Embodiments of the invention relate to electronic and mixed-signal high data rate communication systems, more particularly to, distributed electrical overstress protection for such systems.
Certain electronic systems can be exposed to electrical overstress events, or electrical signals of short duration having rapidly changing voltage and high power. Electrical overstress events include, for example, electrical overstress (EOS) and electrostatic discharge (ESD) arising from the abrupt release of charge from an object or person to an electronic system.
Electrical overstress events can damage or destroy integrated circuits (ICs) by generating overvoltage conditions and high levels of power dissipation in relatively small areas of the ICs. High power dissipation can increase IC temperature, and can lead to numerous problems, such as gate oxide punch-through, junction damage, metal damage, and surface charge accumulation.
Electrical overstress protection for high speed applications, such as integrated multiple subsystem communications, is provided. In certain embodiments, a semiconductor die with distributed and configurable electrical overstress protection is provided. The semiconductor die includes signal pads, a core circuit electrically connected to the signal pads, and a configurable overstress protection array operable to protect the core circuit from electrical overstress at the signal pads. The configurable overstress protection array includes a plurality of segmented overstress protection devices of two or more different device types, and both a number of selected overstress protection devices and a device type of the selected overstress protection devices is programmable. Such configurable overstress protection arrays can be distributed across the die to protect not only core circuit sub-systems at the die pads, but also between internal sub-system communication interfaces operating in different power domains.
In one aspect, a semiconductor die with distributed and configurable electrical overstress protection is provided. The semiconductor die includes a plurality of pads including a signal pad, a power high pad, and a power low pad, and a core circuit electrically connected to at least the signal pad, the power high pad, and the power low pad. The semiconductor die further includes a configurable overstress protection array operable to protect the core circuit from electrical overstress at the plurality of pads. The configurable overstress protection array includes a plurality of overstress protection devices of two or more different device types, wherein both a number of selected overstress protection devices and a device type of the selected overstress protection devices is programmable.
In another aspect, a method of distributed and customizable electrical overstress protection for a semiconductor die is provide. The method includes configuring a heterogeneous overstress protection array, including selecting a number of segmented overstress protection devices from a plurality of available overstress protection devices. The method further includes choosing a device type of the selected segmented overstress protection devices from amongst two or more different device types providing complementary protection characteristics. The method further includes protecting a core circuit from electrical overstress using the selected segmented overstress protection devices, the core circuit electrically connected to at least a signal pad, a power high pad, and a power low pad.
In another aspect, an electrical interface for a semiconductor die is provided. The electrical interface includes a plurality of pads including a signal pad, a power high pad, and a power low pad, and a core circuit electrically connected to at least the signal pad, the power high pad, and the power low pad. The electrical interface further includes means for customizing a number of and type of segmented overstress protection devices for protecting the core circuit.
In another aspect, an electrical interface for a semiconductor die is provided. The electrical interface includes a plurality of pads including a signal pad, a power high pad, and a power low pad, a first core circuit electrically connected to at least the signal pad, the power high pad, and the power low pad, and a second core circuit electrically connected to the first core circuit over an internal interface. The electrical interface further includes a configurable overstress protection array implemented such that a number of and type of segmented overstress protection devices for protecting the core circuit is programmable. The configurable overstress protection array is operable to provide protection to both the first core circuit at the plurality of signal pads and at internal interface.
The following detailed description of embodiments presents various descriptions of specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings where like reference numerals may indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.
Certain electronic systems include overstress protection circuits to protect circuits or components from electrical overstress events. To help guarantee that an electronic system is reliable, manufacturers can test the electronic system under defined stress conditions, which can be described by standards set by various organizations, such as the Joint Electronic Device Engineering Council (JEDEC), the International Electrotechnical Commission (IEC), and the Automotive Engineering Council (AEC). The standards can cover a wide multitude of electrical overstress events, including electrical overstress (EOS) and/or electrostatic discharge (ESD).
