The subject matter of this application is related to the subject matter of the following applications:
The present disclosure relates generally to online advertising. More specifically, the present disclosure relates to a method and system for local insertion of online advertisements.
The proliferation of the Internet and e-commerce continues to fuel revolutionary changes in the network industry. Today, a significant number of information exchanges, from online movie viewing to daily news delivery, retail sales, and instant messaging, are conducted online. Online advertising, delivered to either a personal computer (PC) or a smartphone, has become a large and fast-growing business.
Traditionally, online advertising (or web-based advertising) is implemented in a centralized fashion where advertisement placement is controlled by an advertising service. For example, a typical web page can embed empty spaces, which can be used for banner advertising. These empty spaces are usually sold by the publisher of the web page to a centralized advertisement aggregator, such as an online advertising network, which matches these empty spaces with advertisement demand. Note that such advertising is not localized or customized to viewers of the advertisement, and in general, there is no advertisement incentive to an Internet hosting service provider that hosts the web page. In contrast, a conventional broadcast TV network allows local affiliated states to fill advertisement slots within a piece of content delivered by the broadcaster, thus making it possible for local affiliates to collect advertising revenues. It is desirable to adapt the advertising model used in broadcast TV to the world of online advertising.
One embodiment of the present invention provides a system that facilitates delivery of advertisements over a network. The system includes an affiliate node. During operation, the affiliate node receives a content piece from a content provider. The content piece includes a placeholder link associated with a predetermined advertising slot. The affiliate node modifies the content piece by replacing the placeholder link with an advertisement or a link thereto. Subsequently, the affiliate node receives a request for the content piece from a client, and delivers the modified content piece to the client.
In one variation on this embodiment, the affiliate node and the client are coupled to each other via a content-centric network (CCN).
In one variation on this embodiment, the affiliate node receives a signing key from the content provider, and produces a signature for the modified content piece using the signing key.
In a further variation, the signature of the modified content piece is verified by the client before the client renders the modified content.
In one variation on this embodiment, the advertisement includes at least one of: a banner, a pop-up window, a video clip, and an audio clip.
One embodiment of the present invention provides a network node that facilitates delivery of advertisements over the network. During operation, the network node delivers a content piece to a client. The content piece is produced by a content producer, and the content piece is embedded with a placeholder link associated with a predetermined advertising slot. The network node subsequently receives a request from the client corresponding to the placeholder link, determines an advertisement or a link thereto that matches the predetermined advertising slot, and forwards the advertisement or the link to the client.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
Overview
Embodiments of the present invention provide a system that allows a local affiliate, such as a local content provider, to insert advertisements into online content before the content is provided to consumers. When a content provider generates or provides content (in the form of web pages, streaming media, or other forms) to be distributed over the network, the content provider can insert a “placeholder” link within the content. A content consumer retrieves desired content via, for example, a web browser, from a local affiliate that hosts the content. The local affiliate modifies the original content by replacing the “placeholder” link with its own advertising content, such as a link to consumer-specific advertisement. When the web browser renders the retrieved content, it renders the content along with the local affiliate's advertising content. To ensure that the local affiliate is permitted by the content provider to make such modification, the content provider signs the original content with a signing key, and provides the signing key to legitimate local affiliates. After a legitimate local affiliate replaces the “placeholder” link with its own advertising link, it signs the modified content using the key provided by the content provider. Before rendering the local affiliate's advertising content, the content consumer's machine verifies whether the modified content is properly signed by the signing key issued by the content provider.
Although the instant disclosure is presented using examples based on a content-centric network (CCN), embodiments of the present invention are not limited to CCNs.
Content-Centric Networks (CCNs)
Content-centric networks (CCNs) bring a new approach to content transport. Instead of having network traffic viewed at the application level as end-to-end conversations over which content travels, in a CCN, content is requested or returned based on its unique name, and the network is responsible for routing content from the provider to the consumer. Unlike IP addresses, a content name does not necessarily indicate the location of the content. CCN names are opaque, binary objects that include an explicitly specified number of components. In addition, CCN names are persistent and content-specific. That is, if one changes the content of a file or data object, the content is effectively associated with a new name. This persistency can be achieved with an explicit versioning mechanism where, for example, the new content can be “version 4” of a given name. The version is often a timestamp. The persistency can also be achieved implicitly. For example, contents can be associated with not only their human-established names but also with authentication metadata (e.g., a digital signature by the publisher of the content). As a result, the complete content name changes when the data associated with a given name changes.
In a content-centric network (CCN), communication is driven by the consumers of data. In a CCN, there are two packet types, interest and data. An interest packet (also called a “query”) is a request for some content. An interest packet encodes a special form of query that expresses what content is desired and what content is not desired. A data packet (also called a “content packet”) is a unit of content. Data packets are self-identifying by carrying within them their full name. A consumer asks for content by broadcasting its interest over all available connectivity. Any node hearing the interest and having data that satisfies it can respond with a data packet. Data is transmitted only in response to an interest and consumes that interest. Both interest and data identify the content being exchanged by the content name (or CCN name). In one embodiment, data can “satisfy” an interest if the CCN name in the interest packet is a prefix of the CCN name in the data packet. An interest may specify the exact version to retrieve or may specify any version greater than a specified version, known as a “get-the-latest-version interest.”
