance is detected by utilizing the fact that the light reception position at the two-segment photodiode varies depending on the distance to the detection object. For example, if there is a detection object located at the set distance, an equal amount of light is received at a near-side (N-side) light-receiving face and a far-side (F-side) light-receiving face of the two-segment photodiode due to reflection light from the detection object. If the detection object is closer to the distance-settable photoelectric sensor than the set distance, the N-side light-receiving face receives a larger amount of light due to reflection light from the detection object. In contrast, if the detection object is farther from the distance-settable photoelectric sensor than the set distance, the F-side light-receiving face receives a larger amount of light due to reflection light from the detection object. The distance-settable photoelectric sensor detects the difference between the amount of light received at the N-side and the amount of light received at the F-side and compares the difference with a threshold value so as to detect the detection object located closer than the set distance.
However, in the distance-settable photoelectric sensor in the related art, the amount of feedback light increases when the detection object is located close to the distance-settable photoelectric sensor, resulting in an increase in the amount of light received by the light receiving element. On the other hand, the light receiver has a dynamic range and if the amount of light received by the light receiver exceeds this range, a circuit in the light receiver becomes saturated. When the circuit in the light receiver is saturated, it becomes difficult to properly detect the difference between the amount of light received at the N-side light-receiving face and the amount of light received at the F-side light-receiving face, which is problematic in that malfunctions may occur.
As a countermeasure against saturation of the circuit in the light receiver caused by an increase in the amount of feedback light, for example, an automatic phase control (APC) circuit that automatically adjusts the amount of projection light in accordance with the amount of received light may be used, or the dynamic range of the light receiver may be increased. However, the countermeasure that uses an APC circuit is problematic in terms of a complex circuit and high costs. In the countermeasure that involves increasing the dynamic range, the dynamic range has to be expanded by increasing the voltage of the circuit in the light receiver or by reducing the sensitivity. This is problematic in that the detection distance becomes shorter and the circuit becomes complex.
The present invention has been made to solve the problems mentioned above, and an object thereof is to provide a distance-settable photoelectric sensor that can avoid malfunctions by preventing saturation of a circuit in a light receiver caused by an increase in the amount of feedback light.
A distance-settable photoelectric sensor according to the present invention has a light projector that projects light and a light receiver that has a light receiving element extending from a near-side light-receiving face to a far-side light-receiving face and that receives reflection light with respect to the light projected by the light projector. The distance-settable photoelectric sensor detects presence or absence of a detection object located closer than a set distance based on a light reception result obtained by the light receiver. The light receiver has a shield wall disposed facing a part of the near-side light-receiving face of the light receiving element from an end opposite from the far-side light-receiving face. The shield wall blocks a portion of reflection light from the detection object located at a distance at which the detection object reflects reflection light that causes an amount of light received by the light receiving element to be larger than or equal to a predetermined value.
With the above-described configuration according to the present invention, saturation of a circuit in a light receiver caused by an increase in the amount of feedback light is prevented so that malfunctions are avoided.
An embodiment of the present invention will be described in detail below with reference to the drawings.
First Embodiment
The distance-settable photoelectric sensor includes a light projector that projects light, and also includes a light receiver that has a light receiving element 5 extending from a near-side (N-side) light-receiving face to a far-side (F-side) light-receiving face and that receives reflection light with respect to the light projected by the light projector. Based on the light reception result obtained by the light receiver, the distance-settable photoelectric sensor detects the presence or absence of a detection object 50 located closer than a set distance.
As shown in
In the configuration shown in
The drive circuit 1 generates electric current for the light projecting element 2.
The light projecting element 2 is driven by the electric current generated by the drive circuit 1 and emits light. An example of the light projecting element 2 used is a light emitting diode (LED).
The light-projection optical system 3 collects the light emitted by the light projecting element 2. The light collected by the light-projection optical system 3 is projected onto a detection region. Then, if there is a detection object 50 in the detection region, the light is reflected by this detection object 50.
The light-reception optical system 4 collects the light reflected by the detection object 50 located in the detection region.
The light receiving element 5 extends from the N-side light-receiving face to the F-side light-receiving face of the light receiver and converts the light collected by the light-reception optical system 4 into an electric signal (i.e., electric current). As the light receiving element 5, any one of a two-segment photodiode, a multi-segment photodiode, a position sensitive detector (PSD) (position detecting element), and a one-dimensional charge-coupled device (CCD) is used. With this light receiving element 5, the amount of light received at the N-side light-receiving face and the amount of light received at the F-side light-receiving face can be detected.
