Distractible intervertebral implant

Information

  • Patent Grant
  • 9579215
  • Patent Number
    9,579,215
  • Date Filed
    Tuesday, November 24, 2015
    9 years ago
  • Date Issued
    Tuesday, February 28, 2017
    7 years ago
Abstract
A distractible intervertebral implant configured to be inserted in an insertion direction into an intervertebral space that is defined between a first vertebral body and a second vertebral body is disclosed. The implant may include a first body and a second body. The first body may define an outer surface that is configured to engage the first vertebral body, and an opposing inner surface that defines a rail. The second body may define an outer surface that is configured to engage the second vertebral body, and an inner surface that defines a recess configured to receive the rail of the first body. The second body moves in a vertical direction toward the second vertebral body as the second body is slid over the first body and the rail is received in the recess.
Description
BACKGROUND

Historically, after complete removal of a disc from between adjacent vertebrae, the adjacent vertebrae were fused together. This “spinal fusion” procedure, which is still in use today, is a widely accepted surgical treatment for symptomatic lumbar and cervical degenerative disc disease. More recently, disc arthoplasty may be utilized to insert an artificial intervertebral disc implant into the intervertebral space between adjacent vertebrae. Such a disc implant allows limited universal movement of the adjacent vertebrae with respect to each other. The aim of total disc replacement is to remove pain generation (caused by a degenerated disc), restore anatomy (disc height), and maintain mobility in the functional spinal unit so that the spine remains in an adapted sagittal balance. Sagittal balance is defined as the equilibrium of the trunk with the legs and pelvis to maintain harmonious sagittal curves and thus the damping effect of the spine. In contrast with fusion techniques, total disc replacement preserves mobility in the motion segment and attempts to mimic physiologic conditions.


SUMMARY

A distractible intervertebral implant configured to be inserted in an insertion direction into an intervertebral space that is defined between a first vertebral body and a second vertebral body is disclosed. The implant may include a first implant body and a second implant body. The first implant body may define an outer surface that is configured to face the first vertebral body, and an opposing inner surface that defines a rail. The second implant body may define an outer surface that is configured to face the second vertebral body, and an inner surface that defines a recess configured to receive the rail of the first implant body. The second implant body is configured to move along the vertical direction as the second implant body is translated over the first implant body and the rail is received by the recess, so as to distract the first and second vertebral bodies.


In another embodiment, the implant may include a first implant body and a second implant body. The first implant body may include a pair of first side regions, and may define an outer surface that is configured to face the first vertebral body. The second implant body may also include a pair of second side regions. Each second side region may have an anterior end that angles toward the first implant body as the anterior end extends in a direction opposite the insertion direction. The second implant body may define an outer surface that is configured to face the second vertebral body. The anterior ends of the second implant body are configured to contact the first side regions of the first implant body as the second implant body is translated over the first implant body to thereby cause the outer surface of the second implant body to move away from the outer surface of the first implant body.


In another embodiment, a method for inserting an intervertebral implant into an intervertebral disc space defined between first and second vertebral bodies is disclosed. The method may include the step of inserting a first implant body into the intervertebral space such that as the first implant body is being inserted at least one of the first and second vertebral bodies moves away from the other vertebral body. The first implant body may include an outer surface that faces the first vertebral body, and an inner surface. The method may further include inserting a second implant body into the intervertebral space by sliding the second implant body over the inner surface of the first implant body. The second implant body may cause at least one of the first and second vertebral bodies to move away from the other as the second implant body is being inserted. The second implant body may include an outer surface that faces the second vertebral body.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of a preferred embodiment of the application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the distractable fusion implant and related instruments of the present application, there is shown in the drawings a preferred embodiment. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1A is a front perspective view of an intervertebral space defined between a superior vertebral body and an inferior vertebral body;



FIG. 1B is a front perspective view of a distractible intervertebral implant inserted into the intervertebral space, the implant including an inferior implant body and a superior implant body;



FIG. 2A is a front perspective view of the inferior implant body of the distractible fusion implant shown in FIG. 1B;



FIG. 2B is a front elevation view of the inferior implant body shown in FIG. 2A;



FIG. 2C is a side elevation view of the inferior implant body shown in FIG. 2A;



FIG. 2D is a front perspective view of the inferior implant body shown in FIG. 2A with a first fixation member being inserted into a bore of the inferior implant body;



FIG. 3A is a bottom perspective view of the superior implant body of the distractible fusion implant shown in FIG. 1B;



FIG. 3B is a front elevation view of the superior implant body shown in FIG. 3A;



FIG. 3C is a side elevation view of the superior implant body shown in FIG. 3A;



FIG. 3D is a front perspective view of the superior implant body shown in FIG. 3A with a pair of locking screws being inserted into a pair of bores of the superior implant body;



FIG. 4A is a back perspective view of the superior implant body being slid onto the inferior implant body;



FIG. 4B is a front perspective view of the superior implant body fully slid onto the inferior implant body to define the distractible fusion implant;



FIG. 4C is a front perspective view of the implant shown in FIG. 4B with three locking screws received within the bores of the superior and inferior implant bodies;



FIG. 4D is a top plan view of the implant shown in FIG. 4C;



FIG. 4E is a cross-sectional view of the implant shown in FIG. 4D through the line 4E-4E;



FIG. 5A is a side elevation view of the inferior implant body being slid into the intervertebral space defined between the superior and inferior vertebral bodies to thereby partially distract the vertebral bodies away from each other;



FIG. 5B is a side elevation view of the inferior implant body affixed to the inferior vertebral body with a first fixation member and a ramp portion of the superior implant body contacting an edge of the inferior implant body as it is being slid onto the intervertebral space;



FIG. 5C is a side elevation view of the superior implant body further slid over the inferior implant body within the intervertebral space; and



FIG. 5D is a side elevational view of the superior implant body affixed to the superior vertebral body with second and third locking screws.





DETAILED DESCRIPTION

Referring to FIG. 1A, an intervertebral space 11 is defined between a superior vertebral body 12a and an inferior vertebral body 12b. The superior vertebral body 12a generally defines an inferior endplate 13a or superior surface of the intervertebral space 11, and the adjacent inferior vertebral body 12b defines a superior endplate 13b or inferior surface of the intervertebral space 11. Thus, the intervertebral space 11 is disposed between the vertebral bodies 12a and 12b. The vertebral bodies 12a and 12b can be anatomically adjacent vertebral bodies, or can remain after a discectomy has been performed that removed a vertebral body from a location between the vertebral bodies. As illustrated, the intervertebral space 11 is illustrated after a discectomy, whereby the disc material has been removed or at least partially removed to prepare the intervertebral space 11 to receive a disc implant that can achieve height restoration. The intervertebral space 11 can be disposed anywhere along the spine as desired. Moreover, the superior vertebral body 12a may be considered a first or a second vertebral body and the inferior vertebral body 12b may be considered a first or a second vertebral body.


Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “lower” and “upper” designate directions in the drawings to which reference is made. The words “inner” or “distal” and “outer” or “proximal” refer to directions toward and away from, respectively, the geometric center of the implant and related parts thereof. The words, “anterior”, “posterior”, “superior,” “inferior,” “medial,” “lateral,” and related words and/or phrases are used to designate various positions and orientations in the human body to which reference is made and are not meant to be limiting. The terminology includes the above-listed words, derivatives thereof and words of similar import.


