The present disclosure relates generally to utility control systems, e.g., to “smart grid” technologies.
Utility control systems and data processing systems have largely been centralized in nature. Energy Management Systems (EMSs), Distribution Management Systems (DMSs), and Supervisory Control and Data Acquisition (SCADA) systems reside in control or operations centers and rely upon what have generally been low complexity communications to field devices and systems. There are a few distributed control systems for utility applications, including a wireless mesh system for performing fault isolation using peer-to-peer communications among devices on feeder circuits outside of the substations. In addition, certain protection schemes involve substation-to-substation communication and local processing. In general however, centralized systems are the primary control architecture for electric grids.
Moreover, utility grids have generally relied on self-contained sensor devices that are configured to produce a final “sensed” value. Often, the computation is complex, and by individualizing the computation, various types of aggregate computations (e.g., phasor measurement) are not readily available or sometimes even accurate.
The embodiments herein may be better understood by referring to the following description in conjunction with the accompanying drawings in which like reference numerals indicate identically or functionally similar elements, of which:
According to one or more embodiments of the disclosure, a system that provides distributed data collection for sensor networks in a utility grid comprises one or more data collection agents, one or more grid data collection service devices, and one or more points of use. The one or more data collection agents may be configured to generate grid data values that comprise raw grid data values, processed grid data values, and/or any combination thereof. The one or more data collection agents may be configured to communicate the grid data values using a communication network in the utility grid to the one or more grid data collection service devices, which may be configured to receive the grid data values in a time-synchronized manner, and to distribute the time-synchronized grid data values in substantially real-time to the one or more points of use.
Electric power is generally transmitted from generation plants to end users (industries, corporations, homeowners, etc.) via a transmission and distribution grid consisting of a network of interconnected power stations, transmission circuits, distribution circuits, and substations. Once at the end users, electricity can be used to power any number of devices. Generally, various capabilities are needed to operate power grids at the transmission and distribution levels, such as protection, control (flow control, regulation, stabilization, synchronization), usage metering, asset monitoring and optimization, system performance and management, etc.
Note that the illustrative structure of the utility grid is shown as a highly simplified hierarchy, e.g., a hierarchy with generation at the top, transmission substations as the next tier, distribution substation as the next, etc. However, those skilled in the art will appreciate that
In the case of distributed control, that is, in terms of control-based hierarchy, substations may be grouped so that some are logically higher level than others. In this manner, the need to put fully duplicated capabilities into each substation may be avoided by allocating capabilities so as to impose a logical control hierarchy onto an otherwise flat architecture, such as according to the techniques described herein. In such cases, transmission substations may be grouped and layered, while primary distribution substations may be separately grouped and layered, but notably it is not necessary (or even possible) that distribution substations be logically grouped under transmission substations.
In general, utility companies can benefit from having accurate distribution feeder (medium voltage/low voltage or “MV/LV” circuit) connectivity information in their software applications and data stores. This is especially useful for outage management and for convenient application to planning, construction, operations, and maintenance. It is, however, very challenging to try to construct or approximate the circuit model within a geographic information systems (GIS) environment due to the complexity of modeling the dynamic nature of an electrical network. That is, while the utility may have an “as-built” database, it may differ from the actual grid for various reasons, including inaccurate or incomplete data capture on grid construction, changes to circuits that are not reflected in updates to the database, and structural damage to the grid. In addition, circuit topology may change dynamically as feeder switches are operated in the course of either normal or emergency operations. Such changes result in an “as-operated” topology that is dynamic and is not reflected in the “as-built” database.
To assist in control of the utility grid, various measurement and control devices may be used at different locations within the grid 100. Such devices may comprise various energy-directing devices, such as reclosers, power switches, circuit breakers, etc. In addition, other types of devices, such as sensors (voltage sensors, current sensors, temperature sensors, etc.) or computational devices, may also be used. Electric utilities use alternating-current (AC) power systems extensively in generation, transmission, and distribution. Most of the systems and devices at the high and medium voltage levels operate on three-phase power, where voltages and currents are grouped in threes, with the waveforms staggered evenly. The basic mathematical object that describes an AC power system waveform (current of voltage) is the “phasor” (phase angle vector). Computational devices known as Phasor Measurement Units (PMUs) have thus been commercialized by several companies to calculate phasors from power waveforms. Because phase angle is a relative quantity, it is necessary when combining phasors taken from different parts of a power grid to align the phase angle elements to a common phase reference; this has been typically done in PMUs through the use of GPS timing signals. Such phasors are known as synchrophasors.