Functionally, a CCN can retain associations among various names and the content which they represent. The names are hierarchically structured, have variable length, and in many situations can be understood by a user. For example, “/abcd/bob/papers/ccn/news” could be the name of an article, i.e., the “news” article from the “ccn” collection of papers for a user named “Bob” at the organization named “ABCD.” In a CCN, from an application's perspective, there is no need for a content consumer to determine how to find the “ABCD” organization, or to find which host there holds Bob's CCN publications. In one embodiment, to request a piece of content, a device in the CCN registers with the network that it is interested in that content by its name, and the content, if available in the local network, is routed back to it. The routing infrastructure takes care of intelligently propagating the interest to the prospective publishers, and then carrying any available content back along the path which the interest traversed.
CCNs have additional properties which make them especially appealing. All content can be cryptographically authenticated, meaning that some subset of nodes on the network (e.g., a legitimate querier of the content) can verify the authenticity of a piece of content. CCNs also allow data to be accessed by name, independent of publisher. At the same time, one can tailor a specialized request for data by a certain publisher. For example, one can ask for “foo.txt,” or “foo.txt signed by Bob.” Any form of self-verifying name can be used as a contract between producer and consumer. It is also possible to use hybrid self-verifying names, where the former components of the name are for organization and efficient routing, and the latter components of the name are self-verifying. Finally, CCNs allow the separation of content and trust, enabling different data consumers to use different mechanisms for establishing trust in the same piece of content. Although content might have been signed by a single publisher, it can be trusted for different reasons. For example, one user might trust a given piece of content because of a direct personal connection with its signer, whereas another user might trust the same content because of the content signer's participation in a Public Key Infrastructure (PKI) which that user has chosen to trust.
Details about the CCN can be found in U.S. patent application Ser. No. 12/332,560, entitled “METHOD AND APPARATUS FOR FACILITATING COMMUNICATION IN A CONTENT-CENTRIC NETWORK,” by inventor Van L. Jacobson, filed 11 Dec. 2008, the disclosure of which is incorporated by reference in its entirety herein.
Advertisement Distribution over CCN
In
In
To allow local affiliates, such as affiliate node 104, to insert their own advertising content within the requested content, content-provider node 102 generates a “placeholder” link when producing the requested content. For example, when producing a video file for streaming, the content provider generates a number of content files: p.com/content/myvideo/p1, p.com/content/myvideo/p2, . . . , p.com/content/myvideo/p31, and determines locations of a number of advertising slots to be embedded in the video streaming. At those determined advertising locations, the content provider generates content files that do not contain actual video content, but contain a link, such as: p.com/content/myvideo/p15: Link: p.com/LocalAffiliate/slot1/15sec-720p, which specifies a 15-second advertising video slot that can be filled by a local affiliate. If the advertisement is in the form of a banner or pop-up window, this link will specify the format, such as the size and the location, of the banner or the pop-up window.
Client computer 118 receives requested content files along with a placeholder link from affiliate node 104 via node 108. In order to resolve the placeholder link, client computer 118 sends a request over CDN 100. When the request reaches affiliate node 104, affiliate node 104 recognizes itself as a local affiliate, and is thus able to fill the advertising slot with its own advertisement. In one embodiment, affiliate node 104 responds to the request directly with advertising content such as an advertising video clip. In one embodiment, affiliate node 104 responds to the request with another link to an associated advertiser. In the above example, the response can be a file with CCN name: p.com/LocalAffiliate/slot1/15sec-720-p/instance#; and its content (data) includes Link:/foo.com/adCampaign3. Note that the CCN name of the response matches that of the request. Client computer 118 can then resolve this link by contacting the advertiser at namespace foo.com. Note that, contrary to conventional web advertisement, where a specific entity (such as a double-clicked link) is targeted, this solution uses the placeholder link to target a class of things, and some instances of the class can supply content to resolve the placeholder link. The placeholder link does not limit the source of the advertisement as long as the advertisement is provided by a legitimate local affiliate.
It is important to establish a trust model to prevent parties other than those local affiliates specified by the content provider from inserting advertising within the content. This trust model includes two elements: first, the content provider should be able to specify which party is allowed to insert an advertisement; second, the party that inserts the advertisement needs to prove that it meets the requirements set by the content provider.
To do so, the content provider signs the original content using a signing key that is identified by the same namespace as that of the original content. In one embodiment, the signing key can be a private key used in a Public Key Infrastructure (PKI) system. The content provider distributes this private key to a legitimate affiliate, and publishes the corresponding public key. When a legitimate local affiliate receives the original content, such as broadcast video or audio stream, the original content includes a placeholder link pointed to the local affiliate. The local affiliate modifies the received content by replacing the placeholder link with its own advertisement (such as a new link to its advertisers), and signs the modified content using the private key provided by the content provider. Note that the modified content now includes either advertising content or a link to the advertising content.