Referring also to FIG. 1B, an intervertebral implant, such as a distractable intervertebral implant 10, can be inserted into the intervertebral space 11 along a longitudinal insertion direction I, which can be a posterior direction in accordance with the illustrated embodiment or any other direction as desired. The distractable intervertebral implant 10 is described herein as extending horizontally along a longitudinal direction “L” and lateral direction “A”, and vertically along a transverse direction “T”. Unless otherwise specified herein, the terms “lateral,” “longitudinal,” and “transverse” are used to describe the orthogonal directional components of various components. It should be appreciated that while the longitudinal and lateral directions are illustrated as extending along a horizontal plane, and that the transverse direction is illustrated as extending along a vertical plane, the planes that encompass the various directions may differ during use. For instance, when the distractable intervertebral implant 10 is implanted into the intervertebral space 11 the transverse direction T extends generally along the superior-inferior (or caudal-cranial) direction, while the plane defined by the longitudinal direction L and lateral direction A lie generally in the anatomical plane defined by the anterior-posterior direction, and the medial-lateral direction. Accordingly, the directional terms “vertical” and “horizontal” are used to describe the distractable intervertebral implant 10 and its components as illustrated merely for the purposes of clarity and illustration.


Referring to FIG. 1B, the distractable intervertebral implant 10 includes a first or inferior implant body 18 and a second or superior implant body 14 that is coupled to the inferior implant body 18. The distractable intervertebral implant 10 can further include at least one first fixation member 22, illustrated as a first screw that couples the inferior implant body 18 to the inferior vertebral body 12b, and at least one second fixation member, such as second and third fixation members 26 and 30 illustrated as screws, that couple the superior implant body 14 to the superior vertebral body 12a. It should be understood that the fixation members 22, 26, and 30 may be also be configured as nails, blades, or graft. The distractable intervertebral implant 10 defines an anterior end 42 and an opposed posterior end 46. The anterior end 42 defines a trailing end of the distractable intervertebral implant 10 along the direction of insertion I, and the posterior end 46 defines a leading end of the distractable intervertebral implant 10 along the direction of insertion I.


The distractable intervertebral implant 10 may be partially or entirely formed from a metal, polymer, ceramic, allograft, or other artificial biomaterials such as beta-tricalcium phosphate. Suitable biocompatible materials or combinations of materials, may include PEEK, porous PEEK, carbon fiber-reinforced PEEK, titanium and titanium alloys, stainless steel, ceramic, polylactic acid, tantalum, magnesium, allograft, or other artificial biomaterials. The distractable intervertebral implant 10 presents an outer surface 19 that can be coated with any suitable material, such as hydroxyl apatite, beta-tricalcium phosphate, anodic plasma chemical treated titanium, or other similar coatings that improve osseointegration of the distractable intervertebral implant 10. As shown, the assembled implant 10 may be generally rectangular in shape, though it should be understood that all geometries are imaginable.


Referring to FIGS. 2A-2D the inferior implant body 18 includes a body portion 34 that defines a lower or inferior, or outer, engagement surface 38 configured to contact or otherwise face the superior endplate 13b of the inferior vertebral body 12b, an opposing inner surface 40, an anterior end 42, and an opposing posterior end 46. The body portion 34 further includes a plurality of engagement features 50, illustrated as teeth, that extend transversely out from engagement surface 38 and can be angled toward the anterior end 42 of the body portion 34. The engagement features 50 allow the inferior implant body 18 to easily translate along a posterior direction over the superior endplate of the inferior vertebral body during insertion of the inferior implant body 18 while at the same time provides immediate primary stability allowing the inferior implant body 18 to resist anterior migration. In other words, the engagement features 50 allow the inferior implant body 18 to easily slide in one direction, but if it were to slide in a second opposite direction, the teeth 50 would catch on the superior endplate 13b of the inferior vertebral body 12b to thereby prevent migration of the inferior implant body 18. It should be understood that the engagement features 50 can be shaped in any manner as desired, such as teeth, spikes, pyramids, cones, undefined geometries, rough surface topography, or independent bodies such a metal spikes that are embedded into the body portion 34 may be used.


As shown in FIGS. 2A-2D, the body portion 34, such as the inner surface 40, includes a middle region 54 and a first side region 58 extending from opposite sides of the middle region 54. The middle region 54 protrudes higher in the transverse vertical direction (or outwardly toward the superior implant body 14) with respect to the first side regions 58, and thus provides a longitudinally elongate rail that the superior implant body 14 can translate longitudinally along. In this way, the inner surface 40 of the body portion 34 defines the rail. In accordance with the illustrated embodiment, the anterior end 62 of the middle region 54 is angled upwards toward the superior implant body 14 as it extends toward the posterior end 46 of the body portion 34, and the posterior end 66 of the middle region 54 is angled upwards toward the superior implant body 14 as it extends toward the anterior end 42 of the body portion 34. As shown in FIG. 2A, the body portion 34 defines a bore 72 that extends through the anterior end 62. As shown in FIG. 2D, the bore 72 is configured to receive the first fixation member 22. The first fixation member 22 can include a shaft 23 and a head 25 that is dimensioned larger than the shaft 23. The bore 72 can likewise include a shaft-receiving region sized to receive the shaft 23, and a head receiving region sized to receive the head 25 when the fixation member 22 is fully received by the bore 72. The bore 72 can further be tapered and elongate along an angle toward the posterior end 46 of the body portion 34, such that the fixation member 22 is also elongate along the angle toward the posterior end 46 of the body portion 34 when received in the bore 72. The bore 72 can include a locking mechanism that engage a locking mechanism of the first fixation member 22, for instance a thread, a locking pin, a ratchet, a rough surface, etc. along one or both of the shaft 23 and the head 25. It should be understood that at least one or both of the shaft 23 and the head 25 can be substantially smooth and devoid of the locking mechanism. Likewise, at least one or both of the shaft-receiving region and the head-receiving region can be substantially smooth and devoid of the locking mechanism.


The middle region 54 further defines a top surface 76 and opposed side surfaces 78 that extend down from the top surface 76. The side surfaces 78 extend toward each other as they extend down from the top surface 76. That is, as the side surfaces 78 extend down from the top surface 76, the direction in which the side surfaces 78 extend includes a lateral component that extends toward the other side surface 78. Therefore, the side surfaces 78 and the top surface 76 define a dovetail shaped locking member. It should be understood, however, that the middle region may include configurations other than a dovetail shaped locking member. For example, the middle region may define an L-shaped locking member, a greater angulation longitudinal ratchet, etc.


As shown in FIG. 2A, the first side regions 58 include conical recesses 80 at their anterior ends. As shown, the conical recesses 80 are angled up as they extend toward the posterior end 46 of the body portion 34. As will be described later, the conical recesses 80 allow the second and third fixation members 26 and 30 to be inserted into the superior implant body 14 of the distractable intervertebral implant 10 at a specified angle.