Illustratively, a control center 210 (and backup control center 210a) may comprise various control system processes 215 and databases 217 interconnected via a network switch 219 to a system control network 205. Additionally, one or more substations 220 may be connected to the control network 205 via switches 229, and may support various services/process, such as a distributed data service 222, grid state service (e.g., “parstate”, a determination of part of the whole grid state) 223, control applications 225, etc. The substations 220 may also have a GPS clock 221 to provide timing, which may be distributed to the FARs 250 (below) using IEEE Std. 1588. Note that a monitoring center 230 may also be in communication with the network 205 via a switch 239, and may comprise various analytics systems 235 and databases 237. The substations 220 may communicate with various other substations (e.g., from transmission substations to distribution substations, as mentioned above) through various methods of communication. For instance, a hierarchy of wireless LAN controllers (WLCs) 240 and field area routers (FARs) 250 may provide for specific locality-based communication between various portions of the underlying utility grid 100 in
Specific details of the operation of the smart grid devices are described below. Note that while there is a general correlation between the communication network 200 and underlying utility grid 100 (e.g., control centers, substations, end-points, etc.), such a correlation may only be generally assumed, and is not a necessity. For instance, FARs 250 may be associated with feeder circuits 140, or may be more granular such as, e.g., “pole-top” routers. In other words, the hierarchies shown in
The network interface(s) 310 contain the mechanical, electrical, and signaling circuitry for communicating data over links coupled to the network 200. The network interfaces may be configured to transmit and/or receive data using a variety of different communication protocols. Note, further, that the nodes may have two different types of network connections 310, e.g., wireless and wired/physical connections, and that the view herein is merely for illustration. Also, while the network interface 310 is shown separately from power supply 360, for PLC the network interface 310 may communicate through the power supply 360, or may be an integral component of the power supply. In some specific configurations the PLC signal may be coupled to the power line feeding into the power supply.
The memory 340 of the generic device 300 comprises a plurality of storage locations that are addressable by the processor 320 and the network interfaces 310 for storing software programs and data structures associated with the embodiments described herein. Note that certain devices may have limited memory or no memory (e.g., no memory for storage other than for programs/processes operating on the device and associated caches). The processor 320 may comprise necessary elements or logic adapted to execute the software programs and manipulate the data structures 345. An operating system 342, portions of which are typically resident in memory 340 and executed by the processor, functionally organizes the device by, inter alia, invoking operations in support of software processes and/or services executing on the device. These software processes and/or services may comprise one or more grid-specific application processes 348, as described herein. Note that while the grid-specific application process 348 is shown in centralized memory 340, alternative embodiments provide for the process to be specifically operated within the network elements or network-integrated computing elements 310.
It will be apparent to those skilled in the art that other processor and memory types, including various computer-readable media, may be used to store and execute program instructions pertaining to the techniques described herein. Also, while the description illustrates various processes, it is expressly contemplated that various processes may be embodied as modules configured to operate in accordance with the techniques herein (e.g., according to the functionality of a similar process). Further, while the processes have been shown separately, those skilled in the art will appreciate that processes may be routines or modules within other processes.
As noted above, utility control systems and data processing systems have largely been centralized in nature. Energy Management Systems (EMS's), Distribution Management Systems (DMS's), and Supervisory Control and Data Acquisition (SCADA) systems reside in control or operations centers and rely upon what have generally been low complexity communications to field devices and systems. Both utilities and makers of various grid control systems have recognized the value of distributed intelligence, especially at the distribution level.
Generally, distributed intelligence is defined as the embedding of digital processing and communications ability in a physically dispersed, multi-element environment (specifically the power grid infrastructure, but also physical networks in general). In the area of sensing, measurement and data acquisition, key issues are:
By establishing the network as a platform (NaaP) to support distributed applications, and understanding the key issues around sensing and measurement for dynamic physical network systems, key capabilities of smart communication networks may be defined (e.g., as described below) that support current and future grid applications. In particular, as ICT (Information Communication Technology) networks converge with physical power grids and as “smart” functions penetrate the grid, centralized architectures for measurement and control become increasingly inadequate. Distribution of intelligence beyond the control center to locations in the power grid provides the opportunity to improve performance and increase robustness of the data management and control systems by addressing the need for low latency data paths and supporting various features, such as data aggregation and control federation and disaggregation.
