This disclosure generally relates to polarization systems, and more particularly to distortion matching in polarization conversion systems.
Three-dimensional imagery can be synthesized using polarization control following the projector and also employing polarization controlling eyewear, as generally discussed in U.S. Pat. No. 4,792,850 entitled “Method and system employing a push-pull liquid crystal modulator” filed Nov. 25, 1987, and in U.S. Pat. No. 7,905,602 entitled “Polarization conversion system for stereoscopic projection” filed Sep. 28, 2007, both of which are herein incorporated by reference in their entireties.
A conventional implementation of polarization control at the projector is shown in
This conventional system has been used in theaters. However, the conventional system requires that greater than 50% of the light is absorbed by the polarizer, and the resulting image is greater than 50% dimmer than that of a typical 2D theater. The dimmer image may limit the size of theater used for 3D applications and/or may provide a less desirable viewing experience for the audience.
According to an aspect of the present disclosure, an optical system may include a polarization conversion system. The polarization conversion system may include at least a polarization beam splitter (PBS) operable to receive randomly-polarized light bundles from a projector lens, and direct first light bundles having a first state of polarization (SOP) along a first light path, and direct second light bundles having a second SOP along a second light path, a polarization rotator located on the first light path, the polarization rotator being operable to translate the first SOP to the second SOP and a polarization switch operable to receive first and second light bundles from the first and second light paths respectively, and to selectively translate the polarization states of the first and second light bundles to one of a first output SOP and a second output SOP. The polarization switch may include first and second polarization switch panels, the first polarization switch panel receiving light from the first light path, and the second polarization switch panel receiving light from the second light path. The polarization conversion system may also include at least one of the following: providing a curved surface on the fold mirror with optical power that compensates for the magnification difference; (2) adding a Fresnel or diffractive surface with optical power to the reflecting element to compensate for the magnification difference; (3) adding a refractive element (lens) between the reflecting element and polarization switch, or between the PBS and reflecting element; or (4) addition of a telephoto lens.
Disclosed herein are optical systems having at least one polarization beam splitter (PBS). The PBS is operable to receive randomly-polarized light bundles from a projector lens. The PBS is further operable to direct light bundles having a state of polarization (SOP) along a light path and operable to direct other light bundles having a different SOP along different light paths. The light paths have optical path lengths which may differ. Each light path produces an image having a distortion which may differ from the distortion of an image produced by a different light path. A compensation in a light path is operable to convert a non-compensated distortion of an image into a compensated distortion that more closely matches the distortion of images in other light paths.
In some embodiments, a compensation may remove distortion from a light path, and in some embodiments, a compensation may add distortion to a light path. In some embodiments, the non-compensated distortion and/or the compensated distortion in a light path may be equivalent to substantially no distortion.
In some embodiments, a compensation may create a vertical tilt in a lens, a half-lens, or a lens pair in a light path. A compensation may be achieved by adjusting a mounting location associated with the optical system, by a mechanical device such as a shim or a hinge, or by some other process or device.
Embodiments are illustrated by way of example in the accompanying figures, in which like reference numbers indicate similar parts, and in which:
According to an aspect of the present disclosure, an optical system may include a polarization conversion system. The polarization conversion system may include at least a polarization beam splitter (PBS) operable to receive randomly-polarized light bundles from a projector lens, and direct first light bundles having a first state of polarization (SOP) along a first light path, and direct second light bundles having a second SOP along a second light path, a polarization rotator located on the first light path, the polarization rotator being operable to translate the first SOP to the second SOP and a polarization switch operable to receive first and second light bundles from the first and second light paths respectively, and to selectively translate the polarization states of the first and second light bundles to one of a first output SOP and a second output SOP. The polarization switch may include first and second polarization switch panels, the first polarization switch panel receiving light from the first light path, and the second polarization switch panel receiving light from the second light path. The polarization conversion system may also include at least one of the following: providing a curved surface on the fold mirror 116 with optical power that compensates for the magnification difference; (2) adding a Fresnel or diffractive surface with optical power to the reflecting element to compensate for the magnification difference; (3) adding a refractive element (lens) between the reflecting element and polarization switch, or between the PBS and reflecting element; or (4) addition of a telephoto lens.
Various embodiments of polarization conversion systems that receive light from a projector are described. The polarization conversion systems present a brighter screen image in cinematic applications utilizing polarized light for three-dimensional viewing.
Polarization-preserving stereoscopic cinema systems have been generally described in several patents and patent applications, for example U.S. Pat. No. 7,905,602 entitled “Polarization conversion system for stereoscopic projection” filed Sep. 28, 2007, U.S. Pat. No. 7,857,455 entitled “Combining P and S rays for bright stereoscopic projection” filed Oct. 18, 2006, U.S. Pat. No. 8,727,536 entitled “Polarization conversion system and method for projecting polarization encoded imagery” filed May 9, 2008, WO 2013/010167 entitled “Optical systems with compact back focal lengths” filed Jul. 16, 2012, and U.S. Pat. No. 8,220,934 entitled “Polarization conversion system for stereoscopic projection” filed Mar. 14, 2011, all of which are herein incorporated by reference in their entireties.
Randomly polarized light from a projector is split into orthogonal polarization states, re-directed and manipulated to produce matching polarization states, and overlaid on-screen for viewing. These systems may actively switch polarization states, for example with liquid-crystal switches or use passive components in dual projector configurations or one projector per eye which may provide greater image brightness.