The inferior implant body 18 can further include at least one graft window 90 such as a plurality of graft windows 90 that extend through at least one or more of the middle region 54 and the first side regions 58. Generally, each graft window 90 is elongate in the longitudinal direction, though it should be understood that any shape may be desired. The graft windows 90 are configured to receive autogenous bone graft or bone graft substitute such as Chronos, or DBM. For instance, the graft windows 90 may be pre-filled with the bone graft.


Referring to FIGS. 3A-3D, and 4A-4E the superior implant body 14 may be translated, for instance longitudinally, along the inferior implant body 18. As shown, the superior implant body 14 includes a body portion 134 that defines an upper or superior, or outer, engagement surface 138 configured to contact or otherwise face the inferior endplate 13a of the superior vertebral body 12a, an opposing interior surface 140, an anterior end 142, and an opposing posterior end 146. The body portion 134 further includes a plurality of engagement features 150 that extend transversely out from the engagement surface 138 and can be angled toward the anterior end 42 of the body portion 134. The engagement features 150 allow the superior implant body 14 to easily translate along a posterior direction under the inferior endplate of the superior vertebral body during insertion of the superior implant body 14 while at the same time provides immediate primary stability allowing the superior implant body 14 to resist anterior migration. In other words, the engagement features 150 allow the superior implant body 14 to easily slide in one direction, but if it were to slide in a second opposite direction, the engagement features 150 would catch on the inferior endplate 13a of the superior vertebral body 12a to thereby prevent migration of the superior implant body 14. It should be understood that the engagement features 150 can be shaped in any manner as desired, such as teeth, spikes, pyramids, cones, undefined geometries, rough surface topography, or independent bodies such a metal spikes that are embedded into the body portion 134 may be used.


As shown in FIGS. 3A-3D, the body portion 134, such as the inner surface 140, includes second side regions 154 that define a longitudinally elongate middle recess 158 configured to receive the longitudinally elongate rail of the body portion 34. The middle recess 158 extends into the body portion 134 from an inferior side of the superior implant body 14, and generally acts as a groove or channel that receives the middle region 54 of the inferior implant body 18. As shown, the middle recess 158 receives the middle region 54 of the inferior implant body 18 as the superior implant body 14 translates along the inferior implant body 18. An anterior end 162 of the middle recess 158 defines a conical recess 166 that is angled downwards. That is, the anterior end 162 of the middle recess 158 extends down as it extends toward the posterior end 146 of the body portion 134. Additionally, the anterior end 162 of the middle recess 158 defines a conical recess 166 that angles downward as it extends toward the posterior end 146 of the body portion 134. As will be described, the conical recess 166 enables the first fixation member 22 to be removed from the inferior implant body 18 of the distractable intervertebral implant 10 if so desired.


The middle recess 158 further defines a top surface 168 and opposing side surfaces 170 extending down from the top surface 168. The side surfaces 170 extend toward each other as they extend down from the top surface 168. That is, as the side surfaces 170 extend down from the top surface 168, the direction in which the side surfaces 170 extend includes a lateral component that extends toward the other side surface 170. Therefore, the side surfaces 170 and the top surface 168 define a dovetail shaped channel that receives the dovetail shaped middle region 54 of the inferior implant body 18. It should be understood, however, that the middle recess may include configurations other than a dovetail shaped channel. For example, the middle recess may define an L-shaped channel, a greater angulation longitudinal ratchet, etc.


The second side regions 154 each include an anterior end 172 and a posterior end 176 that are angled downwards. That is, the anterior end 172 of the second side regions 154 includes a surface that extend down or otherwise toward the inferior implant body 18 as they extend toward the posterior end 146 of the body portion 134, and the posterior end 176 of the second side regions 154 extend down or otherwise toward the inferior implant body 18 as they extend toward the anterior end 142 of the body portion 134. As shown in FIG. 3A, the body portion 134 defines a bore 180 that extends through each anterior end 172. As shown in FIG. 3D, each bore 180 is configured to receive one of the second and third fixation members 26 and 30. Like the first fixation member 22, the second and third fixation members can include a shaft 23 and a head 25 that is dimensioned larger than the shaft 23. The bores 180 can likewise include a shaft-receiving region sized to receive the shaft 23, and a head receiving region sized to receive the head 25 when the fixation members 26 and 30 are fully received by the bores 180. The bores 180 can further be tapered and elongate along an angle toward the posterior end 146 of the body portion 134, such that the fixation members 26 and 30 are also elongate along the angle toward the posterior end 146 of the body portion 134 when received in the bores 180. The bores 180 can include locking mechanisms that engage locking mechanisms of the second and third fixation members 26 and 30, for instance threads, locking pins, ratchets, rough surfaces, etc. along one or both of the shafts 23 and the heads 25. It should be understood that at least one or both of the shafts 23 and the heads 25 can be substantially smooth and devoid of the locking mechanisms. Likewise, at least one or both of the shaft-receiving regions and the head-receiving regions can be substantially smooth and devoid of the locking mechanisms.


As shown in FIGS. 3A and 3D, the superior implant body 14 can further include at least one graft window 190 such as a plurality of graft windows 190 that extend through at least one or more of the second side regions 154 as well as through the portion of the body portion 134 in which the recess 158 is defined. Generally, each graft window 190 is elongate in the longitudinal direction, though it should be understood that any shape may be desired. The graft windows 190 are configured to receive autogenous bone graft or bone graft substitute such as Chronos, or DBM. For instance, the graft windows 190 may be pre-filled with the bone graft.


As shown in FIG. 3D, the second and third fixation members 26 and 30 may be inserted into the bores 180 of the superior implant body 14 once the superior implant body 14 is fully slid onto the inferior implant body 18. The second and third fixation members 26 and 30 extend at an angle toward the posterior end of the distractable intervertebral implant 10. The second and third fixation members 26 and 30 engage the inferior endplate of the superior vertebral body to thereby securely attach the distractable intervertebral implant 10 to the superior vertebral body.


As shown in FIGS. 4A-4E, when the superior implant body 14 is fully slid onto the inferior implant body 18, the graft windows 190 of the superior implant body 14 align with the graft windows 90 of the inferior implant body 18. Therefore, the graft windows 90 and 190 define transverse channels that extend through the assembled implant 10. The graft windows 190 may be pre-filled with the bone graft.


As shown in FIGS. 4A-4D, the superior implant body 14 lockingly engages the inferior implant body 18 with respect to at least one or both of relative rotation and relative translation along a direction angularly offset with respect to the longitudinal insertion direction I when the recess 158 of the superior implant body 14 has received the rail of the inferior implant body 18. In that regard, the dovetail shaped recess 158 of the superior implant body 14 engages the dovetail shaped middle region 54 of the inferior implant body 18 when the inferior implant body 18 is received by the superior implant body 14 to create a form fit between the superior and inferior implant bodies 14 and 18. This form fit eliminates rotational degrees of freedom between the superior and inferior implant bodies 14 and 18. Other interlocking features between the superior implant body 14 and the inferior implant body 18 are envisioned to prevent translation in the longitudinal direction, such as a snap-action mechanism (e.g. PE-inlay or Prodisc-L). A third body (e.g. splint, pin, screw, bolt, glue) that is inserted after intraoperative assembly of the superior and inferior implant bodies 14 and 18 may also be used.