The IC 10 is implemented using modular circuits that are placed in various desired positions of the chip floorplan or layout during design of the chip. For instance, a computer aided design (CAD) library can include circuit layouts of various circuit blocks that provide a wide range of functions, such as clock generation, power management (for instance, voltage regulation), data conversion, digital processing, and/or a variety of other functions. During design of the chip, a desired combination of circuit blocks are positioned or arranged around the chip floorplan and interconnected to achieve desired chip functionality. Additionally, the resulting chip design is provided to a foundry, which fabricates semiconductor chips in accordance with the chip design.
As shown in
Although implementing an IC using a modular design library can reduce costs and/or design time by streamlining a design flow and/or helping circuit designers in achieving a desired chip functionality, such a modular design flow can present challenges in providing protection against electrical overstress.
For example, as shown in
Moreover, in high performance applications, such as signaling in high speed wireless communications, the performance of core circuitry connected to an IC's pads can be impacted by loading effects (including, but not limited to, parasitic capacitance and/or leakage current) of electrical overstress protection circuitry connected to the IC's pads. In such applications it may not be feasible to overdesign the electrical overstress protection circuitry to provide suitable protection for a worst case scenario or placement of the modular circuit blocks relative to one another and/or relative to the chip's pads.
The teachings herein can provide flexibility to electrical overstress protection circuitry that can aid in providing customizable electrical overstress protection suitable for a particular selection and/or placement of modular circuit blocks. For example, metallization, fuses, switches, and/or other configuration structures can be used to control various parameters of electrical overstress protection circuitry, such as forward trigger voltage, forward holding voltage, reverse trigger voltage, reverse holding voltage, leakage current, capacitive loading, type of protection element, current handling capability, and/or other characteristics.
Although illustrated with one network access point and four mobile devices, the wireless network 20 can include additional network access points and/or mobile devices.
Furthermore, although an example with mobile devices is depicted, the wireless network 20 can operate with other types of UE, such as tablets, customer premises equipment, computers, vehicles, internet of things (IOT) devices, and/or a wide range of wireless-enabled devices. Moreover, the wireless network 20 can include network access points of a wide range of numbers and/or types, including, but not limited to, macro cell base stations and/or small cell base stations (for instance, an access point for a femtocell, a picocell, and/or a microcell).
The wireless network 20 can serve a wide range of use cases, such as enhanced mobile broadband (eMBB), massive machine type connectivity (mMTC), and/or ultra reliable low latency communications (uRLLC).
To enhance higher data throughput and/or higher network capacity, the UE and/or network access points of the wireless network 20 can operate with a range of features, such as massive multiple input multiple output (MIMO), beamforming, and/or complex signal waveforms with wide bandwidth and/or high peak-to-average power ratio (PAPR). Moreover, communication frequencies of the wireless network 20 can include not only lower radio frequencies (for instance, radio frequencies up to about 3 GHz), but also communications using centimeter waves (from about 3 GHz to about 30 GHz) and/or millimeter waves (from about 30 GHz to about 300 GHz).
In certain implementations, UE and/or network access points (for instance, base stations) are implemented with electrical overstress protection circuitry in accordance with the teachings herein. For example, the electrical overstress protection circuitry herein provides configurability of various protection characteristics to aid in achieving a suitable level of protection for high speed signaling pins that are sensitive to loading effects and/or operating characteristics of electrical overstress protection circuitry.
For example, the teachings herein provide electrical overstress protection that is customizable using metallization, fuses, switches, and/or other configuration structures. Thus, flexibility is provided for controlling various overstress protection characteristics, including, but not limited to, forward trigger voltage, forward holding voltage, reverse trigger voltage, reverse holding voltage, leakage current, capacitive loading, type of protection element, and/or current handling capability.
Wireless data traffic has been increasing at a rate of over 50% per year per subscriber, and this trend is expected to accelerate over the next decade with the continual use of video and the rise of IoT. To address this demand, 5G technology plans to use millimeter wave frequencies to expand available frequency spectrum and provide multi-Gigabit-per second (Gbps) data rates to mobile devices and other UE. 5G promises great flexibility to support a myriad of Internet Protocol (IP) devices, small cell architectures, and/or dense coverage areas.