Three-dimensional (3D) imagery can be synthesized using polarization control following the projector and polarization controlling eyewear (see, e.g., U.S. Pat. No. 4,792,850 to Lipton, which is herein incorporated by reference in its entirety).
A conventional implementation of polarization control at the projector is shown in
This conventional system has been used in theaters. However, the conventional system requires that greater than 50% of the light is absorbed by the polarizer, and the resulting image is greater than 50% dimmer than that of a typical 2D theater. The dimmer image may limit the size of theater used for 3D applications and/or may provide a less desirable viewing experience for the audience.
In operation, ray bundles A, B, and C emerge randomly polarized from the lens 122 and are projected toward a screen 130 to form an image. In this embodiment, a PBS 112 is inserted in place of the polarizer 22 shown in
The S-polarized light 126 reflected by the PBS 112 passes through a polarization rotator 114 (e.g., a half-wave plate, preferably achromatic in some embodiments) and is rotated to p-polarized light 128. The new p-polarized light 128 passes to a fold mirror 116. The fold mirror 116 reflects the new p-polarized light 128 and passes it to polarization switch 120. The polarization switch 120, acting on p-polarized ray bundles A′, B′, and C′, rotates the polarization of the ray bundles in alternating frames, in synchronization with the rotation of bundles A, B, and C. The position of bundles A′, B′, and C′ at the screen may be adjusted (e.g., by adjusting the tilt of the fold mirror 116) to closely or exactly coincide with the positions of bundles A, B, and C at the screen. Since nearly all of the randomly polarized light 106 from the projection lens 122 is imaged at the screen 130 with a single polarization state, the resulting image of the system in
In this exemplary embodiment, the PBS 112 in
In some embodiments, the polarization rotator 114 in
In some embodiments, the fold mirror 116 may be replaced with a PBS element (e.g., wire grid plate). In this case, a purer polarization may be maintained after the PBS element.
Polarization switch 120 may be a switch as taught by U.S. Pat. No. 4,792,850; a switch as taught by any of the switches of commonly-assigned U.S. Pat. No. 7,528,906 entitled “Achromatic Polarization Switches” filed Jun. 14, 2006; hereby incorporated by reference in its entirety, or any other polarization switch known in the art that selectively transforms an incoming state of polarization. In some embodiments, the polarization switch 120 can be split, for example, to increase yield of the device. If the polarization switch 120 is split, it is desirable that the two devices are located such that there is no overlap of bundles A′ and C in
In the polarization conversion system 100 of
Although as described, p-polarized light is transmitted toward the polarization switch 120, while s-polarized light is directed toward half-wave plate 114, it should be apparent to a person of ordinary skill in the art that an alternative configuration may be employed in which s-polarized light is transmitted toward the polarization switch 120, while p-polarized light is directed toward the half-wave plate 114.
For situations when the throw distance (i.e., the distance from projector to screen) is long relative to the distance between reflected and transmitted path optical axes, the image overlay with the art in
Additionally, for situations where the throw ratio decreases, in which the throw ratio may be defined as the ratio of throw distance to screen width, the reflected path image again can be excessively trapezoidal resulting in overlay difficulties.
The mismatch in distortion of the two optical paths can be overcome in short throw and low throw ratio situations by introducing a matching trapezoidal distortion in the transmitted optical path 330 that substantially matches the distortion in the reflected optical path 320. Alternatively, trapezoidal distortion may be removed from the reflected optical path 320 to better match the transmitted path 330. In other words, a compensation may be included in one or both of the light paths to convert the native (non-compensated) distortion into compensated distortions that more closely match.
Introducing trapezoidal distortion in the transmitted optical path can be accomplished by introducing a tilt in the vertical direction of one or both lenses in the lens pair. In this case, the lens tilt may create varying magnification from top to bottom of the transmitted path image.
This type of distortion matching can be used with single or multiple projector systems to improve image overlay at the screen.
For polarization conversion systems utilizing a stacked configuration, in which two polarization conversion systems are stacked on top of each other to produce overlaid images on-screen, tilted lenses may again be used to improve the image overlay at the screen.
As may be used herein, the terms “substantially” and “approximately” provide an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from zero to ten percent and corresponds to, but is not limited to, component values, angles, et cetera. Such relativity between items ranges between approximately zero percent to ten percent.
