The invention relates to a distress signaling system for a seated passenger in a vehicle.
The invention further relates to a body area network arranged to enable a distress signaling for a seated passenger in a vehicle.
The invention still further relates to a method for signaling a condition of a distress of a seated passenger in a vehicle.
The invention still further relates to a vehicle comprising a distress signaling system.
A signaling system for a seated passenger in a vehicle is known from U.S. Pat. No. 5,990,795. The known signaling system is arranged to provide means of awakening a sleeping or unconscious operator of the vehicle by sounding an alarm with a recorded message within the cabin of the vehicle. For that purpose the known signaling system comprises monitoring means comprising a capacitance element arranged in a shoulder belt of a fastening system of a vehicle seat. The capacitance element is arranged to monitor a value of the capacitance, it being changed upon an event the operator of the vehicle falls into a sleep, which is usually followed by a nodding of the operator's head.
It is a disadvantage of the known signaling system that it provides means for monitoring a single manifestation of an abnormal operator's condition. The known system is not suitable for detecting a condition of a distress of the operator, for example a health-related abnormality or a condition of an anxiety, which can also potentially be harmful to the passenger. The known system also cannot detect a condition of a sleep or unconsciousness, when the head of the operator is not touching his chest.
It is an object of the invention to provide a signaling system which is capable of detecting different kinds of a passenger's distress conditions, ranging from a condition of an anxiety to a condition of a medical emergency, while the passenger is being seated in the vehicle.
A distress signaling system according to the invention comprises:
The technical measure of the invention is based on the insight that a condition of a distress is accompanied by a change in at least one vital sign of a person in question. Therefore, by monitoring a suitable vital sign and by carrying out a suitable analysis thereof, a reliable and versatile distress signaling system is obtained. It must be understood that under the definitions of the current invention, the term passenger is applicable to the operator of the vehicle and to any other seated person in the vehicle.
Preferably, the monitoring means is arranged in a direct vicinity of a seat of the vehicle or is integrated in the seat and/or a belt-fastening system. The monitoring means in the system according to the invention comprise a sensor arranged to monitor a vital sign by means of measuring a suitable signal. Preferably, a cardiac activity by means of measuring an ECG-signal and/or a respiration rate by means of acquiring a plethysmogram are being monitored. The sensor is further arranged to male available the measured signal to the data processing means, which is arranged to process the measured signal in order to yield data representative to a condition of the passenger. For example, in case the cardiac activity of the passenger is monitored, the data processing means analyze an output signal from the sensor and deduce corresponding ECG spectra. The resulting ECG spectra are then forwarded by the data processing means to the data analysis means, which is arranged to analyze the spectra to yield a condition-related parameter. Examples of a suitable condition-related parameter are a heart-rate, a value of an amplitude of a selected peak in the ECG spectrum, or any other suitable characteristic deduced from the ECG spectrum. The analysis means is further arranged to compare the condition-related parameter to a preset valid parameter. An example of a suitable preset valid parameter is a threshold value of a heart-rate. It is also possible to prescribe a plurality of valid parameters, corresponding to a plurality of conditions of the passenger. For example, the system according to the invention can comprise suitable storage means, for example a memory unit, where a plurality of valid parameters are being stored for comparison purposes. Said plurality of valid parameters can comprise a first value of the valid parameter, corresponding to a first condition of the passenger, for example a condition of being asleep. Further, said plurality of valid parameters can comprise a second value of the valid parameter, corresponding to a second condition of the passenger, for example a condition of an anxiety. Still further, said plurality of valid parameters can comprise a third value of the valid parameter, corresponding to a third condition of the passenger, for example a condition of a non-life threatening medical abnormality. Still further, said plurality of valid parameters can comprise a forth value of the valid parameter, corresponding to a forth condition of the passenger, for example a condition of a medical emergency.
The analysis means of the system according to the invention is further arranged to compare the yielded condition-related parameter to the preset valid parameter. In case the yielded condition-related parameter exceeds the preset parameter, a trigger signal actuating the indicating means is generated. The indicating means is arranged to generate a feedback to the passenger upon a receipt of the trigger signal. An example of a suitable feedback is a replay of a prerecorded message, like a verbal message or an instruction or a musical melody. It is also possible that a feedback comprises a buzz-tone. Alternatively, the feedback can comprise an actuation of a cabin light of the vehicle or a suitable actuation of a seat under the passenger in question. Preferably, in case the passenger in question is a driver of the car, the seat is brought into a slightly vibrating state.