In particular, there are a number of compelling arguments for using distributed intelligence in smart power grids, and in large scale systems in general, such as:
Standard approaches to distributed processing suffer from shortcomings relative to the electric grid environment. These shortcomings include inability to handle incremental rollout, variable distribution of intelligence, and applications not designed for a distributed (or scalable) environment. Further, existing approaches do not reflect the structure inherent in power grids and do not provide integration across the entire set of places in the grid where intelligence is located, or across heterogeneous computing platforms. Current systems also suffer from inability to work with legacy software, thus requiring massive software development efforts at the application level to make applications fit the platform, and also lack zero-touch deployment capability and requisite security measures.
For instance, one major obstacle in the adoption of distributed intelligence, now that IP communications and embedded processing capabilities are becoming available in forms that utilities can use, is that utilities cannot make large equipment and system changes in large discrete steps. Rather they must go through transitions that can take years to complete. This is due to the nature of their mission and the financial realities utilities must deal with. In practice, utilities must be able to transition from centralized to distributed intelligence, and must be able to operate in a complicated hybrid mode for long periods of time, perhaps permanently. This means that the utility must be able to roll out distributed intelligence incrementally while maintain full operations over the entire service area, and must be able to modify the distributed architecture appropriately over time and geography. Simply having a distributed architecture implementation is not sufficient; it must be easily and continually mutable in terms of what functionality is distributed to which processing locations in the grid and must be capable of coexisting with legacy control systems where they remain in place. Therefore, there exist various kinds of variable topology for effective distributed intelligence:
Additionally, design and implementation of smart grids at scale poses a number of challenging architecture issues. Many of these issues are not apparent or do not show significant effects at pilot scale, but can become crucial at full scale. Note that generally herein, “at full scale” means one or more of:
In the table 400 shown in
The smart grid has certain key attributes that lead to the concept of core function classes supported by the smart grid. These key attributes include:
Given this environment, and given our present understanding of the nature of the desired behavior of the power grid, we may identify a number of key function classes; functional groups that arise inherently from the combination of desired smart grid behavior, grid structure, and the nature of the digital superstructure applied to the grid. An understanding of these core function groups is key to developing a view toward a layered network services architecture for smart grids. A model is presented herein in which smart grid applications of any type are built upon a logical platform of core function classes that arise from the grid itself.
Specifically, as shown in the model of
1) The base tier 510 is:
2) The second tier 520 is:
3) The third tier 530 is:
4) The fourth tier 540 is:
These function classes may support one or more smart grid applications 550. In general, therefore, smart grid networks, that is, the combination of a utility grid with a communication network, along with distributed intelligent devices, may thus consist of various type of control, data acquisition (e.g., sensing and measurement), and distributed analytics, and may be interconnected through a system of distributed data persistence. Examples may include, among others, distributed SCADA data collection and aggregation, grid state determination and promulgation, implementation of distributed analytics on grid data, control command delivery and operational verification, control function federation (merging of multiple objective/multiple control systems so that common control elements are used in non-conflicting ways), processing of events streams from grid devices to filter, prevent flooding, and to detect and classify events for low latency responses, and providing virtualization of legacy grid devices so that they are compatible with modern approaches to device operation and network security.
In particular, there may be a number of types of control, such as sequence control (e.g., both stateless and stateful, typified by switching systems of various kinds), stabilizers (e.g., which moderate dynamic system behavior, typically through output or state feedback so that the system tends to return to equilibrium after a disturbance), and regulators (e.g., in which a system is made to follow the dynamics of a reference input, which may be dynamic or static set points). Quite often, all three of these are present in the same control system. In terms of electric power grids, flow control is sequence control, whereas model power oscillation damping and volt/VAr control represent stabilization and regulatory control, respectively.
For most control systems, feedback is a crucial component.
Regarding data acquisition, sensing and measurement support multiple purposes in the smart grid environment, which applies equally as well to many other systems characterized by either geographic dispersal, or large numbers of ends points, especially when some form of control is required. Consequently, the sensing system design can be quite complex, involving issues physical parameter selection, sensor mix and placement optimization, measurement type and sample rate, data conversion, sensor calibration, and compensation for non-ideal sensor characteristics.