While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiment(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any embodiment(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the embodiment(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple embodiments may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the embodiment(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
This application claims priority to U.S. Provisional Patent Appl. No. 62/253,274 entitled “Distortion matching polarization conversion systems and method thereof” filed Nov. 10, 2015, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1128979 | Hess | Feb 1915 | A |
1970311 | Ives | Aug 1934 | A |
2133121 | Stearns | Oct 1938 | A |
2247969 | Lemuel | Jul 1941 | A |
2480178 | Zinberg | Aug 1949 | A |
2810905 | Barlow | Oct 1957 | A |
3409351 | Winnek | Nov 1968 | A |
3715154 | Bestenreiner | Feb 1973 | A |
4057323 | Ward | Nov 1977 | A |
4528617 | Blackington | Jul 1985 | A |
4542958 | Young | Sep 1985 | A |
4804253 | Stewart | Feb 1989 | A |
4807978 | Grinberg et al. | Feb 1989 | A |
4829365 | Eichenlaub | May 1989 | A |
4914553 | Hamada et al. | Apr 1990 | A |
5278608 | Taylor et al. | Jan 1994 | A |
5347644 | Sedlmayr | Sep 1994 | A |
5349419 | Taguchi et al. | Sep 1994 | A |
5355188 | Biles | Oct 1994 | A |
5459592 | Shibatani et al. | Oct 1995 | A |
5466926 | Sasano et al. | Nov 1995 | A |
5510831 | Mayhew | Apr 1996 | A |
5528720 | Winston et al. | Jun 1996 | A |
5581402 | Taylor | Dec 1996 | A |
5588526 | Fantone et al. | Dec 1996 | A |
5697006 | Taguchi et al. | Dec 1997 | A |
5703667 | Ochiai | Dec 1997 | A |
5727107 | Umemoto et al. | Mar 1998 | A |
5771066 | Barnea | Jun 1998 | A |
5796451 | Kim | Aug 1998 | A |
5808792 | Woodgate et al. | Sep 1998 | A |
5850580 | Taguchi et al. | Dec 1998 | A |
5875055 | Morishima et al. | Feb 1999 | A |
5896225 | Chikazawa | Apr 1999 | A |
5903388 | Sedlmayr | May 1999 | A |
5933276 | Magee | Aug 1999 | A |
5956001 | Sumida et al. | Sep 1999 | A |
5959664 | Woodgate | Sep 1999 | A |
5959702 | Goodman | Sep 1999 | A |
5969850 | Harrold et al. | Oct 1999 | A |
5971559 | Ishikawa et al. | Oct 1999 | A |
6008484 | Woodgate et al. | Dec 1999 | A |
6014164 | Woodgate et al. | Jan 2000 | A |
6023315 | Harrold et al. | Feb 2000 | A |
6044196 | Winston et al. | Mar 2000 | A |
6055013 | Woodgate et al. | Apr 2000 | A |
6061179 | Inoguchi et al. | May 2000 | A |
6061489 | Ezra et al. | May 2000 | A |
6064424 | Berkel et al. | May 2000 | A |
6075557 | Holliman et al. | Jun 2000 | A |
6094216 | Taniguchi et al. | Jul 2000 | A |
6108059 | Yang | Aug 2000 | A |
6118584 | Berkel et al. | Sep 2000 | A |
6128054 | Schwarzenberger | Oct 2000 | A |
6144118 | Cahill et al. | Nov 2000 | A |
6169853 | Hasushita | Jan 2001 | B1 |
6172723 | Inoue et al. | Jan 2001 | B1 |
6199995 | Umemoto et al. | Mar 2001 | B1 |
6219113 | Takahara | Apr 2001 | B1 |
6224214 | Martin et al. | May 2001 | B1 |
6232592 | Sugiyama | May 2001 | B1 |
6256447 | Laine | Jul 2001 | B1 |
6262786 | Perlo et al. | Jul 2001 | B1 |
6295109 | Kubo et al. | Sep 2001 | B1 |
6302541 | Grossmann | Oct 2001 | B1 |
6305813 | Lekson et al. | Oct 2001 | B1 |
6335999 | Winston et al. | Jan 2002 | B1 |
6373637 | Gulick et al. | Apr 2002 | B1 |
6377295 | Woodgate et al. | Apr 2002 | B1 |
6422713 | Fohl et al. | Jul 2002 | B1 |
6456340 | Margulis | Sep 2002 | B1 |
6464365 | Gunn et al. | Oct 2002 | B1 |
6476850 | Erbey | Nov 2002 | B1 |
6481849 | Martin et al. | Nov 2002 | B2 |
6654156 | Crossland et al. | Nov 2003 | B1 |
6663254 | Ohsumi | Dec 2003 | B2 |
6724452 | Takeda et al. | Apr 2004 | B1 |
6731355 | Miyashita | May 2004 | B2 |
6736512 | Balogh | May 2004 | B2 |
6801243 | Berkel | Oct 2004 | B1 |
6816158 | Lemelson et al. | Nov 2004 | B1 |
6825985 | Brown et al. | Nov 2004 | B2 |
6847354 | Vranish | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6859240 | Brown et al. | Feb 2005 | B1 |
6867828 | Taira et al. | Mar 2005 | B2 |
6870671 | Travis | Mar 2005 | B2 |
6883919 | Travis | Apr 2005 | B2 |
7052168 | Epstein et al. | May 2006 | B2 |
7058252 | Woodgate et al. | Jun 2006 | B2 |
7073933 | Gotoh et al. | Jul 2006 | B2 |
7091931 | Yoon | Aug 2006 | B2 |
7101048 | Travis | Sep 2006 | B2 |
7136031 | Lee et al. | Nov 2006 | B2 |
7215391 | Kuan et al. | May 2007 | B2 |
7215415 | Maehara et al. | May 2007 | B2 |
7215475 | Woodgate et al. | May 2007 | B2 |
7239293 | Perlin et al. | Jul 2007 | B2 |
7365908 | Dolgoff | Apr 2008 | B2 |
7375886 | Lipton et al. | May 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7430358 | Qi et al. | Sep 2008 | B2 |