It is found to be advantageous that the indicating means is further arranged to control a climate control means of the vehicle upon a receipt of a trigger signal. In a situation when the seated passenger is experiencing a state of anxiety, it can be favorable to create a more pleasant environment, by correspondingly varying a cabin temperature of the vehicle, for example. In case it is detected that the seated passenger is suffering from a condition of a medical emergency, the indicating means is preferably arranged to actuate an alarming means of the vehicle upon a receipt of the trigger signal. In such case, for example, the external lights and/or an acoustic alarming means, for example, a horn of the vehicle can be actuated in order to attract an attention of possible bystanders. This feature is of particular advantage in case the seated passenger is a driver. This action is preferably followed by a controlling of the engine of the vehicle, for example by means of an actuation of a cruise control or any other suitable means.
In an embodiment of the system according to the invention, the sensor comprises magnetic means arranged as a resonant circuit, said magnetic means being conceived to induce an oscillating magnetic field in a body volume of the passenger, said magnetic means being connectable to a power supply means, said data processing means being arranged to determine an amount of a power loss of said resonant circuit upon an application of said magnetic field to said body volume.
It is found to be particularly advantageous to provide the monitoring means which are suited to carry-out a substantially contact-less monitoring of a vital sign. The sensor according to the present embodiment comprises magnetic means which is arranged to induce an oscillating magnetic field in the body volume of the seated passenger upon an actuation of said sensor. The measuring principle is based on the Faraday's law. As biological tissue is a conductor, the oscillating magnetic filed induces eddy currents in the body of the passenger. The density of the induced eddy currents is proportional to the conductivity of the volume. The induced eddy currents generate a secondary magnetic field, pointing in an opposite direction with respect to a primary magnetic field. In accordance with the Faraday's law the secondary magnetic field induces an electromotive force in the primary coil, the phase of said force being 180 degrees shifted with respect to the direction of a driving current. The conductive body can thus be represented as a resistive load to the driving current. By measuring a power loss of the resonant circuit, a conclusion about the conductivity of the volume under investigation can be drawn. Because the internal impedance of the conductive body is finite, any change in load resistance due to a change in the conductivity will cause an amplitude of the measured signal to vary. When the characteristics of the primary resonant circuit are known, the conductivity of the volume under investigation can thus be determined. In a human body the conductive medium is blood. Therefore, a determination of a blood flow in a volume located in a vicinity of a resonant circuit can be used for monitoring purposes. This is particularly suitable for cardiac applications. Alternatively, it is possible to monitor a respiration rate, as during inhalation the conductivity of thorax decreases due to an air inflow.
In a further embodiment of a system according to the invention the magnetic means comprise a coil with a loop of a conductor, said loop being integrated into a shoulder portion of a set belt.
It is found to be of a particular advantage to integrate the magnetic means into the shoulder portion of the seat belt. The shoulder portion of the seat belt is defined as a loop of the seat belt, which transverses a thorax region of the passenger. Preferably, the loop of the conductor is positioned about 50 cm from a fixating means of the belt, this ensuring that the coil will be positioned substantially near a heart or a stomach of the seated passenger. Alternatively, the magnetic means can be adjustably attached to the shoulder portion of the seat belt, so that the seated passenger can customize their position with respect to his body. Preferably, the magnetic means are actuated upon a fastening of the seat belt, the belt fastening means being provided with a suitable wiring leading to a suitable battery of the vehicle.
Alternatively, the magnetic means of the system according to the invention can be integrated in a back support portion of the seat in a region, substantially corresponding to a thorax region of the seated passenger. In this case, the magnetic means can comprise a permanent wiring to a battery of the vehicle, and can be actuated upon a start-up of the vehicle's engine.
In a still further embodiment of the system according to the invention the sensor comprises an RF-transmitter unit and an RF-receiver unit, said RF-transmitter unit and said RF-receiver unit being conceived to be arranged under operating conditions in a spatial relation so that the body volume is located substantially therebetween.