As shown in FIGS. 4C-4E, the bores 72 and 180 are conical in shape. The conical shaped bores 72, 180 are configured to prevent the fixation members 22, 26, and 30 from being over inserted into the bores, and allow for angle stable fixation. The angle stable fixation prevents the fixation members not only from being over inserted but also from backing out. Thus, as each bore 72 and 180 receives its respective fixation members 22, 26, and 30 the heads of the fixation members 22, 26, and 30 will eventually abut the walls of the bores 72 and 180 to thereby prevent further insertion of the fixation members 22, 26, and 30. Such a configuration allows for a more stable fixation of the fixation members 22, 26, and 30. Furthermore, the angle stable connection between the fixation member's head and its counter part allow it to bear a bending moment.


As shown in FIG. 4E, the distractable intervertebral implant 10 may include marker pins 200, which may be used in case of a radiolucent base material that would not be visible in fluoroscopy/x-ray equipment. As shown, marker pins 200 may be buried within the body portion 34 of the inferior implant body 18. The marker pins 200 may be radioopaque to allow easy identification of the distractable intervertebral implant 10 in fluroscopique images. It should be understood that the implant 10 may include any number of pins 200, and that the pins 200 may also be buried within the superior implant body 14. Furthermore, instead of radiopaque marker pins 200, it may be possible to use polymers, ceramics, or biomaterials that include barium sulfate, or a similar substance. Barium sulfate (that is either homogeneously or inhomegeneously distributed in the base material) allows to make a radiopaque base material visible under fluoroscopy/x-ray equipment.


As shown in FIGS. 5A-5D, both the inferior implant body 18 and the superior implant body 14 may act as distractors as they are individually slid into the intervertebral space 11. As shown, in FIG. 5A, as the inferior implant body 18 is positioned within the intervertebral space 11 at least one of the superior vertebral body 12a and the inferior vertebral body 12b moves away from the other such that the superior and inferior vertebral bodies are separated by a first distance F1. The first distance F1 may be substantially equal to the transverse height of the inferior implant body 18. Once the inferior implant body 18 is properly positioned and attached to the inferior vertebral body 12b, the superior implant body 14 may be slid or otherwise translated over the inferior implant body 18 and into the intervertebral space 11. As shown in FIG. 5B, the angled posterior ends 176 of the superior implant body's second side regions 154 contact respective second side regions 58 of the inferior implant body 18. Because of the angled posterior ends 176 of the superior implant body 14, the superior implant body 14 will move toward the superior vertebral body 12a as the superior implant body 14 is slid over the inferior implant body 18, as shown in FIGS. 5B-5D to thereby cause at least one of the superior vertebral body 12a and the inferior vertebral body 12b to move away from the other such that the vertebral bodies are separated by a second distance F2 that is greater than the first distance F1. In this way, continuous distraction is achieved until the superior implant body 14 is fully assembled with the inferior implant body 18. As shown in FIG. 5D, the superior implant body 14 may move a distance H in an upward direction once it has been fully slid onto the inferior implant body 18. The distance H as well as the degree of distraction may depend on the angle at which the posterior ends 176 extend toward the anterior end of the superior implant body 14.


In operation, the inferior implant body 18 is first inserted into the intervertebral space. Once properly placed, the first fixation member 22 may be inserted into the bore 72 of the inferior implant body 18 and driven into the inferior vertebral body. Next the superior implant body 14 is pushed into the intervertebral space or otherwise slid over the inferior implant body 18. During insertion of the superior implant body 14, the superior implant body 14 slides over the inferior implant body 18. As described in relation to FIGS. 5A-5D, as the superior implant body 14 is sliding onto the inferior implant body 18, the superior implant body 14 moves up toward the superior vertebral body. Therefore, a continuous distraction of the inferior and superior vertebral bodies is achieved until the distractable intervertebral implant 10 is fully assembled. The superior implant body 14 interlocks with the inferior implant body 18 and builds a solid construct. The assembled implant 10 withstands translation and rotation in all six degrees of freedom.


Once the assembled implant 10 is properly positioned, the second and third fixation members 26 and 30 may be inserted into the bores 180 of the superior implant body 14. The second and third fixation members 26 and 30 engage the inferior endplate of the superior vertebral body to thereby securely attach the superior implant body 14 and therefore the distractable intervertebral implant 10 to the superior vertebral body.


Because the distractable intervertebral implant 10 may be placed into the intervertebral space 11 by first inserting the inferior implant body 18 and then the superior implant body 14, the distractable intervertebral implant 10 may be inserted into the intervertebral space 11 either from the anterior end of the patient or from the posterior end of the patient. In other words, by positioning the distractable intervertebral implant 10 in pieces rather than as a fully assembled construct the surgeon will be capable of accessing the intervertebral space 11 from the posterior end of the patient which is usually difficult, due to the limited amount of space. It should be understood that any surgical approach (i.e. anterior, antero-lateral, lateral, extraforaminal, transforaminal, and posterior) may be considered.


It should be appreciated that the distractable intervertebral implant 10 described herein can be configured so as to provide a range of numerous possible geometries and angular relationships. For example, while the superior implant body 14 is described as having angled posterior ends that cause the superior implant body 14 to move upwards and thereby act as a distractor, it is possible to include an angled anterior end on the inferior implant body 18 to cause the superior implant body 14 to distract as it is inserted. Furthermore, it is envisioned that the superior implant body 14 could be inserted into the intervertebral space prior to the insertion of the inferior implant body 18.


It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. Furthermore, it should be appreciated that the structure, features, and methods as described above with respect to any of the embodiments described herein can be incorporated into any of the other embodiments described herein unless otherwise indicated. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present disclosure.