7492346 | Manabe et al. | Feb 2009 | B2 |
7528893 | Schultz et al. | May 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7587117 | Winston et al. | Sep 2009 | B2 |
7614777 | Koganezawa | Nov 2009 | B2 |
7660047 | Travis et al. | Feb 2010 | B1 |
7750981 | Shestak et al. | Jul 2010 | B2 |
7750982 | Nelson et al. | Jul 2010 | B2 |
7771102 | Iwasaki | Aug 2010 | B2 |
7944428 | Travis | May 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8216405 | Emerton et al. | Jul 2012 | B2 |
8223296 | Lee et al. | Jul 2012 | B2 |
8251562 | Kuramitsu et al. | Aug 2012 | B2 |
8325295 | Sugita et al. | Dec 2012 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8447190 | Tanimura et al. | May 2013 | B2 |
8477261 | Travis et al. | Jul 2013 | B2 |
8502253 | Min | Aug 2013 | B2 |
8534901 | Panagotacos et al. | Sep 2013 | B2 |
8540372 | Coleman et al. | Sep 2013 | B2 |
8556491 | Lee | Oct 2013 | B2 |
8651725 | Ie et al. | Feb 2014 | B2 |
8714804 | Kim et al. | May 2014 | B2 |
8752995 | Park | Jun 2014 | B2 |
9197884 | Lee et al. | Nov 2015 | B2 |
9350980 | Robinson | May 2016 | B2 |
20010001566 | Moseley et al. | May 2001 | A1 |
20010050686 | Allen | Dec 2001 | A1 |
20020018299 | Daniell | Feb 2002 | A1 |
20020113246 | Nagai et al. | Aug 2002 | A1 |
20020113866 | Taniguchi et al. | Aug 2002 | A1 |
20030046839 | Oda et al. | Mar 2003 | A1 |
20030117790 | Lee et al. | Jun 2003 | A1 |
20030133191 | Morita et al. | Jul 2003 | A1 |
20030137738 | Ozawa et al. | Jul 2003 | A1 |
20030137821 | Gotoh et al. | Jul 2003 | A1 |
20040008877 | Leppard et al. | Jan 2004 | A1 |
20040021809 | Sumiyoshi et al. | Feb 2004 | A1 |
20040042233 | Suzuki et al. | Mar 2004 | A1 |
20040046709 | Yoshino | Mar 2004 | A1 |
20040105264 | Spero | Jun 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109303 | Olczak | Jun 2004 | A1 |
20040135741 | Tomisawa et al. | Jul 2004 | A1 |
20040170011 | Kim et al. | Sep 2004 | A1 |
20040263968 | Kobayashi et al. | Dec 2004 | A1 |
20040263969 | Lipton et al. | Dec 2004 | A1 |
20050007753 | Hees et al. | Jan 2005 | A1 |
20050094295 | Yamashita et al. | May 2005 | A1 |
20050110980 | Maehara et al. | May 2005 | A1 |
20050135116 | Epstein et al. | Jun 2005 | A1 |
20050174768 | Conner | Aug 2005 | A1 |
20050180167 | Hoelen et al. | Aug 2005 | A1 |
20050190345 | Dubin et al. | Sep 2005 | A1 |
20050237488 | Yamasaki et al. | Oct 2005 | A1 |
20050254127 | Evans et al. | Nov 2005 | A1 |
20050264717 | Chien et al. | Dec 2005 | A1 |
20050274956 | Bhat | Dec 2005 | A1 |
20050276071 | Sasagawa et al. | Dec 2005 | A1 |
20050280637 | Ikeda et al. | Dec 2005 | A1 |
20060012845 | Edwards | Jan 2006 | A1 |
20060056166 | Yeo et al. | Mar 2006 | A1 |
20060114664 | Sakata et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060139447 | Unkrich | Jun 2006 | A1 |
20060158729 | Vissenberg et al. | Jul 2006 | A1 |
20060176912 | Anikitchev | Aug 2006 | A1 |
20060203200 | Koide | Sep 2006 | A1 |
20060215129 | Alasaarela et al. | Sep 2006 | A1 |
20060221642 | Daiku | Oct 2006 | A1 |
20060227427 | Dolgoff | Oct 2006 | A1 |
20060244918 | Cossairt et al. | Nov 2006 | A1 |
20060250580 | Silverstein et al. | Nov 2006 | A1 |
20060262376 | Mather et al. | Nov 2006 | A1 |
20060269213 | Hwang et al. | Nov 2006 | A1 |
20060284974 | Lipton et al. | Dec 2006 | A1 |
20060291053 | Robinson et al. | Dec 2006 | A1 |
20060291243 | Niioka et al. | Dec 2006 | A1 |
20070008406 | Shestak et al. | Jan 2007 | A1 |
20070013624 | Bourhill | Jan 2007 | A1 |
20070025680 | Winston et al. | Feb 2007 | A1 |
20070035706 | Margulis | Feb 2007 | A1 |
20070035829 | Woodgate et al. | Feb 2007 | A1 |
20070035964 | Olczak | Feb 2007 | A1 |
20070081110 | Lee | Apr 2007 | A1 |
20070085105 | Beeson et al. | Apr 2007 | A1 |
20070109401 | Lipton et al. | May 2007 | A1 |
20070115551 | Spilman et al. | May 2007 | A1 |
20070115552 | Robinson et al. | May 2007 | A1 |
20070153160 | Lee et al. | Jul 2007 | A1 |
20070183018 | Khachaturove et al. | Aug 2007 | A1 |
20070183466 | Son et al. | Aug 2007 | A1 |
20070188667 | Schwerdtner | Aug 2007 | A1 |
20070189701 | Chakmakjian et al. | Aug 2007 | A1 |
20070223252 | Lee et al. | Sep 2007 | A1 |
20080079662 | Saishu et al. | Apr 2008 | A1 |
20080084519 | Brigham et al. | Apr 2008 | A1 |
20080086289 | Brott | Apr 2008 | A1 |
20080128728 | Nemchuk et al. | Jun 2008 | A1 |
20080225205 | Travis | Sep 2008 | A1 |
20080225236 | Schuck | Sep 2008 | A1 |
20080259012 | Fergason | Oct 2008 | A1 |
20080291359 | Miyashita | Nov 2008 | A1 |
20080297431 | Yuuki et al. | Dec 2008 | A1 |
20080297459 | Sugimoto et al. | Dec 2008 | A1 |