When the client machine receives the modified content, the client machine checks the validity of the signature of the modified content using the corresponding public key. If the signature is valid, the client machine renders the content along with the advertisement inserted by the local affiliate. Otherwise, the client machine treats the content as erroneous, and discards the modified content.
In addition to providing a link to the advertisement, in one embodiment, the local affiliate can also notify the content consumer that the advertisement should be signed by a key associated with the advertiser. In the example shown in
Subsequently, a client 302 may send a request over the network for the content (operation 318), and local affiliate 304 sends the content packet to client 302 (operation 320). Client 302 receives the content packet and verifies the signature of the content packet using a corresponding provider's public key (operation 322). By verifying this signature, client 302 authenticates the source of the content packet as content provider 306. Client 302 then resolves the placeholder link by sending a request to local affiliate 304 (operation 324). In response to receiving the request, local affiliate 304 generates a response packet that includes a link to an advertisement, and signs the response packet using the affiliate key (operation 326). In one embodiment, the affiliate key is the private key of a public/private key pair. Local affiliate 304 parses the request to determine the advertisement format specified by content provider 306, and identifies a link to an advertisement that satisfies the requested format. In a further embodiment, local affiliate 304 notifies client 302 of the signing key used to sign the advertising content. Note that local affiliate 304 can obtain such information from its contracted advertisers beforehand. Subsequently, local affiliate 304 sends the advertising link to client 302 (operation 328).
Client 302 receives the advertising link and verifies its signature (operation 330). In one embodiment, client 302 retrieves the public key (e.g., in the same namespace of the provided content) associated with the affiliate key in order to verify the signature of the advertising link. By verifying this signature, client 302 authenticates the source of the advertising link (local affiliate 304) as a legitimate affiliate of content provider 306. Subsequently, client 302 follows the advertising link to retrieve the advertisement from an advertiser 308 (operation 332). Client 302 verifies the signature of the advertisement in order to authenticate that the source of the advertisement is the one specified by local affiliate 304 (operation 334). Client 302 then renders the content along with the advertisement to allow the presentation to the content consumer (operation 336). Note that, in some embodiments, to successfully render the content, client 302 needs to check the validity of all signatures, including the signatures of the content, the advertising link, and the advertisement. Any signature error may result in client 302 discarding the content. In a further embodiment, client 302 may render the content as long as the signatures of the content and the advertising link are verified. In such a scenario, signature error of the advertisement only results in the advertisement not being presented, whereas the presentation of the content itself is not affected.
A local affiliate parses the media content, and identifies that there is an embedded placeholder link (operation 418). Local affiliate 404 then replaces the placeholder link with a link to its own advertisement, such as a link to a contracted advertiser, and signs the modified content using the affiliate key (operation 420). A client 402 requests the content over the network (operation 422). Local affiliate 404 receives the request and sends the content with the advertising link to client 402 (operation 424). Client 402 receives the content, and verifies the signature of the content (operation 426). By verifying the signature, client 402 authenticates the source of the modified content as a legitimate affiliate of content provider 406. Client 402 follows the advertising link to retrieve the advertisement from an advertiser 408 (operation 428), and verifies the signature of the advertisement (operation 430). Subsequently, client 402 plays the media content along with the advertisement (operation 432).
Note that the difference between the process shown in
During operation, content-receiving mechanism 502 receives content from the content provider. Content-parsing mechanism 504 parses the content to identify an embedded placeholder link, and advertisement-link-insertion mechanism 506 inserts an advertisement into the content to replace the placeholder link. Signature mechanism 508 signs the content with the advertising link using a signing key received from the content provider. Content-delivery mechanism 510 delivers the content with the advertising link to a client.
Note that unlike the conventional model in which an advertisement aggregator is used to distribute advertisements, embodiments of the present invention allow distributed advertising distribution. In other words, advertisements can now be sold and distributed by entities that are responsible for the distribution of the content, thus providing incentives to those entities (which are not centralized advertisement aggregators) for hosting and distributing the content. A trust model can be established among the content producer, the content distributor (local affiliate), and the content consumer using a chain of digital signatures. Per the trust model, only legitimate content distributors are allowed to insert advertising into advertising slots that are determined by the content producers.