Current or planned applications for 5G include, but are not limited to, Tactile Internet, vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, peer-to-peer communication, and/or machine-to-machine communication, close loop secured communication and external artificial intelligence data processing services on the cloud. Such technologies utilize high data rate and/or low network latency. For example, certain applications, such as V2V communication and/or remote surgery, must operate with low latency to ensure human safety.
In the multi-tier network of
With continuing reference to
One way to increase area spectral efficiency is to shrink cell size, thereby reducing the number of users per cell and provided additional spectrum to each user. Thus, total network capacity increases by shrinking cells and reusing spectrum.
Along with the aforementioned technology capabilities, there are important reliability considerations in these type of high data communication mission-critical applications to be addressed, including capability of the communication subsystems to tolerate stochastic electrical overstress that can be induced randomly during manufacturing and field applications, increasingly critical for field-induced electrical overstress. Thus, to achieve advanced integration of multifunction radio systems (for instance, integration into a single chip) high levels of robustness to electrical overstress are important. The communication subsystems can be distributed in separate functions blocks and can also be programmable and include a greater functionality within a single die for more advanced manufacturing technologies.
The teachings herein can provide flexibility to electrical overstress protection circuitry that can aid in providing customizable electrical overstress protection suitable for high speed interfaces of wireless communication devices operating in a multi-tier network. For example, metallization, fuses, switches, and/or other configuration structures can be used to control various parameters of electrical overstress protection circuitry. Such flexibility facilitates protection of sensitive circuitry in high speed applications from damage arising from electrical overstress, thereby helping to realize the multi-tier network of
The RF receiver 35 illustrates one example of a dual conversion receiver suitable for providing, for instance, bandwidth of a few hundred kilohertz (kHz).
The RF receiver 40 illustrates one example of a single conversion receiver suitable for providing, for instance, bandwidth of a few hundred megahertz (MHz).
The RF receiver 45 illustrates one example of a direct conversion receiver suitable for providing, for instance, bandwidth of several hundred megahertz.
The RF receiver 50 illustrates one example of a software-defined receiver suitable for providing, for instance, bandwidth on the order of tens of gigahertz (GHz).
With reference to
The electrical overstress protection circuitry herein provides configurability in various protection characteristics to aid in achieving a suitable level of protection for high speed circuitry that is sensitive to loading effects and/or operating characteristics of the electrical overstress protection circuitry. Wide bandwidth ADCs and/or wide bandwidth DACs provide another example of high speed circuitry that is sensitive to electrical overstress protection circuitry. The teachings herein can be used to protect sensitive circuitry in high speed applications from damage arising from electrical overstress.
The FinFET 70 can provide a number of advantages relative to other transistor technologies. For example, the FinFET 70 can provide higher electrical control over a channel, more effective leakage suppression, enhanced driving current, and/or higher intrinsic gain for superior analog performance.
Thus, the FinFET 70 provides a number of advantages suitable for deployment in ICs for high speed data conversion, wide bandwidth wireless communications, and/or other high performance applications. For example, a semiconductor chip implemented with FinFETs can be used to enable the high speed applications discussed above with reference to
Although FinFET technology can provide a number of advantages, such FinFETs can operate with higher parasitic resistance, higher parasitic capacitance, and/or poorer thermal characteristics (for instance, higher thermal impedance and/or more self-heating) relative to transistors fabricated using a conventional complementary metal oxide semiconductor (CMOS) process. Such characteristics can render FinFETs susceptible to damage from electrical overstress.
The teachings herein can be used to provide configurability to electrical overstress protection circuitry for ICs fabricated using FinFET technologies, thereby helping to meet tight design windows for robustness. Although the teachings herein are applicable to FinFET processes, the teachings herein are also applicable to other types of processing technologies.