20080304282 | Mi et al. | Dec 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090014700 | Metcalf et al. | Jan 2009 | A1 |
20090016057 | Rinko | Jan 2009 | A1 |
20090040426 | Mather et al. | Feb 2009 | A1 |
20090067156 | Bonnett et al. | Mar 2009 | A1 |
20090135623 | Kunimochi | May 2009 | A1 |
20090140656 | Kohashikawa et al. | Jun 2009 | A1 |
20090160757 | Robinson | Jun 2009 | A1 |
20090167651 | Benitez et al. | Jul 2009 | A1 |
20090174700 | Daiku | Jul 2009 | A1 |
20090190072 | Nagata et al. | Jul 2009 | A1 |
20090190079 | Saitoh | Jul 2009 | A1 |
20090225380 | Schwerdtner et al. | Sep 2009 | A1 |
20090278936 | Pastoor et al. | Nov 2009 | A1 |
20090290203 | Schwerdtner | Nov 2009 | A1 |
20100034987 | Fujii et al. | Feb 2010 | A1 |
20100040280 | McKnight | Feb 2010 | A1 |
20100053771 | Travis et al. | Mar 2010 | A1 |
20100091093 | Robinson | Apr 2010 | A1 |
20100091254 | Travis et al. | Apr 2010 | A1 |
20100165598 | Chen et al. | Jul 2010 | A1 |
20100177387 | Travis et al. | Jul 2010 | A1 |
20100182542 | Nakamoto et al. | Jul 2010 | A1 |
20100188438 | Kang | Jul 2010 | A1 |
20100188602 | Feng | Jul 2010 | A1 |
20100214135 | Bathiche et al. | Aug 2010 | A1 |
20100220260 | Sugita et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100277575 | Ismael et al. | Nov 2010 | A1 |
20100278480 | Vasylyev | Nov 2010 | A1 |
20100289870 | Leister | Nov 2010 | A1 |
20100295920 | McGowan | Nov 2010 | A1 |
20100295930 | Ezhov | Nov 2010 | A1 |
20100300608 | Emerton et al. | Dec 2010 | A1 |
20100302135 | Larson et al. | Dec 2010 | A1 |
20100309296 | Harrold et al. | Dec 2010 | A1 |
20100321953 | Coleman et al. | Dec 2010 | A1 |
20110013417 | Saccomanno et al. | Jan 2011 | A1 |
20110019112 | Dolgoff | Jan 2011 | A1 |
20110032483 | Hruska et al. | Feb 2011 | A1 |
20110032724 | Kinoshita | Feb 2011 | A1 |
20110043142 | Travis et al. | Feb 2011 | A1 |
20110043501 | Daniel | Feb 2011 | A1 |
20110044056 | Travis et al. | Feb 2011 | A1 |
20110044579 | Travis et al. | Feb 2011 | A1 |
20110051237 | Hasegawa et al. | Mar 2011 | A1 |
20110187293 | Travis | Aug 2011 | A1 |
20110187635 | Lee et al. | Aug 2011 | A1 |
20110188120 | Tabirian et al. | Aug 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110221998 | Adachi et al. | Sep 2011 | A1 |
20110228183 | Hamagishi | Sep 2011 | A1 |
20110235359 | Liu et al. | Sep 2011 | A1 |
20110242150 | Song et al. | Oct 2011 | A1 |
20110242277 | Do et al. | Oct 2011 | A1 |
20110242298 | Bathiche et al. | Oct 2011 | A1 |
20110255303 | Nichol et al. | Oct 2011 | A1 |
20110285927 | Schultz et al. | Nov 2011 | A1 |
20110292321 | Travis et al. | Dec 2011 | A1 |
20110310232 | Wilson et al. | Dec 2011 | A1 |
20120002136 | Nagata et al. | Jan 2012 | A1 |
20120002295 | Dobschal et al. | Jan 2012 | A1 |
20120008067 | Mun et al. | Jan 2012 | A1 |
20120013720 | Kadowaki et al. | Jan 2012 | A1 |
20120062991 | Mich et al. | Mar 2012 | A1 |
20120063166 | Panagotacos et al. | Mar 2012 | A1 |
20120075285 | Oyagi et al. | Mar 2012 | A1 |
20120081920 | Ie et al. | Apr 2012 | A1 |
20120086776 | Lo | Apr 2012 | A1 |
20120106193 | Kim et al. | May 2012 | A1 |
20120112006 | Bruce | May 2012 | A1 |
20120127573 | Robinson et al. | May 2012 | A1 |
20120154450 | Aho et al. | Jun 2012 | A1 |
20120162966 | Kim et al. | Jun 2012 | A1 |
20120169838 | Sekine | Jul 2012 | A1 |
20120206050 | Spero | Aug 2012 | A1 |
20120236484 | Miyake | Sep 2012 | A1 |
20120243204 | Robinson | Sep 2012 | A1 |
20120243261 | Yamamoto et al. | Sep 2012 | A1 |
20120293721 | Ueyama | Nov 2012 | A1 |
20120299913 | Robinson et al. | Nov 2012 | A1 |
20120314145 | Robinson | Dec 2012 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130107340 | Wong et al. | May 2013 | A1 |
20130135588 | Popovich et al. | May 2013 | A1 |
20130169701 | Whitehead et al. | Jul 2013 | A1 |
20130169935 | Schuck et al. | Jul 2013 | A1 |
20130294684 | Lipton et al. | Nov 2013 | A1 |
20130307831 | Robinson et al. | Nov 2013 | A1 |
20130307946 | Robinson et al. | Nov 2013 | A1 |
20130321599 | Harrold et al. | Dec 2013 | A1 |
20130328866 | Woodgate et al. | Dec 2013 | A1 |
20130335821 | Robinson et al. | Dec 2013 | A1 |
20140009508 | Woodgate et al. | Jan 2014 | A1 |
20140022619 | Woodgate et al. | Jan 2014 | A1 |
20140036361 | Woodgate et al. | Feb 2014 | A1 |
20140126238 | Kao et al. | May 2014 | A1 |
20140240828 | Robinson et al. | Aug 2014 | A1 |
20140253879 | Schuck et al. | Sep 2014 | A1 |
20140340728 | Taheri | Nov 2014 | A1 |
20140368602 | Woodgate et al. | Dec 2014 | A1 |
20150103318 | Lee | Apr 2015 | A1 |
20160216527 | Juhola | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
1142869 | Feb 1997 | CN |