Computer and Communication System
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, the methods and processes described below can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
817441 | Niesz | Apr 1906 | A |
4309569 | Merkle | Jan 1982 | A |
4921898 | Lenney | May 1990 | A |
5070134 | Oyamada | Dec 1991 | A |
5110856 | Oyamada | May 1992 | A |
5506844 | Rao | Apr 1996 | A |
5629370 | Freidzon | May 1997 | A |
5870605 | Bracho | Feb 1999 | A |
6052683 | Irwin | Apr 2000 | A |
6091724 | Chandra | Jul 2000 | A |
6173364 | Zenchelsky | Jan 2001 | B1 |
6226618 | Downs | May 2001 | B1 |
6233646 | Hahm | May 2001 | B1 |
6332158 | Risley | Dec 2001 | B1 |
6366988 | Skiba | Apr 2002 | B1 |
6574377 | Cahill | Jun 2003 | B1 |
6654792 | Verma | Nov 2003 | B1 |
6667957 | Corson | Dec 2003 | B1 |
6681220 | Kaplan | Jan 2004 | B1 |
6681326 | Son | Jan 2004 | B2 |
6769066 | Botros | Jul 2004 | B1 |
6772333 | Brendel | Aug 2004 | B1 |
6862280 | Bertagna | Mar 2005 | B1 |
6901452 | Bertagna | May 2005 | B1 |
6917985 | Madruga | Jul 2005 | B2 |
6968393 | Chen | Nov 2005 | B1 |
6981029 | Menditto | Dec 2005 | B1 |
7013389 | Srivastava | Mar 2006 | B1 |
7031308 | Garcia-Luna-Aceves | Apr 2006 | B2 |
7061877 | Gummalla | Jun 2006 | B1 |
7206860 | Murakami | Apr 2007 | B2 |
7257837 | Xu | Aug 2007 | B2 |
7287275 | Moskowitz | Oct 2007 | B2 |
7315541 | Housel | Jan 2008 | B1 |
7339929 | Zelig | Mar 2008 | B2 |
7350229 | Lander | Mar 2008 | B1 |
7382787 | Barnes | Jun 2008 | B1 |
7444251 | Nikovski | Oct 2008 | B2 |
7466703 | Arunachalam | Dec 2008 | B1 |
7472422 | Agbabian | Dec 2008 | B1 |
7496668 | Hawkinson | Feb 2009 | B2 |
7509425 | Rosenberg | Mar 2009 | B1 |
7523016 | Surdulescu | Apr 2009 | B1 |
7543064 | Juncker | Jun 2009 | B2 |
7552233 | Raju | Jun 2009 | B2 |
7555482 | Korkus | Jun 2009 | B2 |
7555563 | Ott | Jun 2009 | B2 |
7567547 | Mosko | Jul 2009 | B2 |
7567946 | Andreoli | Jul 2009 | B2 |
7580971 | Gollapudi | Aug 2009 | B1 |
7623535 | Guichard | Nov 2009 | B2 |
7647507 | Feng | Jan 2010 | B1 |
7660324 | Oguchi | Feb 2010 | B2 |
7685290 | Satapati | Mar 2010 | B2 |
7698463 | Ogier | Apr 2010 | B2 |
7769887 | Bhattacharyya | Aug 2010 | B1 |
7779467 | Choi | Aug 2010 | B2 |
7801177 | Luss | Sep 2010 | B2 |
7816441 | Elizalde | Oct 2010 | B2 |
7831733 | Sultan | Nov 2010 | B2 |
7908337 | Garcia-Luna-Aceves | Mar 2011 | B2 |
7924837 | Shabtay | Apr 2011 | B1 |
7953885 | Devireddy | May 2011 | B1 |
8000267 | Solis | Aug 2011 | B2 |
8010691 | Kollmansberger | Aug 2011 | B2 |
8074289 | Carpentier | Dec 2011 | B1 |
8117441 | Kurien | Feb 2012 | B2 |
8160069 | Jacobson | Apr 2012 | B2 |
8204060 | Jacobson | Jun 2012 | B2 |
8214364 | Bigus | Jul 2012 | B2 |
8224985 | Takeda | Jul 2012 | B2 |
8225057 | Zheng | Jul 2012 | B1 |
8271578 | Sheffi | Sep 2012 | B2 |
8312064 | Gauvin | Nov 2012 | B1 |
8386622 | Jacobson | Feb 2013 | B2 |
8433611 | Lax | Apr 2013 | B2 |
8467297 | Liu | Jun 2013 | B2 |
8553562 | Allan | Oct 2013 | B2 |
8572214 | Garcia-Luna-Aceves | Oct 2013 | B2 |
8654649 | Vasseur | Feb 2014 | B2 |
8665757 | Kling | Mar 2014 | B2 |
8667172 | Ravindran | Mar 2014 | B2 |
8688619 | Ezick | Apr 2014 | B1 |
8699350 | Kumar | Apr 2014 | B1 |
8750820 | Allan | Jun 2014 | B2 |
8761022 | Chiabaut | Jun 2014 | B2 |
8762477 | Xie | Jun 2014 | B2 |
8762570 | Qian | Jun 2014 | B2 |
8762707 | Killian | Jun 2014 | B2 |
8767627 | Ezure | Jul 2014 | B2 |
8817594 | Gero | Aug 2014 | B2 |
8826381 | Kim | Sep 2014 | B2 |
8832302 | Bradford | Sep 2014 | B1 |
8836536 | Marwah | Sep 2014 | B2 |
8862774 | Vasseur | Oct 2014 | B2 |
8903756 | Zhao | Dec 2014 | B2 |
8937865 | Kumar | Jan 2015 | B1 |
9071498 | Beser | Jun 2015 | B2 |
9112895 | Lin | Aug 2015 | B1 |
20020010795 | Brown | Jan 2002 | A1 |
20020048269 | Hong | Apr 2002 | A1 |
20020054593 | Morohashi | May 2002 | A1 |
20020077988 | Sasaki | Jun 2002 | A1 |
20020078066 | Robinson | Jun 2002 | A1 |
20020138551 | Erickson | Sep 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020188605 | Adya | Dec 2002 | A1 |
20020199014 | Yang | Dec 2002 | A1 |
20030046437 | Eytchison | Mar 2003 | A1 |
20030048793 | Pochon | Mar 2003 | A1 |
20030051100 | Patel | Mar 2003 | A1 |
20030074472 | Lucco | Apr 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030140257 | Paterka | Jul 2003 | A1 |
20040024879 | Dingman | Feb 2004 | A1 |
20040030602 | Rosenquist | Feb 2004 | A1 |
20040073715 | Folkes | Apr 2004 | A1 |
20040139230 | Kim | Jul 2004 | A1 |
20040221047 | Grover | Nov 2004 | A1 |
20040225627 | Botros | Nov 2004 | A1 |
20040252683 | Kennedy | Dec 2004 | A1 |
20050003832 | Osafune | Jan 2005 | A1 |
20050028156 | Hammond | Feb 2005 | A1 |
20050043060 | Brandenberg | Feb 2005 | A1 |
20050050211 | Kaul | Mar 2005 | A1 |
20050074001 | Mattes | Apr 2005 | A1 |
20050091111 | Green | Apr 2005 | A1 |
20050144073 | Morrisroe | Jun 2005 | A1 |
20050149508 | Deshpande | Jul 2005 | A1 |
20050159823 | Hayes | Jul 2005 | A1 |
20050198351 | Nog | Sep 2005 | A1 |