Claims
  • 1. A distractible intervertebral implant configured to be inserted along an insertion direction into an intervertebral space defined between a first vertebral body and a second vertebral body that is spaced from the first vertebral body along a second direction perpendicular to the insertion direction, the distractible intervertebral implant comprising: a first implant body that defines a first inner surface, a first outer surface opposite the first inner surface, a first ramped surface, and a second ramped surface spaced from the first ramped surface along the insertion direction, the first outer surface configured to face the first vertebral body when the distractible intervertebral implant is disposed in the intervertebral space, and the first and second ramped surfaces being angled with respect to the insertion direction, wherein the first implant body further defines a first bore that extends through the first implant body and that is configured to receive a first fixation member so as to affix the first implant body to the first vertebral body; anda second implant body that defines a second inner surface, a second outer surface opposite the second inner surface, a third ramped surface, and a fourth ramped surface spaced from the third ramped surface along the insertion direction, the second inner surface and the second outer surface configured to face the first inner surface and the second vertebral body, respectively, when the distractible intervertebral implant is disposed in the intervertebral space, and the third and fourth ramped surfaces being angled with respect to the insertion direction, wherein the second implant body further defines a second bore that extends through the second implant body and that is configured to receive a second fixation member so as to affix the second implant body to the second vertebral body, and wherein the first implant body defines a first recess configured so as to allow the second fixation member to pass through the first recess as the second fixation member is inserted into the second bore.
  • 2. The distractible intervertebral implant of claim 1, wherein at least one of the second and fourth ramped surfaces is configured to translate along a surface of the distractible intervertebral implant so as to cause the first and second outer surfaces to move away from one another along the second direction.
  • 3. The distractible intervertebral implant of claim 1, wherein the second implant body defines a third bore that extends through the second implant body and that is configured to receive a third fixation member to affix the second implant body to the second vertebral body.
  • 4. The distractible intervertebral implant of claim 3, wherein the second and third bores are spaced from one another along a third direction, perpendicular to both the insertion direction and the second direction, and the first bore is spaced between the second and third bores with respect to the third direction.
  • 5. The distractible intervertebral implant of claim 1, wherein the first bore extends through both the first inner surface and the first outer surface such that, when a first fixation member extends through the first bore, the first fixation member extends into an endplate of the first vertebral body.
  • 6. The distractible intervertebral implant of claim 5, wherein the second bore extends through both the second inner surface and the second outer surface such that, when a second fixation member extends through the second bore, the second fixation member extends into an endplate of the second vertebral body.
  • 7. The distractible intervertebral implant of claim 1, wherein at least one of the first and second bores defines a central axis that is angled with respect to the insertion direction.
  • 8. The distractible intervertebral implant of claim 1, wherein the second ramped surface is angled away from the first outer surface as the second ramped surface extends in a direction opposite the insertion direction.
  • 9. The distractible intervertebral implant of claim 1, wherein: the first implant body defines a first anterior end, a first posterior end spaced from the first anterior end along the insertion direction, and a first opening in the first anterior end that is open to the first bore;the second implant body defines a second anterior end, a second posterior end spaced from the second anterior end along the insertion direction, and a second opening in the second anterior end that is open to the second bore; andthe second opening is in-line with the first opening along a third direction, perpendicular to both the insertion direction and the second direction.
  • 10. A distractible intervertebral implant system comprising: first, second, and third fixation members; anda distractible intervertebral implant configured to be inserted along an insertion direction into an intervertebral space defined between a first vertebral body and a second vertebral body, spaced from the first intervertebral body along a second direction, perpendicular to the insertion direction, the distractible intervertebral implant comprising: a first implant body that defines a first inner surface, a first outer surface opposite the first inner surface, a first ramped surface, and a second ramped surface spaced from the first ramped surface along the insertion direction, the first outer surface configured to face the first vertebral body when the distractible intervertebral implant is disposed in the intervertebral space, and the first and second ramped surfaces being angled with respect to the insertion direction, wherein the first implant body further defines a first bore that extends through the first implant body and that is configured to receive a first fixation member so as to affix the first implant body to the first vertebral body; anda second implant body that defines a second inner surface, a second outer surface opposite the second inner surface, a third ramped surface, and a fourth ramped surface spaced from the third ramped surface along the insertion direction, the second inner surface and the second outer surface configured to face the first inner surface and the second vertebral body, respectively, when the distractible intervertebral implant is disposed in the intervertebral space, and the third and fourth ramped surfaces being angled with respect to the insertion direction, wherein the second implant body defines second and third bores that extend through the second implant body and that are configured to receive second and third fixation members, respectively, so as to affix the second implant body to the second vertebral body, and wherein the second and third bores are spaced from one another along a third direction, perpendicular to both the insertion direction and the second direction, and the first bore is spaced between the second and third bores with respect to the third direction.
  • 11. The distractible intervertebral implant system of claim 10, wherein at least one of the second and fourth ramped surfaces is configured to translate along a surface of the distractible intervertebral implant so as to cause the first and second outer surfaces to move away from one another along the second direction.
  • 12. The distractible intervertebral implant system of claim 10, wherein the first bore extends through both the first inner surface and the first outer surface such that, when a first fixation member extends through the first bore, the first fixation member extends into an endplate of the first vertebral body.
  • 13. The distractible intervertebral implant system of claim 10, wherein at least one of the first and second bores defines a central axis that is angled with respect to the insertion direction.
  • 14. The distractible intervertebral implant system of claim 10, wherein the second ramped surface is angled away from the first outer surface as the second ramped surface extends in a direction opposite the insertion direction.
  • 15. The distractible intervertebral implant system of claim 10, wherein the first implant body defines a first recess configured so as to allow the second fixation member to pass through the first recess as the second fixation member is inserted into the second bore.
  • 16. A distractible intervertebral implant configured to be inserted along an insertion direction into an intervertebral space defined between a first vertebral body and a second vertebral body that is spaced from the first vertebral body along a second direction perpendicular to the insertion direction, the distractible intervertebral implant comprising: a first implant body that defines a first inner surface, a first outer surface opposite the first inner surface, a first ramped surface, and a second ramped surface spaced from the first ramped surface along the insertion direction, the first outer surface configured to face the first vertebral body when the distractible intervertebral implant is disposed in the intervertebral space, and the first and second ramped surfaces being angled with respect to the insertion direction, wherein the first implant body further defines a first bore that extends through the first implant body and that is configured to receive a first fixation member so as to affix the first implant body to the first vertebral body; anda second implant body that defines a second inner surface, a second outer surface opposite the second inner surface, a third ramped surface, and a fourth ramped surface spaced from the third ramped surface along the insertion direction, the second inner surface and the second outer surface configured to face the first inner surface and the second vertebral body, respectively, when the distractible intervertebral implant is disposed in the intervertebral space, and the third and fourth ramped surfaces being angled with respect to the insertion direction, wherein the second implant body further defines second and third bores that extend through the second implant body and that are configured to receive second and third fixation members, respectively, so as to affix the second implant body to the second vertebral body, wherein the second and third bores are spaced from one another along a third direction, perpendicular to both the insertion direction and the second direction, and the first bore is spaced between the second and third bores with respect to the third direction.
  • 17. The distractible intervertebral implant of claim 16, wherein at least one of the second and fourth ramped surfaces is configured to translate along a surface of the distractible intervertebral implant so as to cause the first and second outer surfaces to move away from one another along the second direction.
  • 18. The distractible intervertebral implant of claim 16, wherein the first bore extends through both the first inner surface and the first outer surface such that, when a first fixation member extends through the first bore, the first fixation member extends into an endplate of the first vertebral body.
  • 19. The distractible intervertebral implant of claim 18, wherein the second bore extends through both the second inner surface and the second outer surface such that, when a second fixation member extends through the second bore, the second fixation member extends into an endplate of the second vertebral body.
  • 20. The distractible intervertebral implant of claim 16, wherein at least one of the first and second bores defines a central axis that is angled with respect to the insertion direction.
  • 21. The distractible intervertebral implant of claim 16, wherein the second ramped surface is angled away from the first outer surface as the second ramped surface extends in a direction opposite the insertion direction.
  • 22. The distractible intervertebral implant of claim 16, wherein: the first implant body defines a first anterior end, a first posterior end spaced from the first anterior end along the insertion direction, and a first opening in the first anterior end that is open to the first bore;the second implant body defines a second anterior end, a second posterior end spaced from the second anterior end along the insertion direction, and a second opening in the second anterior end that is open to the second bore; andthe second opening is in-line with the first opening along a third direction, perpendicular to both the insertion direction and the second direction.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/143,529, filed Dec. 30, 2013, which is a continuation of U.S. patent application Ser. No. 13/170,557, filed Jun. 28, 2011, which claims the benefit of U.S. Provision Application Ser. No. 61/359,554, filed Jun. 29, 2010, the contents of all of which are hereby incorporated by reference as if set forth in their entirety herein.