1377453 | Oct 2002 | CN |
1454329 | Nov 2003 | CN |
1466005 | Jan 2004 | CN |
1487332 | Apr 2004 | CN |
1696788 | Nov 2005 | CN |
1823292 | Aug 2006 | CN |
1826553 | Aug 2006 | CN |
1866112 | Nov 2006 | CN |
2872404 | Feb 2007 | CN |
1307481 | Mar 2007 | CN |
101029975 | Sep 2007 | CN |
101049028 | Oct 2007 | CN |
200983052 | Nov 2007 | CN |
101114080 | Jan 2008 | CN |
101142823 | Mar 2008 | CN |
100449353 | Jan 2009 | CN |
101364004 | Feb 2009 | CN |
101598863 | Dec 2009 | CN |
100591141 | Feb 2010 | CN |
101660689 | Mar 2010 | CN |
102147079 | Aug 2011 | CN |
202486493 | Oct 2012 | CN |
1910399 | May 2013 | CN |
0653891 | May 1995 | EP |
0721131 | Jul 1996 | EP |
0830984 | Mar 1998 | EP |
0833183 | Apr 1998 | EP |
0860729 | Aug 1998 | EP |
0939273 | Sep 1999 | EP |
0656555 | Mar 2003 | EP |
2003394 | Dec 2008 | EP |
1394593 | Jun 2010 | EP |
2451180 | May 2012 | EP |
1634119 | Aug 2012 | EP |
2405542 | Feb 2005 | GB |
H08211334 | Aug 1996 | JP |
H08237691 | Sep 1996 | JP |
H08254617 | Oct 1996 | JP |
H08070475 | Dec 1996 | JP |
H08340556 | Dec 1996 | JP |
2000048618 | Feb 2000 | JP |
2000200049 | Jul 2000 | JP |
2001093321 | Apr 2001 | JP |
2001281456 | Oct 2001 | JP |
2002049004 | Feb 2002 | JP |
2003215349 | Jul 2003 | JP |
2003215705 | Jul 2003 | JP |
2004319364 | Nov 2004 | JP |
2005116266 | Apr 2005 | JP |
2005135844 | May 2005 | JP |
2005183030 | Jul 2005 | JP |
2005259361 | Sep 2005 | JP |
2006004877 | Jan 2006 | JP |
2006031941 | Feb 2006 | JP |
2006310269 | Nov 2006 | JP |
3968742 | Aug 2007 | JP |
H3968742 | Aug 2007 | JP |
2007273288 | Oct 2007 | JP |
2007286652 | Nov 2007 | JP |
2008204874 | Sep 2008 | JP |
2010160527 | Jul 2010 | JP |
20110216281 | Oct 2011 | JP |
2013015619 | Jan 2013 | JP |
2013502693 | Jan 2013 | JP |
2013540083 | Oct 2013 | JP |
20030064258 | Jul 2003 | KR |
20090932304 | Dec 2009 | KR |
20110006773 | Jan 2011 | KR |
20110017918 | Feb 2011 | KR |
20110067534 | Jun 2011 | KR |
20120048301 | May 2012 | KR |
20120049890 | May 2012 | KR |
20130002646 | Jan 2013 | KR |
20140139730 | Dec 2014 | KR |
200528780 | Sep 2005 | TW |
1994006249 | Apr 1994 | WO |
1995020811 | Aug 1995 | WO |
1995027915 | Oct 1995 | WO |
1998021620 | May 1998 | WO |
1999011074 | Mar 1999 | WO |
2001027528 | Apr 2001 | WO |
2001061241 | Aug 2001 | WO |
2001079923 | Oct 2001 | WO |
2011020962 | Feb 2011 | WO |
2011022342 | Feb 2011 | WO |
2011068907 | Jun 2011 | WO |
2011149739 | Dec 2011 | WO |
2012158574 | Nov 2012 | WO |
Entry |
---|
JP-200980150139.1 2d Office Action dated Apr. 5, 2015. |
JP-2013540083 Notice of reasons for rejection dated Jun. 30, 2015. |
JP-2013540083 Notice of reasons for rejection with translation dated Jun. 21, 2016. |
Kalantar, et al. “Backlight Unit With Double Surface Light Emission,” J. Soc. Inf. Display, vol. 12, Issue 4, pp. 379-387 (Dec. 2004). |
KR-20117010839 1st Office action (translated) dated Aug. 28, 2015. |
KR-20117010839 2d Office action (translated) dated Apr. 28, 2016. |
Languy et al., “Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics”, Optics Letters, 36, pp. 2743-2745. |
Lipton, “Stereographics: Developers' Handbook”, Stereographic Developers Handbook, Jan. 1, 1997, XP002239311, p. 42-49. |
Marjanovic, M.,“Interlace, Interleave, and Field Dominance,” http://www.mir.com/DMG/interl.html, pp. 1-5 (2001). |
PCT/DE98/02576 International search report and written opinion of international searching authority dated Mar. 4, 1999 (WO99/11074). |
PCT/US2007/85475 International preliminary report on patentability dated May 26, 2009. |
PCT/US2007/85475 International search report and written opinion dated Apr. 10, 2008. |
PCT/US2009/060686 international preliminary report on patentability dated Apr. 19, 2011. |
PCT/US2009/060686 international search report and written opinion of international searching authority dated Dec. 10, 2009. |
PCT/US2011/061511 International Preliminary Report on Patentability dated May 21, 2013. |
PCT/US2011/061511 International search report and written opinion of international searching authority dated Jun. 29, 2012. |
PCT/US2012/037677 International search report and written opinion of international searching authority dated Jun. 29, 2012. |
PCT/US2012/042279 International search report and written opinion of international searching authority dated Feb. 26, 2013. |
PCT/US2012/052189 International search report and written opinion of the international searching authority dated Jan. 29, 2013. |
PCT/US2013/041192 International search report and written opinion of international searching authority dated Aug. 28, 2013. |