20050249196 | Ansari | Nov 2005 | A1 |
20050259637 | Chu | Nov 2005 | A1 |
20050262217 | Nonaka | Nov 2005 | A1 |
20050289222 | Sahim | Dec 2005 | A1 |
20060010249 | Sabesan | Jan 2006 | A1 |
20060029102 | Abe | Feb 2006 | A1 |
20060039379 | Abe | Feb 2006 | A1 |
20060051055 | Ohkawa | Mar 2006 | A1 |
20060072523 | Richardson | Apr 2006 | A1 |
20060099973 | Nair | May 2006 | A1 |
20060129514 | Watanabe | Jun 2006 | A1 |
20060133343 | Huang | Jun 2006 | A1 |
20060173831 | Basso | Aug 2006 | A1 |
20060193295 | White | Aug 2006 | A1 |
20060206445 | Andreoli | Sep 2006 | A1 |
20060215684 | Capone | Sep 2006 | A1 |
20060223504 | Ishak | Oct 2006 | A1 |
20060242407 | Kimmel | Oct 2006 | A1 |
20060256767 | Suzuki | Nov 2006 | A1 |
20060268792 | Belcea | Nov 2006 | A1 |
20070019619 | Foster | Jan 2007 | A1 |
20070073888 | Madhok | Mar 2007 | A1 |
20070094265 | Korkus | Apr 2007 | A1 |
20070112880 | Yang | May 2007 | A1 |
20070124412 | Narayanaswami | May 2007 | A1 |
20070127457 | Mirtorabi | Jun 2007 | A1 |
20070160062 | Morishita | Jul 2007 | A1 |
20070162394 | Zager | Jul 2007 | A1 |
20070189284 | Kecskemeti | Aug 2007 | A1 |
20070195765 | Heissenbuttel | Aug 2007 | A1 |
20070204011 | Shaver | Aug 2007 | A1 |
20070209067 | Fogel | Sep 2007 | A1 |
20070239892 | Ott | Oct 2007 | A1 |
20070240207 | Belakhdar | Oct 2007 | A1 |
20070245034 | Retana | Oct 2007 | A1 |
20070253418 | Shiri | Nov 2007 | A1 |
20070255699 | Sreenivas | Nov 2007 | A1 |
20070255781 | Li | Nov 2007 | A1 |
20070274504 | Maes | Nov 2007 | A1 |
20070276907 | Maes | Nov 2007 | A1 |
20070294187 | Scherrer | Dec 2007 | A1 |
20080005056 | Stelzig | Jan 2008 | A1 |
20080010366 | Duggan | Jan 2008 | A1 |
20080037420 | Tang | Feb 2008 | A1 |
20080043989 | Furutono | Feb 2008 | A1 |
20080046340 | Brown | Feb 2008 | A1 |
20080059631 | Bergstrom | Mar 2008 | A1 |
20080080440 | Yarvis | Apr 2008 | A1 |
20080101357 | Iovanna | May 2008 | A1 |
20080107034 | Jetcheva | May 2008 | A1 |
20080123862 | Rowley | May 2008 | A1 |
20080133583 | Artan | Jun 2008 | A1 |
20080133755 | Pollack | Jun 2008 | A1 |
20080151755 | Nishioka | Jun 2008 | A1 |
20080159271 | Kutt | Jul 2008 | A1 |
20080186901 | Itagaki | Aug 2008 | A1 |
20080200153 | Fitzpatrick | Aug 2008 | A1 |
20080215669 | Gaddy | Sep 2008 | A1 |
20080216086 | Tanaka | Sep 2008 | A1 |
20080243992 | Jardetzky | Oct 2008 | A1 |
20080256359 | Kahn | Oct 2008 | A1 |
20080270618 | Rosenberg | Oct 2008 | A1 |
20080271143 | Stephens | Oct 2008 | A1 |
20080287142 | Keighran | Nov 2008 | A1 |
20080288580 | Wang | Nov 2008 | A1 |
20080320148 | Capuozzo | Dec 2008 | A1 |
20090006659 | Collins | Jan 2009 | A1 |
20090013324 | Gobara | Jan 2009 | A1 |
20090022154 | Kiribe | Jan 2009 | A1 |
20090024641 | Quigley | Jan 2009 | A1 |
20090030978 | Johnson | Jan 2009 | A1 |
20090037763 | Adhya | Feb 2009 | A1 |
20090052660 | Chen | Feb 2009 | A1 |
20090067429 | Nagai | Mar 2009 | A1 |
20090077184 | Brewer | Mar 2009 | A1 |
20090092043 | Lapuh | Apr 2009 | A1 |
20090097631 | Gisby | Apr 2009 | A1 |
20090103515 | Pointer | Apr 2009 | A1 |
20090113068 | Fujihira | Apr 2009 | A1 |
20090144300 | Chatley | Jun 2009 | A1 |
20090157887 | Froment | Jun 2009 | A1 |
20090185745 | Momosaki | Jul 2009 | A1 |
20090193101 | Munetsugu | Jul 2009 | A1 |
20090222344 | Greene | Sep 2009 | A1 |
20090228593 | Takeda | Sep 2009 | A1 |
20090254572 | Redlich | Oct 2009 | A1 |
20090268905 | Matsushima | Oct 2009 | A1 |
20090285209 | Stewart | Nov 2009 | A1 |
20090287835 | Jacobson | Nov 2009 | A1 |
20090288163 | Jacobson | Nov 2009 | A1 |
20090292743 | Bigus | Nov 2009 | A1 |
20090293121 | Bigus | Nov 2009 | A1 |
20090300079 | Shitomi | Dec 2009 | A1 |
20090300407 | Kamath | Dec 2009 | A1 |
20090307333 | Welingkar | Dec 2009 | A1 |
20090323632 | Nix | Dec 2009 | A1 |
20100005061 | Basco | Jan 2010 | A1 |
20100027539 | Beverly | Feb 2010 | A1 |
20100046546 | Ram | Feb 2010 | A1 |
20100057929 | Merat | Mar 2010 | A1 |
20100088370 | Wu | Apr 2010 | A1 |
20100094767 | Miltonberger | Apr 2010 | A1 |
20100098093 | Ejzak | Apr 2010 | A1 |
20100100465 | Cooke | Apr 2010 | A1 |
20100103870 | Garcia-Luna-Aceves | Apr 2010 | A1 |
20100124191 | Vos | May 2010 | A1 |
20100125911 | Bhaskaran | May 2010 | A1 |
20100131660 | Dec | May 2010 | A1 |
20100150155 | Napierala | Jun 2010 | A1 |
20100165976 | Khan | Jul 2010 | A1 |
20100169478 | Saha | Jul 2010 | A1 |
20100169503 | Kollmansberger | Jul 2010 | A1 |
20100180332 | Ben-Yochanan | Jul 2010 | A1 |
20100182995 | Hwang | Jul 2010 | A1 |
20100185753 | Liu | Jul 2010 | A1 |
20100195653 | Jacobson | Aug 2010 | A1 |
20100195654 | Jacobson | Aug 2010 | A1 |
20100195655 | Jacobson | Aug 2010 | A1 |
20100217874 | Anantharaman | Aug 2010 | A1 |
20100232402 | Przybysz | Sep 2010 | A1 |
20100232439 | Dham | Sep 2010 | A1 |
20100235516 | Nakamura | Sep 2010 | A1 |
20100246549 | Zhang | Sep 2010 | A1 |
20100250497 | Redlich | Sep 2010 | A1 |
20100250939 | Adams | Sep 2010 | A1 |
20100268782 | Zombek | Oct 2010 | A1 |