US Referenced Citations (406)
Number Name Date Kind
3867728 Stubstad et al. Feb 1975 A
4349921 Kuntz Sep 1982 A
4759766 Buettner-Janz et al. Jul 1988 A
4863476 Shepperd Sep 1989 A
5059193 Kuslich Oct 1991 A
5290312 Kojimoto Mar 1994 A
5314477 Marnay May 1994 A
5344252 Kakimoto Sep 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pishardi Feb 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5425773 Boyd et al. Jun 1995 A
5443514 Steffee Aug 1995 A
5507816 Bullivant Apr 1996 A
5522899 Michelson Jun 1996 A
5534029 Shima Jul 1996 A
5554191 Lahille et al. Sep 1996 A
5556431 Buttner-Janz Sep 1996 A
5562738 Boyd et al. Oct 1996 A
5609635 Michelson Mar 1997 A
5653763 Errico Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5676701 Yuan et al. Oct 1997 A
5683465 Shinn et al. Nov 1997 A
5697977 Pisharodi Dec 1997 A
5716415 Steffee Feb 1998 A
5772661 Michelson Jun 1998 A
5782832 Larsen et al. Jul 1998 A
5860973 Michelson Jan 1999 A
5865848 Baker Feb 1999 A
5888224 Beckers et al. Mar 1999 A
5888226 Rogozinski Mar 1999 A
5893889 Harrington Apr 1999 A
5893890 Pisharodi Apr 1999 A
5980522 Koros et al. Nov 1999 A
5989291 Ralph et al. Nov 1999 A
6039761 Li Mar 2000 A
6039763 Shelokov Mar 2000 A
6045579 Hochshuler Apr 2000 A
6102950 Vaccaro Aug 2000 A
6106557 Robioneck et al. Aug 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams Sep 2000 A
6117174 Nolan Sep 2000 A
6127597 Beyar et al. Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6146387 Trott et al. Nov 2000 A
6176882 Biedermann et al. Jan 2001 B1
6179794 Burras Jan 2001 B1
6179873 Zientek Jan 2001 B1
6183517 Suddaby Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6296647 Robioneck et al. Oct 2001 B1
6302914 Michelson Oct 2001 B1
6332895 Suddaby Dec 2001 B1
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6387130 Stone May 2002 B1
6409766 Brett Jun 2002 B1
6419705 Erickson Jul 2002 B1
6419706 Graf Jul 2002 B1
6436140 Liu et al. Aug 2002 B1
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6468310 Ralph et al. Oct 2002 B1
6488710 Besselink Dec 2002 B2
6517580 Ramadan et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6558424 Thalgott May 2003 B2
6562074 Gerbec et al. May 2003 B2
6582468 Gauchet Jun 2003 B1
6610094 Husson Aug 2003 B2
6641614 Wagner et al. Nov 2003 B1
6648917 Gerbec et al. Nov 2003 B2
6676665 Foley et al. Jan 2004 B2
6706070 Wagner et al. Mar 2004 B1
6719796 Cohen et al. Apr 2004 B2
6723126 Berry Apr 2004 B1
6733532 Gauchet et al. May 2004 B1
6740117 Ralph et al. May 2004 B2
6743255 Ferree Jun 2004 B2
6793678 Hawkins Sep 2004 B2
6805714 Sutcliffe Oct 2004 B2
6852129 Gerbec et al. Feb 2005 B2
6855167 Shimp Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6881229 Khandler Apr 2005 B2
6893464 Kiester May 2005 B2
6936071 Marnay et al. Aug 2005 B1
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6969404 Ferree Nov 2005 B2
6969405 Suddaby Nov 2005 B2
7018412 Ferreira et al. Mar 2006 B2
7018416 Hanson et al. Mar 2006 B2
7037339 Houfburg et al. May 2006 B2
7083650 Moskowitz et al. Aug 2006 B2
7094257 Mujwid et al. Aug 2006 B2
7156876 Moumene et al. Jan 2007 B2
7211112 Baynham et al. May 2007 B2
7217293 Branch May 2007 B2
7220280 Kast et al. May 2007 B2
7223292 Messerli et al. May 2007 B2
7226483 Gerber et al. Jun 2007 B2
7235101 Berry et al. Jun 2007 B2
7326248 Michelson Feb 2008 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7517363 Rogers Apr 2009 B2
7569074 Eiserman et al. Aug 2009 B2
7618458 Biedermann et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7621960 Boyd et al. Nov 2009 B2
7691147 Gutlin et al. Apr 2010 B2
7703727 Selness Apr 2010 B2
7722612 Sala et al. May 2010 B2
7722674 Grotz May 2010 B1
7749270 Peterman Jul 2010 B2
7771473 Thramann Aug 2010 B2
7785368 Schaller Aug 2010 B2
7789914 Michelson Sep 2010 B2
7819921 Grotz Oct 2010 B2
7824445 Biro et al. Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846206 Oglaza et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7874980 Sonnenschein et al. Jan 2011 B2
7879098 Simmons Feb 2011 B1
7887589 Glenn et al. Feb 2011 B2
7909870 Kraus Mar 2011 B2
7922729 Michelson Apr 2011 B2
7951199 Miller May 2011 B2
7985231 Sankaran Jul 2011 B2
7993403 Foley et al. Aug 2011 B2
8021424 Beger et al. Sep 2011 B2
8021426 Segal et al. Sep 2011 B2
8025697 McClellan et al. Sep 2011 B2
8034109 Zwirkoski Oct 2011 B2
8043381 Hestad et al. Oct 2011 B2
8062375 Glerum et al. Nov 2011 B2
8075621 Michelson Dec 2011 B2
8128700 Delurio et al. Mar 2012 B2
8177812 Sankaran May 2012 B2
8192495 Simpson et al. Jun 2012 B2
8221501 Eiserman et al. Jul 2012 B2
8221502 Branch Jul 2012 B2
8231681 Castleman et al. Jul 2012 B2
8236058 Fabian et al. Aug 2012 B2
8241358 Butler et al. Aug 2012 B2
8257442 Edie et al. Sep 2012 B2
8262666 Baynham et al. Sep 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8273128 Oh et al. Sep 2012 B2
8287599 McGuckin Oct 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8323345 Sledge Dec 2012 B2
8328852 Zehavi et al. Dec 2012 B2
8337559 Hansell et al. Dec 2012 B2
8353961 McClintock Jan 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8398713 Weiman Mar 2013 B2
8403990 Dryer et al. Mar 2013 B2
8409291 Blackwell et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8454617 Schaller Jun 2013 B2
8486148 Butler et al. Jul 2013 B2
8491659 Weiman Jul 2013 B2
8506635 Palmatier et al. Aug 2013 B2
8518087 Lopez et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8568481 Olmos et al. Oct 2013 B2
8579977 Fabian Nov 2013 B2
8579981 Lim Nov 2013 B2
8591585 McLaughlin et al. Nov 2013 B2
8603170 Cipoletti et al. Dec 2013 B2
8623091 Suedkamp et al. Jan 2014 B2