Electrical Overstress Protection for High Speed Applications
The chip interface 200 includes a variety of pins or pads, including a first power high pad 101 for a first digital circuit domain (DVDD1), a second power high pad 102 for a second digital circuit domain (DVDD2), a third power high pad 103 for a first analog circuit domain (AVDD1), a fourth power high pad 104 for a second analog circuit domain (AVDD2), a first power low or ground pad 111 for the digital circuit domains (DVSS), a second power low pad 112 for the digital circuit domains, a third power low pad 113 for the digital circuit domains, a fourth power low pad 114 for the analog circuit domains (AVSS), a fifth power low pad 115 for the analog circuit domains, an input signal pad 121 (IN), and an output signal pad 122 (OUT). Although one example of pads is shown, a chip interface can include a wide range of types of pads, including, but not limited to, input and/or output (IO) pads, power supply pads, and/or ground pads. Although a particular number of pads is shown, more or fewer pads can be included and/or a different arrangement of pads can be used.
In the illustrated embodiment, the chip interface 200 further includes a first digital circuit 131, a second digital circuit 132, a first analog circuit 133, a second analog circuit 134, a primary forward overstress protection circuit 141 for the input signal pad 121, a primary reverse overstress protection circuit 143 for the input signal pad 121, a primary forward overstress protection circuit 142 for the output signal pad 122, a primary forward overstress protection circuit 144 for the output signal pad 122, a supply clamp 151 and a supply clamp 152 for the first digital circuit domain, a supply clamp 153 for the second digital circuit domain, a supply clamp 154 for the first analog circuit domain, a supply clamp 155 for the second analog circuit domain, a secondary overstress protection circuit 161 for the input signal pad 121, a cross-domain power low overstress protection circuit 162, and a cross-domain secondary overstress protection circuit 163. Furthermore, various resistors are shown, including an input resistor Rin1 to the first digital circuit 131, an input resistor Rin2 to the first analog circuit 133, an output resistor Rout to the output signal pad 122, and various resistors associated with resistances of metallization used in routing the power supplies throughout the chip interface 200. Although one example of circuits for a chip interface is shown, a chip interface can include a wide range of types and/or numbers of circuits. Accordingly, other implementations are possible.
The chip interface 200 of
In a first example, the primary forward overstress protection circuit 141 and/or the primary reverse overstress protection circuit 143 for the input signal pad 121 is implemented using a configurable overstress protection array. For example, the configurable overstress protection arrays of
In a second example, the primary forward overstress protection circuit 142 and/or the primary reverse overstress protection circuit 144 for the output signal pad 122 is implemented using a configurable overstress protection array. For example, the configurable overstress protection arrays of
In a third example, one or more of the supply clamps 151-155 are implemented using a distributed active supply clamp. For example, any of the supply clamps 151-155 can be implemented in accordance with the distributed active supply clamp of 15B.
In a fourth example, one or more of the protection circuits of the chip interface 200 are implemented using a FinFET diode and/or FinFET SCR. For example, any of the protection circuits of
In a fifth example, the first digital circuit 131 is implemented in accordance with a receiver circuit with embedded overstress protection. For example, the first digital circuit 131 can be implemented in accordance with the receiver circuit of
In a sixth example, an interface between the second digital circuit 132 and the first analog circuit 133 can be implemented in accordance with cross-domain protection against field-induced charged-device model (FICDM) overstress. For example, the interface between the second digital circuit 132 and the first analog circuit 133 can be implemented in accordance with the cross-domain communication circuitry of
In a seventh example, the second analog circuit 134 is implemented in accordance with a transmitter circuit with segmented ballast resistance. For example, the second analog circuit 134 can be implemented in accordance with the transmitter circuit of
In an eighth example, the cross-domain power low overstress protection circuit 162 is implemented with a configurable number of anti-parallel diode segments for coupling between the power low pads 111-113 of the digital circuit domains and the power low pads 114-115 of the analog circuit domains. Accordingly, an amount of cross-domain protection can be customized. Examples of configuration structures for such customization including, but are not limited to, metallization, fuses, and/or switches.