20100272107 | Papp | Oct 2010 | A1 |
20100284309 | Allan | Nov 2010 | A1 |
20100284404 | Gopinath | Nov 2010 | A1 |
20100293293 | Beser | Nov 2010 | A1 |
20100322249 | Thathapudi | Dec 2010 | A1 |
20110013637 | Xue | Jan 2011 | A1 |
20110022812 | vanderLinden | Jan 2011 | A1 |
20110055392 | Shen | Mar 2011 | A1 |
20110055921 | Narayanaswamy | Mar 2011 | A1 |
20110090908 | Jacobson | Apr 2011 | A1 |
20110106755 | Hao | May 2011 | A1 |
20110145597 | Yamaguchi | Jun 2011 | A1 |
20110145858 | Philpott | Jun 2011 | A1 |
20110153840 | Narayana | Jun 2011 | A1 |
20110161408 | Kim | Jun 2011 | A1 |
20110202609 | Chaturvedi | Aug 2011 | A1 |
20110231578 | Nagappan | Sep 2011 | A1 |
20110239256 | Gholmieh | Sep 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110264824 | Venkata Subramanian | Oct 2011 | A1 |
20110265174 | Thornton | Oct 2011 | A1 |
20110271007 | Wang | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110286459 | Rembarz | Nov 2011 | A1 |
20110295783 | Zhao | Dec 2011 | A1 |
20110299454 | Krishnaswamy | Dec 2011 | A1 |
20120011170 | Elad | Jan 2012 | A1 |
20120011551 | Levy | Jan 2012 | A1 |
20120036180 | Thornton | Feb 2012 | A1 |
20120047361 | Erdmann | Feb 2012 | A1 |
20120066727 | Nozoe | Mar 2012 | A1 |
20120106339 | Mishra | May 2012 | A1 |
20120114313 | Phillips | May 2012 | A1 |
20120120803 | Farkas | May 2012 | A1 |
20120136676 | Goodall | May 2012 | A1 |
20120136936 | Quintuna | May 2012 | A1 |
20120136945 | Lee | May 2012 | A1 |
20120137367 | Dupont | May 2012 | A1 |
20120141093 | Yamaguchi | Jun 2012 | A1 |
20120155464 | Kim | Jun 2012 | A1 |
20120158973 | Jacobson | Jun 2012 | A1 |
20120163373 | Lo | Jun 2012 | A1 |
20120179653 | Araki | Jul 2012 | A1 |
20120197690 | Agulnek | Aug 2012 | A1 |
20120198048 | Ioffe | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120224487 | Hui | Sep 2012 | A1 |
20120257500 | Lynch | Oct 2012 | A1 |
20120284791 | Miller | Nov 2012 | A1 |
20120290669 | Parks | Nov 2012 | A1 |
20120290919 | Melnyk | Nov 2012 | A1 |
20120291102 | Cohen | Nov 2012 | A1 |
20120314580 | Hong | Dec 2012 | A1 |
20120317307 | Ravindran | Dec 2012 | A1 |
20120331112 | Chatani | Dec 2012 | A1 |
20130041982 | Shi | Feb 2013 | A1 |
20130051392 | Filsfils | Feb 2013 | A1 |
20130060962 | Wang | Mar 2013 | A1 |
20130073552 | Rangwala | Mar 2013 | A1 |
20130074155 | Huh | Mar 2013 | A1 |
20130091539 | Khurana | Apr 2013 | A1 |
20130110987 | Kim | May 2013 | A1 |
20130111063 | Lee | May 2013 | A1 |
20130144728 | Ruarte | Jun 2013 | A1 |
20130151584 | Westphal | Jun 2013 | A1 |
20130163426 | Beliveau | Jun 2013 | A1 |
20130166668 | Byun | Jun 2013 | A1 |
20130173822 | Hong | Jul 2013 | A1 |
20130182568 | Lee | Jul 2013 | A1 |
20130185406 | Choi | Jul 2013 | A1 |
20130197698 | Shah | Aug 2013 | A1 |
20130198119 | Eberhardt, III | Aug 2013 | A1 |
20130219038 | Lee | Aug 2013 | A1 |
20130219081 | Qian | Aug 2013 | A1 |
20130219478 | Mahamuni | Aug 2013 | A1 |
20130223237 | Hui | Aug 2013 | A1 |
20130227166 | Ravindran | Aug 2013 | A1 |
20130242996 | Varvello | Sep 2013 | A1 |
20130250809 | Hui | Sep 2013 | A1 |
20130282854 | Jang | Oct 2013 | A1 |
20130282860 | Zhang | Oct 2013 | A1 |
20130282920 | Zhang | Oct 2013 | A1 |
20130304937 | Lee | Nov 2013 | A1 |
20130329696 | Xu | Dec 2013 | A1 |
20130336323 | Srinivasan | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140003232 | Guichard | Jan 2014 | A1 |
20140006565 | Muscariello | Jan 2014 | A1 |
20140029445 | Hui | Jan 2014 | A1 |
20140032714 | Liu | Jan 2014 | A1 |
20140040505 | Barton | Feb 2014 | A1 |
20140074730 | Arensmeier | Mar 2014 | A1 |
20140075567 | Raleigh | Mar 2014 | A1 |
20140082135 | Jung | Mar 2014 | A1 |
20140089454 | Jeon | Mar 2014 | A1 |
20140096249 | Dupont | Apr 2014 | A1 |
20140129736 | Yu | May 2014 | A1 |
20140136814 | Stark | May 2014 | A1 |
20140140348 | Perlman | May 2014 | A1 |
20140143370 | Vilenski | May 2014 | A1 |
20140146819 | Bae | May 2014 | A1 |
20140149733 | Kim | May 2014 | A1 |
20140156396 | deKozan | Jun 2014 | A1 |
20140165207 | Engel | Jun 2014 | A1 |
20140172783 | Suzuki | Jun 2014 | A1 |
20140172981 | Kim | Jun 2014 | A1 |
20140173034 | Liu | Jun 2014 | A1 |
20140192717 | Liu | Jul 2014 | A1 |
20140195328 | Ferens | Jul 2014 | A1 |
20140195666 | Dumitriu | Jul 2014 | A1 |
20140233575 | Xie | Aug 2014 | A1 |
20140237085 | Park | Aug 2014 | A1 |
20140280823 | Varvello | Sep 2014 | A1 |
20140281489 | Peterka | Sep 2014 | A1 |
20140281505 | Zhang | Sep 2014 | A1 |
20140282816 | Xie | Sep 2014 | A1 |
20140289325 | Solis | Sep 2014 | A1 |
20140289790 | Wilson | Sep 2014 | A1 |
20140314093 | You | Oct 2014 | A1 |
20140365550 | Jang | Dec 2014 | A1 |
20150006896 | Franck | Jan 2015 | A1 |
20150018770 | Baran | Jan 2015 | A1 |
20150032892 | Narayanan | Jan 2015 | A1 |
20150063802 | Bahadur | Mar 2015 | A1 |
20150095481 | Ohnishi | Apr 2015 | A1 |
20150095514 | Yu | Apr 2015 | A1 |
20150188770 | Naiksatam | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
19620817 | Nov 1997 | DE |