This alternative embodiment enables a measurement of a blood flow in the body volume located between the RF-transmitter unit and the RF-receiver unit. The measuring principle is based on inductive coupling of two coils which varies by a conducting medium in between the coils. A change in a value of the induced voltage at the RF-receiver is a measure of the conductivity of the body volume.
A body area network according to the invention being arranged to enable a distress signaling for a seated passenger in a vehicle, comprises:
A body area network (BAN) is a flexible platform comprising a control unit, which is arranged to communicate with an ambient sensor. It is also possible to arrange the BAN so that it communicates with a plurality of ambient sensors. In a preferred embodiment a person being monitored is wearing the control unit. In case the person approaches a vehicle arranged with a suitable sensor, which is set in an operating mode, the range detection means of the control unit enable a communication between the sensor and the control unit. Upon an establishing of said communication, the sensor transmits the signal representative of the vital sign of the person to the control unit, where this signal is being analyzed. Alternatively, the sensor can be provided with a pre-processing means arranged to carry-out a suitable pre-processing of a raw measured signal. This feature minimizes the data flow between modules of the BAN. Preferably, the sensor comprises magnetic means arranged as a resonant circuit, said magnetic means being conceived to induce an oscillating magnetic field in a body volume of the passenger. Such a sensor can be integrated into a shoulder portion of the vehicle's seat or in a back support portion of the seat. Alternatively, the sensor comprises an RF-transmitter unit and an RF-receiver unit, said RF-transmitter unit and said RF-receiver unit being conceived to be arranged under operating conditions in a spatial relation so that the body volume is located substantially therebetween.
In an embodiment of the body are network according to the invention, the control unit further comprises:
Preferably, the control unit comprises suitable data analysis algorithms, per se known in the art, said algorithms being arranged to calculate the condition-related parameter, like a heart-rate, a respiration rate or a blood-flow in the volume. Preferably, the control unit comprises a display to present the feedback to the passenger, said feedback comprising, for example, a textual string.
In a further embodiment of the body area network, said network being arranged to communicate to a central processing unit of the vehicle, the control unit is being further arranged to send a control signal to the central processing unit of the vehicle. Preferably, said control signal is arranged to actuate the alarming means of the vehicle, and/or to actuate the climate control means of the vehicle and/or to actuate the cruise control means of the vehicle. For this purpose the control unit comprises suitable algorithms for accommodating the settings of the vehicle in accordance with the condition of the passenger.
A vehicle according to the invention comprises the distress signaling system, said system comprising:
In a preferred embodiment of the vehicle according to the invention, said vehicle comprises electronic means arranged to customize a setting of a vehicle in order to yield a preferred setting, said preferred setting being selectable from a plurality of pre-stored valid settings, said electronic means being further arranged to select a valid parameter in accordance with the selected preferred setting.
It is found particularly advantageous to personalize the functioning of the distress signaling system, for example, in case the vehicle is being operated by different persons at different times, said vehicle comprising per se known means to customize the vehicle settings, like a position of the seat, a cabin climate, etc. It is advantageous to arrange electronic means to select a valid parameter in accordance with the selected preferred setting. For example, in case a car is driven by a healthy female and a male with a cardiac condition, the valid parameters of the female differ from the valid parameters of the male. Thus, in order to enable a precise functioning of the distress system personal valid parameters are downloaded from a database for each individual and are used as reference values as long as the passenger remains seated in the vehicle.
These and other aspects of the invention will be discussed in more detail with reference to figures.
Based on that principle a variation of a received signal by the RF-receiver unit provides information on a cardiac and/or pulmonary activity of the seated passenger P. The RF-transmitter unit 38b is preferably provided with a stationary wiring to a battery unit (not shown) of the vehicle V. The RF-receiver unit 38a is preferably energized by the battery unit of the vehicle V upon a fastening of the belt fastening means 33, a corresponding electrical wiring 35 being integrated into the belt fastening means 33. The functioning of other units, shown in the
The control unit 52 is preferably arranged to send a control signal 53 to a vehicle control means 60. Preferably, said control signal is arranged to actuate a vehicle alarming means 62, and/or a cruise control means 64 and/or a vehicle climate control means 66 in order to minimize a potential harm to the passenger as a result of his condition.
Number | Date | Country | Kind |
---|---|---|---|
03101270.1 | May 2003 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/01488 | 4/29/2004 | WO | 11/3/2005 |