PCT/US2013/041228 International search report and written opinion of international searching authority dated Aug. 23, 2013. |
PCT/US2013/041235 International search report and written opinion of international searching authority dated Aug. 23, 2013. |
PCT/US2013/041237 International search report and written opinion of international searching authority dated May 15, 2013. |
PCT/US2013/041548 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041619 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041655 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041683 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/041697 International search report and written opinion of international searching authority dated Aug. 23, 2013. |
PCT/US2013/041703 International search report and written opinion of international searching authority dated Aug. 27, 2013. |
PCT/US2013/049969 International search report and written opinion of international searching authority dated Oct. 23, 2013. |
PCT/US2013/063125 International search report and written opinion of international searching authority dated Jan. 20, 2014. |
PCT/US2013/063133 International search report and written opinion of international searching authority dated Jan. 20, 2013. |
PCT/US2013/077288 International search report and written opinion of international searching authority dated Apr. 18, 2014. |
PCT/US2014/017779 International search report and written opinion of international searching authority dated May 28, 2014. |
PCT/US2014/042721 International search report and written opinion of international searching authority dated Oct. 10, 2014. |
PCT/US2014/057860 International Preliminary Report on Patentability dated Apr. 5, 2016. |
PCT/US2014/057860 International search report and written opinion of international searching authority dated Jan. 5, 2015. |
PCT/US2014/060312 International search report and written opinion of international searching authority dated Jan. 19, 2015. |
PCT/US2014/060368 International search report and written opinion of international searching authority dated Jan. 14, 2015. |
PCT/US2014/065020 International search report and written opinion of international searching authority dated May 21, 2015. |
PCT/US2015/000327 International search report and written opinion of international searching authority dated Apr. 25, 2016. |
PCT/US2015/021583 International search report and written opinion of international searching authority dated Sep. 10, 2015. |
PCT/US2015/038024 International search report and written opinion of international searching authority dated Dec. 30, 2015. |
PCT/US2016/027297 International search report and written opinion of international searching authority dated Jul. 26, 2017. |
PCT/US2016/027350 International search report and written opinion of the international searching authority dated Jul. 25, 2016. |
PCT/US2016/034418 International search report and written opinion of the international searching authority dated Sep. 7, 2016. |
Robinson et al., U.S. Appl. No. 14/751,878 entitled “Directional privacy display” filed Jun. 26, 2016. |
Robinson et al., U.S. Appl. No. 15/097,750, entitled “Wide angle imaging directional backlights” filed Apr. 13, 2016. |
Robinson et al., U.S. Appl. No. 15/098,084 entitled “Wide angle imaging directional backlights” filed Apr. 13, 2016. |
Robinson, U.S. Appl. No. 13/300,293 entitled “Directional flat illuminators” filed Nov. 18, 2011. |
PCT/US2016/061344 International search report and written opinion of international searching authority dated Dec. 22, 2016. |
RU-2013122560 First office action dated Jan. 1, 2014. |
RU-2013122560 Second office action dated Apr. 10, 2015. |
Tabiryan et al., “The Promise of Diffractive Waveplates,” Optics and Photonics News, vol. 21, Issue 3, pp. 40-45 (Mar. 2010). |
Travis, et al. “Backlight for view-sequential autostereo 3D”, Microsoft E&DD Applied Sciences, (date unknown), 25 pages. |
Travis, et al. “Collimated light from a waveguide for a display,” Optics Express, vol. 17, No. 22, pp. 19714-19719 (2009). |
Williams S P et al., “New Computational Control Techniques and Increased Understanding for Stereo 3-D Displays”, Proceedings of SPIE, SPIE, US, vol. 1256, Jan. 1, 1990, XP000565512, p. 75, 77, 79. |
Robinson et al., U.S. Appl. No. 15/165,960 entitled “Wide Angle Imaging Directional Backlights” filed May 26, 2016. |
Robinson et al., U.S. Appl. No. 15/290,543 entitled “Wide angle imaging directional backlights” filed Oct. 11, 2016. |
3M™ ePrivacy Filter software professional version; http://www.cdw.com/shop/products/3M-ePrivacy-Filter-software-professional-version/3239412.aspx?cm_mmc=ShoppingFeeds-_-ChannelIntelligence-_-Software-_-3239412_3MT%20ePrivacy%20Filter%20software%20professional%20version_3MF-EPFPRO&cpncode=37-7582919&srccode=cii_10191459#PO; Copyright 2007-2016. |
