This disclosure relates generally to a distributed digital projection system for use in a vehicle such as an aircraft.
Projection systems which use multiple projectors to cover multiple surfaces typically are centralized with a single master computer server having a separate video card for each of the projectors. In such a system, each of the projectors is coupled to an associated one of the separate video cards via a dedicated video cable such as a High-Definition Multimedia Interface (HDMI) cable and all of the control logic (hardware and software) for activating the projectors in this system resides in the master computer server. All of the digital content for display is stored in a memory associated with the master computer server. When a particular projector is selected for output of particular digital content (as a projection light signal) in this system, the master computer server retrieves that digital content from memory and forwards such digital content to the video card associated with that projector, which, in turn, converts the digital content to the proper format for transmission via the HDMI cable to that projector. The projector simply receives and displays such digital content in real time. Although this type of system may operate satisfactorily in a fixed installation, there are certain drawbacks when such a system is installed in a vehicle. For example, the type of computer used to control multiple projectors via multiple video cards is large, uses a significant amount of power and generates a significant amount of heat. In addition, such computers are not easily scalable and have a limited capacity for video cards, requiring additional computers to extend the system beyond the video card capacity of a single computer. Furthermore, the need for a separate video card for each projector requires separate cabling for each projector, adding significant cost and weight to a system having numerous projectors. In addition, typical video cable formats such as HDMI have a limited length range before the signal begins to degrade. Long video cable runs may require signal boosters if the distance from the server to the projector become too great. The large size, high power consumption, excessive heat generation, limited cable lengths and added weight makes such systems unsuitable for use in a vehicle such as a passenger aircraft.
Accordingly, there is a need for a digital projection system for installation in a vehicle such as a passenger aircraft which overcomes the problems recited above.
In a first aspect, a distributed digital projection system includes a network, at least one smart projector, and a head end server computer. Each of the at least one smart projectors has a first network interface coupled to the network. Each of the at least one smart projectors is configured to receive commands and digital content via the first network interface, to process the received commands, and to convert the received digital content into a projection light signal for output selectively based on the received commands. The head end server computer is coupled to the network and is configured to issue commands and to forward digital content to each of the at least one smart projectors, the commands specifying at least a time for display of the digital content.
In one further embodiment, a network attached storage device may be coupled to the network and configured to store digital content. The head end server computer may be further configured to issue a command to a particular one of the at least one smart projectors instructing the particular one smart projector to download particular digital content from the network attached storage device. In another further embodiment, a storage device may be coupled directly to the head end server computer and configured to store digital content. In yet another further embodiment,the system may include a plurality of at least three projectors and the head end server computer may be configured to provide commands to a group of at least two projectors to display same or similar digital content at a same point in time. Still further, each of the at least one smart projectors may include a second network interface and may be configured to provide a daisy-chain network arrangement via the first and second network interfaces. Yet further, the distributed digital projection system may be installed within a vehicle having one or more onboard operational systems also coupled to the network, and wherein the head end server computer is configured to coordinate operation of the at least one smart projectors based on status information received from at least one of the onboard operational systems.
In a second aspect, a distributed digital projection system includes a network, a plurality of smart projectors, and a head end server computer. Each of the plurality of smart projectors has a first network interface coupled to the network. Each of the plurality of smart projectors is configured to receive commands and digital content via the first network interface, to process the received commands, and to convert the received digital content into a projection light signal for output selectively based on the received commands. The head end server computer is coupled to the network and is configured to issue commands and to forward digital content to each of the at least one smart projectors, the commands specifying at least a time for display of the digital content.
In one further embodiment, a network attached storage device may be coupled to the network and configured to store digital content. Further, the head end server computer may be configured to issue a command to a particular one of the plurality of smart projectors instructing the particular one smart projector to download particular digital content from the network attached storage device. In another further embodiment, a storage device may be coupled directly to the head end server computer and configured to store digital content. In yet another further embodiment, the system may include a plurality of at least three projectors and the head end server computer may be configured to provide commands to a group of at least two projectors to display same or similar digital content at a same point in time. Still further, each of the plurality of smart projectors may include a second network interface and be configured to provide a daisy-chain network arrangement via the first and second network interfaces. In the daisy-chain network arrangement, a first of the plurality of smart projectors may be coupled directly to the network via the first network interface therein, and a second of the plurality of smart projectors may be coupled to the network by connecting a network cable from the first network interface therein to the second network interface of the first of the plurality of smart projectors. The distributed digital projection system may be installed within a vehicle having one or more onboard operational systems also coupled to the network, and the head end server computer may be configured to coordinate operation of the plurality of smart projectors based on status information received from at least one of the onboard operational systems.
In a third aspect, a smart projector for a distributed digital projection system has a front end portion and a rear end portion. The front end portion has an input for coupling to a network. The front end portion is configured to receive commands and digital content from a head end server computer via the network, to convert the received digital content into a high resolution video signal selectively based on the received commands, and to provide the high resolution video signal on an output. The back end portion is coupled to the output of the front end portion to receive the high resolution video signal therefrom. The back end portion is configured to convert the high resolution video signal into a projection light signal for output.
In one further embodiment, the front end portion may include a graphic processing unit for converting digital content into a high resolution video signal. In another further embodiment, the input of the front end portion may be a network interface. In yet another further embodiment, the input of the front end portion may include a first network interface and a second network interface, and the front end portion is configured to provide a daisy-chain network arrangement via the first and second network interfaces. In a still further embodiment, the front end portion may include a media storage unit for storing digital content.
The features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings.
The following detailed description, given by way of example and not intended to limit the present disclosure solely thereto, will best be understood in conjunction with the accompanying drawings in which:
In the present disclosure, like reference numbers refer to like elements throughout the drawings, which illustrate various exemplary embodiments of the present disclosure.
Referring now to the drawings, and in particular to
The distributed digital projection system 100 shown in
Referring now to
Referring now to
Referring to
Although the present disclosure has been particularly shown and described with reference to the preferred embodiments and various aspects thereof, it will be appreciated by those of ordinary skill in the art that various changes and modifications may be made without departing from the spirit and scope of the disclosure. It is intended that the appended claims be interpreted as including the embodiments described herein, the alternatives mentioned above, and all equivalents thereto.