Additionally, collection of the data in large scale systems such as smart grids presents issues of cycle time, data bursting, and sample skew. There are multiple modes of data collection for large scale systems and each presents complexities, especially when the system model involves transporting the data to a central location. In the typical round-robin scanning approach taken by many standard SCADA systems, the time skew between first and last samples represents an issue for control systems that is insignificant when the scan cycle time is short compared to system dynamics, but as dynamics increase in bandwidth with advanced regulation and stabilization, and as the number of sensing points increases, the sample time skew problem becomes significant.
Data is consumed in a variety of ways and places in a power grid; most of these are not located at the enterprise data center and much grid data does not enter the data center. Some of it does not even enter the control/operations center, as it must be consumed “on the fly” in grid devices and systems. Consequently it is important to classify data according to the latency requirements of the devices, systems, or applications that use it and appropriate persistence (or lack thereof) must also be defined. Note that much grid data has multiple uses; in fact, it is an element of synergy that has significant impact on smart grid economics and system design (networking, data architecture, analytics) to ensure that data is used to support as many outcomes as possible.
The latency hierarchy issue is directly connected to the issue of lifespan classes, meaning that depending on how the data is to be used, there are various classes of storage that may have to be applied. This typically results in hierarchical data storage architecture, with different types of storage being applied at different points in the grid that correspond to the data sources and sinks, coupled with latency requirements.
Distributed analytics may be implemented in a fully centralized manner, such as usually done with Business Intelligence tools, which operate on a very large business data repository. However, for real-time systems, a more distributed approach may be useful in avoiding the inevitable bottlenecking. A tool that is particularly suited to processing two classes of smart grid data (streaming telemetry and asynchronous event messages) is Complex Event Processing (CEP) which has lately also been called streaming database processing. CEP and its single stream predecessor Event Stream Processing (ESP) can be arranged into a hierarchical distributed processing architecture that efficiently reduces data volumes while preserving essential information embodies in multiple data streams.
In general, distributed analytics can be decomposed into a limited set of analytic computing elements (“DA” elements), with logical connections to other such elements. Full distributed analytics can be constructed by composing or interconnecting basic analytic elements as needed. Five basic types of distributed analytic elements are defined herein, and illustrated in
Given the above-described concept of distributed analytics, including the database access element 1050 shown in
Notably, the architecture herein may build upon the core function groups concept above to extend grid capabilities to the control center and enterprise data center levels, using the layer model to unify elements and approaches that have typically been designed and operated as if they were separate and unrelated. This model may also be extended to provide services related to application integration, as well as distributed processing. This yields a four tier model, wherein each tier is composed of multiple services layers. The four tiers are as follows (from the bottom of the stack upward), where each of the layers and tiers is intended to build upon those below them:
1. Network services;
2. Distributed Intelligence services;
3. Smart Grid Core Function services; and
4. Application Integration services.
1200. In particular,
Additionally, the Smart Grid Core Function Services layer 1220 (detailed in
Another way of approaching the layered services stack as shown in
Based on the description above, a layered services platform may be created, which is a distributed architecture upon which the layered services and smart grid applications may run. The distributed application architecture makes use of various locations in the grid, such as, e.g., field area network routers and secondary substation routers, primary substations, control centers and monitoring centers, and enterprise data centers. Note that this architecture can be extended to edge devices, including devices that are not part of the utility infrastructure, such as building and home energy management platforms, electric vehicles and chargers, etc.
Distributed Data Collection for Utility Grids
As noted above, utility grids have generally relied on self-contained sensor devices that are configured to produce a final “sensed” value. Often, the computation may be complex, and by individualizing the computation within a self-contained sensor device, various types of aggregate computations such as, for example, phasor measurement, are not readily available or sometimes even accurate.
The techniques herein provide distributed data collection for sensor networks, which may be particularly useful for phasor measurement unit (PMU) measurement, sensor calibration, and the like (e.g., sensor virtualization). Distributed data collection, as disclosed herein, may comprise both distributed synchronized data collection and distributed processing of raw sensor data. For example, the techniques herein use the network itself as a distributed database to store information in the network.