8628576 Triplett et al. Jan 2014 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8663329 Ernst Mar 2014 B2
8668740 Rhoda et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685098 Glerum et al. Apr 2014 B2
8696751 Ashley et al. Apr 2014 B2
8709086 Glerum et al. Apr 2014 B2
8715351 Pinto May 2014 B1
8721723 Hansell et al. May 2014 B2
8753398 Gordon et al. Jun 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8778025 Ragab et al. Jul 2014 B2
8795366 Varela Aug 2014 B2
8828085 Jensen Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852279 Weiman Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8900307 Hawkins Dec 2014 B2
8926704 Glerum Jan 2015 B2
8936641 Cain Jan 2015 B2
8940052 Lechmann et al. Jan 2015 B2
8986387 To et al. Mar 2015 B1
9005291 Loebl et al. Apr 2015 B2
9039767 Raymond et al. May 2015 B2
9039771 Glerum et al. May 2015 B2
9060876 To et al. Jun 2015 B1
9078767 McLean Jul 2015 B1
9095446 Landry et al. Aug 2015 B2
9095447 Barreiro et al. Aug 2015 B2
9101488 Malandain Aug 2015 B2
9101489 Protopsaltis et al. Aug 2015 B2
9107766 Mclean et al. Aug 2015 B1
20020010070 Cales et al. Jan 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020128715 Bryan et al. Sep 2002 A1
20020128716 Cohen et al. Sep 2002 A1
20020151976 Foley et al. Oct 2002 A1
20020165612 Gerber et al. Nov 2002 A1
20030004575 Erickson Jan 2003 A1
20030004576 Thalgott Jan 2003 A1
20030023305 McKay Jan 2003 A1
20030040799 Boyd et al. Feb 2003 A1
20030065396 Michelson Apr 2003 A1
20030078667 Manasas et al. Apr 2003 A1
20030130739 Gerbec et al. Jul 2003 A1
20030135275 Garcia Jul 2003 A1
20030139812 Garcia Jul 2003 A1
20030139813 Messerli et al. Jul 2003 A1
20030233145 Landry et al. Dec 2003 A1
20040030387 Landry et al. Feb 2004 A1
20040064144 Johnson et al. Apr 2004 A1
20040087947 Lim May 2004 A1
20040088055 Hanson et al. May 2004 A1
20040127991 Ferree Jul 2004 A1
20040153065 Lim Aug 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040162618 Mujwid et al. Aug 2004 A1
20040172133 Gerber et al. Sep 2004 A1
20040186570 Rapp Sep 2004 A1
20040186577 Ferree Sep 2004 A1
20040230309 DiMauro Nov 2004 A1
20050038515 Kunzler Feb 2005 A1
20050113916 Branch May 2005 A1
20050113917 Chae et al. May 2005 A1
20050125062 Biedermann et al. Jun 2005 A1
20050165485 Trieu Jul 2005 A1
20050177235 Baynham et al. Aug 2005 A1
20050222681 Richley et al. Oct 2005 A1
20050256576 Moskowitz et al. Nov 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20060058876 McKinley Mar 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060122701 Kiester Jun 2006 A1
20060122703 Aebi et al. Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060136062 DiNello et al. Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060235531 Buettner Oct 2006 A1
20060253201 McLuen Nov 2006 A1
20060265075 Baumgartner et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20070010886 Banick et al. Jan 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070118222 Lang May 2007 A1
20070149978 Shezifi et al. Jun 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070191959 Hartmann et al. Aug 2007 A1
20070198089 Moskowitz et al. Aug 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070233244 Lopez et al. Oct 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276375 Rapp Nov 2007 A1
20070299521 Glenn Dec 2007 A1
20080009877 Sankaran et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021556 Edie Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080027550 Link et al. Jan 2008 A1
20080033440 Moskowitz et al. Feb 2008 A1
20080058944 Duplessis et al. Mar 2008 A1
20080065219 Dye Mar 2008 A1
20080082173 Delurio et al. Apr 2008 A1
20080140207 Olmos Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080161927 Savage Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080177388 Patterson et al. Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080195209 Garcia et al. Aug 2008 A1
20080243251 Stad et al. Oct 2008 A1
20080243254 Butler Oct 2008 A1
20080249622 Gray Oct 2008 A1
20080281425 Thalgott Nov 2008 A1
20090005870 Hawkins Jan 2009 A1
20090005873 Slivka et al. Jan 2009 A1
20090030423 Puno Jan 2009 A1
20090054991 Biyani Feb 2009 A1
20090076610 Afzal Mar 2009 A1
20090099568 Lowry et al. Apr 2009 A1
20090112320 Kraus Apr 2009 A1
20090112324 Refai et al. Apr 2009 A1
20090177284 Rogers et al. Jul 2009 A1
20090222096 Trieu Sep 2009 A1
20090222099 Liu et al. Sep 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090248159 Aflatoon Oct 2009 A1
20090292361 Lopez et al. Nov 2009 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100179594 Theofilos et al. Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100234956 Attia et al. Sep 2010 A1
20100262240 Chavatte et al. Oct 2010 A1
20100286783 Lechmann et al. Nov 2010 A1
20100324607 Davis Dec 2010 A1
20110004308 Marino et al. Jan 2011 A1
20110004310 Michelson Jan 2011 A1
20110015747 McManus et al. Jan 2011 A1
20110029082 Hall Feb 2011 A1
20110035011 Cain Feb 2011 A1
20110093074 Glerum et al. Apr 2011 A1
20110130835 Ashley et al. Jun 2011 A1
20110130838 Morgenstern et al. Jun 2011 A1
20110144753 Marchek et al. Jun 2011 A1
20110172716 Glerum Jul 2011 A1
20110270261 Mast et al. Nov 2011 A1
20110282453 Greenhalgh et al. Nov 2011 A1
20110301711 Palmatier et al. Dec 2011 A1
20110301712 Palmatier et al. Dec 2011 A1
20120004726 Greenhalgh et al. Jan 2012 A1
20120004732 Goel et al. Jan 2012 A1
20120022654 Farris et al. Jan 2012 A1
20120029636 Ragab et al. Feb 2012 A1
20120071977 Oglaza et al. Mar 2012 A1
20120071980 Purcell et al. Mar 2012 A1
20120083889 Purcell et al. Apr 2012 A1
20120123546 Medina May 2012 A1
20120185049 Varela Jul 2012 A1
20120197403 Merves Aug 2012 A1