AU-2011329639 Australia Patent Examination Report No. 1 dated Mar. 6, 2014. |
AU-2013262869 Australian Office Action of Australian Patent Office dated Feb. 22, 2016. |
AU-2015258258 Australian Office Action of Australian Patent Office dated Jun. 9, 2016. |
Bahadur, “Liquid crystals applications and uses,” World Scientific, vol. 1, pp. 178 (1990). |
CA-2817044 Canadian office action dated Jul. 14, 2016. |
CN-201180065590.0 Office first action dated Dec. 31, 2014. |
CN-201180065590.0 Office second action dated Oct. 21, 2015. |
CN-201180065590.0 Office Third action dated Jun. 6, 2016. |
CN-201280034488.9 2d Office Action from the State Intellectual Property Office of P.R. China dated Mar. 22, 2016. |
CN-201280034488.9 1st Office Action from the State Intellectual Property Office of P.R. China dated Jun. 11, 2015. |
CN-201380026045.X Chinese First Office Action of Chinese Patent Office dated Aug. 29, 2016. |
CN-201380026046.4 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Oct. 24, 2016. |
CN-201380026047.9 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Dec. 18, 2015. |
CN-201380026047.9 Chinese 2d Office Action of the State Intellectual Property Office of P.R. dated Jul. 12, 2016. |
CN-201380026050.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 3, 2016. |
CN-201380026058.7 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Nov. 2, 2016. |
CN-201380026059.1 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Apr. 25, 2016. |
CN-201380026076.5 Office first action dated May 11, 2016. |
CN-201380049451.8 Chinese Office Action of the State Intellectual Property Office of P.R. dated Apr. 5, 2016. |
CN-201380063047.6 Chinese Office Action of the State Intellectual Property Office of P.R. China dated Oct. 9, 2016. |
CN-201380063055.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 23, 2016. |
CN-201480023023.2 Office action dated Aug. 12, 2016. |
EP-07864751.8 European Search Report dated Jun. 1, 2012. |
EP-07864751.8 Supplementary European Search Report dated May 29, 2015. |
EP-09817048.3 European Search Report dated Apr. 29, 2016. |
EP-11842021.5 Office Action dated Dec. 17, 2014. |
EP-11842021.5 Office Action dated Oct. 2, 2015. |
EP-11842021.5 Office Action dated Sep. 2, 2016. |
EP-13758536.0 European Extended Search Report of European Patent Office dated Feb. 4, 2016. |
EP-13790013.0 European Extended Search Report of European Patent Office dated Jan. 26, 2016. |
EP-13790141.9 European Extended Search Report of European Patent Office dated Feb. 11, 2016. |
EP-13790195.5 European Extended Search Report of European Patent Office dated Mar. 2, 2016. |
EP-13790267.2 European Extended Search Report of European Patent Office dated Feb. 25, 2016. |
EP-13790274.8 European Extended Search Report of European Patent Office dated Feb. 8, 2016. |
EP-13790775.4 European Extended Search Report of European Patent Office dated Oct. 9, 2015. |
EP-13790775.4 Office Action dated Aug. 29, 2016. |
EP-13790809.1 European Extended Search Report of European Patent Office dated Feb. 16, 2016. |
EP-13790942.0 European Extended Search Report of European Patent Office dated May 23, 2016. |
EP-13791332.3 European Extended Search Report of European Patent Office dated Feb. 1, 2016. |
EP-13791437.0 European Extended Search Report of European Patent Office dated Oct. 14, 2015. |
EP-13822472.0 European Extended Search Report of European Patent Office dated Mar. 2, 2016. |
EP-13843659.7 European Extended Search Report of European Patent Office dated May 10, 2016. |
EP-13844510.1 European Extended Search Report of European Patent Office dated May 13, 2016. |
EP-13865893.5 European Extended Search Report of European Patent Office dated Oct. 6, 2016. |
EP-14754859.8 European Extended Search Report of European Patent Office dated Oct. 14, 2016. |
EP-16150248.9 European Extended Search Report of European Patent Office dated Jun. 16, 2016. |
Ian Sexton et al: “Stereoscopic and autostereoscopic display-systems”,—IEEE Signal Processing Magazine, May 1, 1999 (May 1, 1999 ), pp. 85-99, XP055305471, Retrieved from the Internet: RL:http://ieeexplore.ieee.org/iel5/79/16655/00768575.pdf [retrieved on Sep. 26, 2016]. |
JP-2009538527 Reasons for rejection dated Jul. 17, 2012 with translation. |
JP-200980150139.1 1st Office Action dated Feb. 11, 2014. |
Number | Date | Country | |
---|---|---|---|
20170131624 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62253274 | Nov 2015 | US |