Said differently, the techniques herein provide for router-integrated distributed data collection engines that are capable of generating low sample skew grid state to be stored in a distributed database as part of a larger grid data architecture. That is, the techniques herein may use the abilities of network devices to run software (e.g., third party software) to implement the distributed data acquisition and distributed database, thus enhancing the use of the network as a platform (NaaP) (e.g., with illustrative reference to
Specifically, according to one or more embodiments of the disclosure as described in detail below, the techniques herein provide a system of distributed data collection for sensor networks in a utility grid that comprises one or more data collection agents, one or more grid data collection service devices, and one or more points of use. The one or more data collection agents may be configured to generate grid data values that comprise raw grid data values, processed grid data values, and/or any combination thereof. The one or more data collection agents may be configured to communicate the grid data values using a communication network in the utility grid to the one or more grid data collection service devices, which may be configured to receive the grid data values in a time-synchronized manner, and to distribute the time-synchronized grid data values in substantially real-time to the one or more points of use.
Illustratively, with reference again to
Operationally, the techniques herein allow for data collection within a utility grid by either polling (or “pulling”) or pushing data with time synchronized sampling. Illustratively, as shown in
The techniques herein allow distribution of time-synchronized data to the one or more points of use in substantially real time via the processes of distributed synchronized data collection and distributed processing of raw sensor data, which may act in concert to provide high level ordered data to support complex analytics services such as, for example, complex event processing (CEP), grid topology, grid state determination and/or the like. In other words, the techniques herein allow the use of a utility grid network comprising grid sensors 1505, DCAs 1510, and data collection service devices 1520 as a massively parallel SCADA collection engine that may reduce or eliminate sample skew in collected grid data, while simultaneously providing large grid scalability.
Time-synchronization by synchronization 1516 of DCA 1510 may occur by, for example, a process that implements a precision time protocol such as IEEE 1588 and GPS clock 1542. For example, DCA 1510 may communicate with one or more grid sensors 1505 to acquire data on schedule. It is contemplated within the scope of the disclosure that DCA 1510 may have low-level signal/data processing 1506 capability as necessary (e.g., for a distributed PMU service), which may be particularly beneficial in cases where grid sensors 1505 may be programmed to emit data on schedule. In such a case, low-level data processing 1506 at each DCA 1510 may receive the data from grid sensor 1505 and perform the necessary processing before providing the data to the data collection service device 1520. It should be noted that the techniques herein accommodate any mixture of grid devices on the one hand (e.g., IEEE 1588 capable devices, as well as devices that lack IEEE 1588 capability), and support any kind of grid application/process/function on the other, including those that may want to receive data feeds directly, and not through a grid state service.
Illustratively, the distributed data collection methods described herein may be extended to provide distributed phasor measurement unit (PMU) measurement at the distribution level. For example, line sensing of voltage and current waveforms results in digital waveform data streams that can be continually processed to calculate synchrophasors. The phasor calculations may be done at the point of sampling (e.g., the sensor/node), or the sampled data may be propagated to a higher functionality node (e.g., a DCA, data collection service device, etc.) in the network where the calculations may be performed.
Of note, this technique includes converting raw sensed data into useful (calibrated/converted) values, which can occur anywhere in the network, not just at the sensor (e.g., a type of “sensor virtualization”). For instance, a sensor may generally be configured to produce an output value in terms of a voltage level, a binary bit sequence, etc., based on one or more sensed characteristics (e.g., temperature). Without calibration, for example, the value created by a sensor may simply be on a relative scale (e.g., 60 on a scale of 0-128, or 3.2V on a scale of 0-5V), and then a calibration process (e.g., scales and/or formulas) may be used to convert that value to actual data (e.g., 20 degrees Celsius). In some instances, such conversion can be a complex process. As such, by virtualizing the sensors according to the techniques herein, such calibration and conversion may be performed by more capable devices, rather than at the (often low powered) sensors themselves.
As another example, the techniques herein may facilitate grid state determination. Generally, grid state determination may require several kinds of data aggregation, depending on what state elements are needed, and how they are to be determined. For example, raw instant voltage or current samples may be aggregated so that they may be processed into RMS values and analyzed for harmonic content. As another example, aggregate voltage samples taken at various points in a meter network may be used to generate a voltage profile as a function of electrical distance from a feeder. If network meters can measure real and reactive power, data values may be aggregated to determine power flows or DRAC values at various points on a feeder. Current and power flow data values may also be aggregated from points to feeder segments to feeder sections to substations to transmission lines to control areas. Due to the complexity of distribution grids and the cost of sensor installation, implementing proper grid state determination is not a trivial exercise. For each utility grid or sub-grid, a grid sensing strategy must be implemented that results in an efficient sensor network design for that particular grid. This ensures that sufficient data measurement is done to provide the data values to allow grid state determination, while minimizing the total cost of the sensor network (including not only material costs but also installation and service labor). The techniques herein provide data collection techniques that will enable grid state determination.