As shown in
The arithmetic circuit 7 detects a difference between the amount of light (i.e., electric current) received at the N-side light-receiving face and the amount of light (i.e., electric current) received at the F-side light-receiving face, which are detected by the light receiving element 5.
The amplifying circuit 8 converts the electric current processed by the arithmetic circuit 7 into a voltage and amplifies the voltage based on a predetermined amplification factor. The voltage amplified by the amplifying circuit 8 corresponds to a light reception signal.
The comparison-determination circuit 9 compares the voltage amplified by the amplifying circuit 8 with a criterion threshold value so as to detect the presence or absence of an object in the detection region. In this case, if the voltage amplified by the amplifying circuit 8 is larger than the criterion threshold value, the comparison-determination circuit 9 determines that there is no object in the detection region. If the voltage amplified by the amplifying circuit 8 is smaller than or equal to the criterion threshold value, the comparison-determination circuit 9 determines that there is an object in the detection region. For example, an up-down counter is used as the comparison-determination circuit 9.
The output circuit 10 outputs information indicating the determination result obtained by the comparison-determination circuit 9. In this case, the output circuit 10 actuates an output transistor based on the information indicating the determination result.
The display circuit 11 uses, for example, an indication light to display the information indicating the determination result obtained by the comparison-determination circuit 9.
The control circuit 12 controls the operation of each section of the photoelectric sensor.
Next, the effects of the distance-settable photoelectric sensor having the above-described configuration will be described.
First, variations in the amount of received light depending on the position of the detection object 50 in the case of the configuration in the related art will be described with reference to
Next, variations in the amount of received light depending on the position of the detection object 50 in the case of the configuration according to the present invention will be described with reference to
As shown in
Furthermore, as shown in
Accordingly, in the present invention, the amount of received light can be reduced by blocking the reflection light only with respect to positions of the detection object 50 where the amount of feedback light increases, so that saturation of the light receiving element 5 can be avoided.
In actuality, it is difficult to provide an extremely thin member, as shown in
Accordingly, in the first embodiment, the light receiver is provided with the shield wall 6 that is disposed facing a part of the N-side light-receiving face of the light receiving element 5 from the end opposite from the F-side light-receiving face and that blocks a portion of reflection light from the detection object 50 located at a distance at which it reflects reflection light that causes the amount of light received by the light receiving element 5 to be larger than or equal to the predetermined value. Thus, saturation of the circuits in the light receiver caused by an increase in the amount of feedback light is prevented, thereby avoiding malfunctions. Furthermore, an increase in the amount of feedback light can be suppressed with a simple-structured member, without having to use a light receiver having an automatic phase control (APC) circuit and a high dynamic range as in the related art.
Furthermore, as shown in
In the present invention, arbitrary components in the embodiment may be modified or omitted within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2015-198466 | Oct 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4450547 | Nakamura | May 1984 | A |
5138150 | Duncan | Aug 1992 | A |
9153727 | Halbritter | Oct 2015 | B2 |
9354111 | Kerness | May 2016 | B2 |
20030123044 | Oka | Jul 2003 | A1 |
20060076523 | Higashiisogawa | Apr 2006 | A1 |
20070076843 | Matsumoto | Apr 2007 | A1 |
20080049210 | Takaoka | Feb 2008 | A1 |
20120295665 | Pantfoerder | Nov 2012 | A1 |
20130003039 | Wada | Jan 2013 | A1 |
20140084307 | Halbritter | Mar 2014 | A1 |
20140340892 | Knox | Nov 2014 | A1 |
20150090909 | Shih | Apr 2015 | A1 |
20150259890 | Shirai | Sep 2015 | A1 |
20150299992 | Shirai | Oct 2015 | A1 |
20150301176 | Halbritter | Oct 2015 | A1 |
20160238631 | Aharoni | Aug 2016 | A1 |
20170097418 | Sato | Apr 2017 | A1 |
20170108582 | Takamiya | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
8-255536 | Oct 1996 | JP |
2010-256182 | Nov 2010 | JP |
2011-43433 | Mar 2011 | JP |
2013-195079 | Sep 2013 | JP |
10 2012 107 794 | Feb 2014 | JP |
Entry |
---|
Extended European Search Report dated Feb. 23, 2017 in Patent Application No. 16192519.3. |
Number | Date | Country | |
---|---|---|---|
20170097418 A1 | Apr 2017 | US |