0295727 | Dec 1988 | EP |
0757065 | Jul 1996 | EP |
1077422 | Feb 2001 | EP |
1384729 | Jan 2004 | EP |
2124415 | Nov 2009 | EP |
2214357 | Aug 2010 | EP |
03005288 | Jan 2003 | WO |
03042254 | May 2003 | WO |
03049369 | Jun 2003 | WO |
03091297 | Nov 2003 | WO |
2007113180 | Oct 2007 | WO |
2007144388 | Dec 2007 | WO |
2011049890 | Apr 2011 | WO |
Entry |
---|
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature. |
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460. |
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009). |
B. Lynn. The Pairing-Based Cryptography Library, http://crypto.stanford.edu/pbc/. |
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002). |
D. Boneh, C. Gentry, and B. Waters, ‘Collusion resistant broadcast encryption with short ciphertexts and private keys,’ in Proc. CRYPTO 2005, Santa Barbara, CA, USA, Aug. 2005, pp. 1-19. |
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001). |
G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Reencryption Schemes with Applications to Secure Distributed Storage. In the 12th Annual Network and Distributed System Security Symposium (2005). |
H. Xiong, X. Zhang, W. Zhu, and D. Yao. CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services. Security and Privacy in Communication Networks. Springer Berlin Heidelberg (2012). |
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334. |
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights Management using Broadcast Encryption. Proceedings of the IEEE 92.6 (2004). |
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Sciencevol. 5443 (2009). |
M. Blaze, G. Bleumer, and M. Strauss, ‘Divertible protocols and atomic prosy cryptography,’ in Proc. EUROCRYPT 1998, Espoo, Finland, May-Jun. 1998, pp. 127-144. |
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008). |
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf. |
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010). |
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010). |
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf. |
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/. |
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012). |
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012). |
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09. |
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117. |
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171. |
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835. |
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48. |
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015. |
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015. |
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015. |
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015. |
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015. |
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53. |
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999. |
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013. |
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36. |
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53. |
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279. |
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009. |
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014. |
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004. |
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583. |
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013. |
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009. |
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015. |
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010. |
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014. |
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702. |
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4. |
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512. |
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006. |
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983. |
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM. |
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A tracedriven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7. |
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737. |
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013. |
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012. |
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989. |
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014. |
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014. |
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011. |
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004. |
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995. |
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 (2012). |
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012). |
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20. |
https://code.google.com/p/ccnx-trace/. |
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91. |
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000. |
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012. |
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013. |
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009. |
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9. |
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843). |
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011. |
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559. |
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25. |
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187. |
Koponen, Teemu et al.,“A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192. |
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012. |
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013. |
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010. |
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093. |
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306. |
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40. |
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20. |
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014. |
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997. |
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from Dns,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737. |
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007. |
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006. |
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221. |
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012. |
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005). |
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140. |
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015. |
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169. |
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015. |
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286. |
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154. |
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988. |
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996. |
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415. |
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149. |
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564. |
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78. |
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9. |
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002. |
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015. |
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005. |
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51. |
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322. |
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29. |
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008. |
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993. |
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM 88, Aug. 1988. |
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008. |
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007. |
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98. |
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12. |
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002. |
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999. |
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224. |
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002. |
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003. |
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56. |
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049. |
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791. |
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395. |
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report. |
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73. |
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1. |
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering. |
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network$. |
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012. |
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium. |
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7. |
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium. |
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011. |
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006. |
Hogue et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13. |
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est. |
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79. |
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142. |
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012. |
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013. |
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012). |
Number | Date | Country | |
---|---|---|---|
20140164147 A1 | Jun 2014 | US |