It should be noted that while certain steps within procedure 1600 may be optional as described above, the steps shown in
The techniques described herein, therefore, provide distributed data collection for utility grids (e.g., a sensor fabric in a utility grid). In particular, the techniques herein allow intelligent processing of raw sensed data anywhere in the network, and also allow for more intelligent aggregated computation (e.g., PMUs), which together provide a number of benefits for a sensor network. For example, they dramatically improve network energy utilization, efficiency, scalability, and latency because raw and processed sensor data is available for consumption by an application/process/user at the point of generation.
Notably, a layered services architecture approach addresses complexity management for smart grids at scale, one of the most challenging smart grid design issues. Short term adoption of a layered services architecture allows for efficient transition to new control systems that are hybrids of distributed elements with centralized management. Later, as smart grid implementations approach full scale (in any given dimension), complexity management and the other smart grid architecture issues will benefit from a layered services architecture.
Said differently, now that communications and embedded processing capabilities are becoming available in forms that utility companies can use, a major obstacle in the adoption of distributed intelligence is that utility companies cannot make large changes in their systems in discrete steps. Rather they must go through transitions that can take years to complete. This is due to the nature of their mission and the financial realities utility companies face. In practice, utilities need to transition from centralized to distributed intelligence, and to operate in a complicated hybrid mode for long periods of time, perhaps permanently. This means that the utility service provider needs to be able to roll out distributed intelligence incrementally while maintaining full operations over the entire service area, and be able to modify the distributed architecture appropriately over time and geography. Simply having a distributed architecture implementation is not sufficient; it needs to be easily and continually mutable in terms of what functionality is distributed to which processing locations in the grid and be capable of coexisting with legacy control systems where they remain in place.
The present disclosure thus presents one or more specific features of a distributed intelligence platform that supports variable topology over both time and geography. The platform provides the mechanisms to locate, execute, and re-locate applications and network services onto available computing platforms that may exist in control and operations centers, substations, field network devices, field edge devices, data centers, monitoring centers, customer premises devices, mobile devices, and servers that may be located in power delivery chain entities external to the Transmission and Distribution utility. These techniques use a communication network as a future-proofed platform to incrementally and variably implement distributed intelligence and thereby achieve the associated benefits without being forced to make an untenable massive switchover or to use a single fixed architecture everywhere in its service area.
While there have been shown and described illustrative embodiments that provide for distributed data collection for sensor networks, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the embodiments herein. For example, the embodiments have been shown and described herein with relation to electric grids. However, the embodiments in their broader sense are not as limited, and may, in fact, be used with other types of utility grids, such as gas, water, etc., or specific types of “smart” networks where appropriate. For example, in addition to utility grids, recent trends indicate that the future will progress towards sensor-actuator based automation in various sectors including buildings, communities/cities, transportation, energy, etc. Experts predict that in the coming decades there will be a fabric of trillions of sensor-actuator devices embedded into our surroundings. This fabric will bring about integrated automation that will greatly improve the efficiency of the environment/resources as well as the quality of living for the human and living being within the environment. In addition, while certain protocols are shown, other suitable protocols may be used, accordingly.
Illustratively, the techniques herein can span the entire power delivery chain out to and including networks outside of the utility but connected to it. In addition, the techniques herein apply to all of the other adjacencies, such as:
The foregoing description has been directed to specific embodiments. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. For instance, it is expressly contemplated that the components and/or elements described herein can be implemented as software being stored on a tangible (non-transitory) computer-readable medium (e.g., disks/CDs/RAM/EEPROM/etc.) having program instructions executing on a computer, hardware, firmware, or a combination thereof. Accordingly this description is to be taken only by way of example and not to otherwise limit the scope of the embodiments herein. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the embodiments herein.
The present application claims priority to U.S. Provisional Application No. 61/491,377, filed May 31, 2011, entitled VARIABLE TOPOLOGY DISTRIBUTED INTELLIGENCE FOR SMART GRIDS, by Jeffrey D. Taft, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61491377 | May 2011 | US |