20120197405 Cuevas et al. Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120290097 Cipoletti et al. Nov 2012 A1
20120310350 Farris et al. Dec 2012 A1
20120310352 DiMauro et al. Dec 2012 A1
20130030536 Rhoda et al. Jan 2013 A1
20130085572 Glerum et al. Apr 2013 A1
20130085574 Sledge Apr 2013 A1
20130116791 Theofilos May 2013 A1
20130123924 Butler et al. May 2013 A1
20130123927 Malandain May 2013 A1
20130138214 Greenhalgh et al. May 2013 A1
20130144387 Walker et al. Jun 2013 A1
20130144388 Emery et al. Jun 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158664 Palmatier et al. Jun 2013 A1
20130158667 Tabor et al. Jun 2013 A1
20130158668 Nichols et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130173004 Greenhalgh et al. Jul 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130190877 Medina Jul 2013 A1
20130204371 McLuen et al. Aug 2013 A1
20130211525 McLuen et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20130310939 Fabian et al. Nov 2013 A1
20140025169 Lechmann et al. Jan 2014 A1
20140039622 Glerum et al. Feb 2014 A1
20140046333 Johnson et al. Feb 2014 A1
20140058513 Gahman et al. Feb 2014 A1
20140067073 Hauck Mar 2014 A1
20140114423 Suedkamp et al. Apr 2014 A1
20140128977 Glerum et al. May 2014 A1
20140135934 Hansell et al. May 2014 A1
20140142706 Hansell et al. May 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140172106 To et al. Jun 2014 A1
20140180421 Glerum et al. Jun 2014 A1
20140228959 Niemiec et al. Aug 2014 A1
20140243981 Davenport et al. Aug 2014 A1
20140243982 Miller Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140249630 Weiman Sep 2014 A1
20140257484 Flower et al. Sep 2014 A1
20140257486 Alheidt Sep 2014 A1
20140277474 Robinson et al. Sep 2014 A1
20140303731 Glerum et al. Oct 2014 A1
20140303732 Rhoda et al. Oct 2014 A1
20140324171 Glerum et al. Oct 2014 A1
20150012097 Ibarra et al. Jan 2015 A1
20150045894 Hawkins et al. Feb 2015 A1
20150094812 Cain Apr 2015 A1
20150094813 Lechmann et al. Apr 2015 A1
20150112438 McLean Apr 2015 A1
20150182347 Robinson Jul 2015 A1
20150250606 Mclean Sep 2015 A1
Foreign Referenced Citations (67)
Number Date Country
101909548 Dec 2010 CN
2804936 Aug 1979 DE
3911610 Oct 1990 DE
4012622 Jul 1997 DE
202008001079 Mar 2008 DE
282161 Sep 1988 EP
678489 Oct 1995 EP
1290985 Mar 2003 EP
1532949 May 2005 EP
1541096 Jun 2005 EP
1541096 Jun 2005 EP
1683593 Jul 2006 EP
1698305 Aug 2007 EP
1843723 Mar 2010 EP
2368529 Sep 2011 EP
2237748 Sep 2012 EP
2764851 Aug 2014 EP
2730159 Aug 1996 FR
2874814 Mar 2006 FR
2718635 Dec 2015 FR
2003-526457 Sep 2003 JP
2006-516456 Jul 2006 JP
2007-54666 Mar 2007 JP
2011-509766 Mar 2011 JP
WO 9404100 Mar 1994 WO
WO 9531158 Nov 1995 WO
WO 9700054 Jan 1997 WO
WO 9953871 Oct 1999 WO
WO 0012033 Mar 2000 WO
WO 0074605 Dec 2000 WO
WO 0101893 Jan 2001 WO
WO 0101895 Jan 2001 WO
WO 0117464 Mar 2001 WO
WO 2005112834 Dec 2005 WO
WO 2006047587 May 2006 WO
WO 2006058281 Jun 2006 WO
WO 2006065419 Jun 2006 WO
WO 2006081843 Aug 2006 WO
WO 2007028098 Mar 2007 WO
WO 2007048012 Apr 2007 WO
WO 2008044057 Apr 2008 WO
WO 2007009107 Aug 2008 WO
WO 2009092102 Jul 2009 WO
WO 2009064787 Aug 2009 WO
WO 2009124269 Oct 2009 WO
WO 2009143496 Nov 2009 WO
WO 2010068725 Jun 2010 WO
WO 2010148112 Dec 2010 WO
WO 2011142761 Nov 2011 WO
WO 2012009152 Jan 2012 WO
WO 2012089317 Jul 2012 WO
WO 2012135764 Oct 2012 WO
WO 2013006669 Jan 2013 WO
WO 2013023096 Feb 2013 WO
WO 2013025876 Feb 2013 WO
WO 2013043850 May 2013 WO
WO 2013062903 May 2013 WO
WO 2013082184 Jun 2013 WO
WO 2013158294 Oct 2013 WO
WO 2013173767 Nov 2013 WO
WO 2013184946 Dec 2013 WO
WO 2014018098 Jan 2014 WO
WO 2014026007 Feb 2014 WO
WO 2014035962 Mar 2014 WO
WO 2014088521 Jun 2014 WO
WO 2014116891 Jul 2014 WO
WO 2014144696 Sep 2014 WO
Non-Patent Literature Citations (15)
Entry
U.S. Appl. No. 61/675,975, filed Jul. 26, 2012, Lechmann et al.
U.S. Appl. No. 14/685,358, filed Apr. 13, 2015, Marden et al.
U.S. Appl. No. 14/640,220, filed Mar. 6, 2015, Marden.
U.S. Appl. No. 14/685,402, filed Apr. 13, 2015, Cain.
U.S. Appl. No. 14/790,866, filed Jul. 2, 2015, Thommen et al.
International Patent Application No. PCT/US2013/029014, International Search Report dated Jul. 1, 2013, 7 pages.
Chiang, Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Cages by Finite Element Analysis, Spine, 2006, pp. E682-E689, vol. 31(19), Lippincott Williams & Wilkins, Inc.
Folman, Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer, Journal of Spinal Disorders & Techniques, 2003, pp. 455-460, vol. 16(5).
Gore, Technique of Cervical Interbody Fusion, Clinical Orthopaedics and Related Research, 1984, pp. 191-195, No. 188.
Hunt, Expanable cage placement via a posterolateral approach in lumbar spine reconstructions, Journal of Neurosurgery: Spine, 2006, pp. 271-274, vol. 5.
Krbec, [Replacement of the vertebral body with an expansion implant (Synex)], Acta Chir Orthop Traumatol Cech, 2002, pp. 158-162, vol. 69(3).
Polikeit, The importance of the endplate for interbody cages in the lumbar spine, Eur Spine J, 2003, pp. 556-561, vol. 12.
Shin, Posterior Lumbar Interbody Fusion via a Unilateral Approach, Yonsei Medical Journal, 2006, pp. 319-325, vol. 47(3).
European Search Report EP03253921 dated Nov. 13, 2003; 4 pages.
Hoogland, T. et al., Total Lumbar Intervertebral Disc Replacement: testing of a New Articulating Space in Human Cadaver Spines—24th Annual ORS, Dallas TX, Feb. 21-23, 1978, 8 pages.
Related Publications (1)
Number Date Country
20160081816 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
61359554 Jun 2010 US
Continuations (2)
Number Date Country
Parent 14143529 Dec 2013 US
Child 14950740 US
Parent 13170557 Jun 2011 US
Child 14143529 US