In a ninth example, the cross-domain secondary overstress protection circuit 163 is implemented with a configurable number of segments. For example, the cross-domain secondary overstress protection circuit 163 can be implemented in accordance with the cross-domain secondary overstress protection circuit of
In a tenth example, the chip interface 200 is implemented using any combination of the nine examples above. Although various example implementations of the chip interface 200 have been described above, the chip interface 200 can be implemented in accordance with any of the embodiment herein.
Although the chip interface 200 of
The configurable overstress protection array 204 can be used to provide customizable protection against electrical overstress to a pad of a chip interface. For example, one or more instantiations of the configurable overstress protection array 204 of
Since the configurable overstress protection array 204 includes a diverse selection of protection devices, the configurable overstress protection array 204 is also referred to herein as a heterogeneous overstress protection array.
Although the chip interface of
In the illustrated embodiment, the configurable overstress protection array 204 includes a customizable forward protection circuit 211 including a bank of forward protection diode segments 221, a bank of forward protection dual or double diode segments 222, a bank of forward protection triple diode segments 223, and a bank of forward protection SCR segments 224. The configurable overstress protection array 204 further includes a customizable reverse protection circuit 212 including a bank of reverse protection diode segments 231, a bank of reverse protection dual diode segments 232, a bank of reverse protection triple diode segments 233, and a bank of reverse protection SCR segments 234. An SCR is also referred to herein as a thyristor.
Any combination of the device segments shown in the customizable forward protection circuit 211 of
Accordingly, any desired combination of device segments can be used to provide protection against forward electrical overstress (for instance, a positive polarity electrical overstress event) that causes a voltage of the signal pad 203 to increase relative to the power high pad 201.
The customizable forward protection circuit 211 can be configured with a particular selection of device segments using any suitable configuration structures for selectively connecting the desired combination of device segments between the power high pad 201 and the signal pad 203. In one example, metallization during backend processing of a semiconductor chip is used to connect the desired combination of device segments between the pads.
Although the illustrated embodiment of forward protection includes banks of diode segments and SCR segments, other types of device segments can be used for providing overstress protection. Furthermore, although an example with single diode segments, two series diode segments, and three series diode segments is shown, other numbers of diodes can be included in series. Additionally or alternatively, SCR segments can include two or more SCRs in series. Moreover, in certain implementations, one or more SCRs, one or more diodes, and/or one or more other protection devices are connected in series.
Each bank of the customizable forward protection circuit 211 can include any number of device segments, for instance, a number of device segments selected in the range of 1 to 100, or more particularly, 4 to 10. Furthermore, one or more of the banks can be omitted and/or other types of banks can be used.
With continuing reference to
Accordingly, any desired combination of device segments can be used to provide protection against reverse electrical overstress (for instance, a negative polarity electrical overstress event) that causes a voltage of the signal pad 203 to decrease relative to the power low pad 202.
The customizable reverse protection circuit 212 can be configured with a particular selection of device segments using any suitable configuration structures for selectively connecting the desired combination of device segments between the signal pad 203 and the power low pad 202. In one example, metallization during backend processing of a semiconductor chip is used to connect the desired combination of device segments between the pads.
Although the illustrated embodiment of reverse protection includes banks of diode segments and SCR segments, other types of device segments can be used for providing overstress protection. Furthermore, although an example with single diode segments, two series diode segments, and three series diode segments is shown, other numbers of diodes can be included in series. Additionally or alternatively, SCR segments can include two or more SCRs in series. Moreover, in certain implementations, one or more SCRs, one or more diodes, and/or one or more other protection devices are connected in series.
Each bank of the customizable reverse protection circuit 212 can include any number of device segments, for instance, a number of device segments selected in the range of 1 to 100, or more particularly, 4 to 10. Furthermore, one or more of the banks can be omitted and/or other types of banks can be used.
The diode segments and the SCR segments of the customizable forward protection circuit 211 and the customizable reverse protection circuit 212 can be implemented in a wide variety of ways. For example, the diode segments and/or the SCR segments can be implemented using FinFET structures, including, but not limited to, any of the FinFET diodes and/or FinFET SCRs described with respect to the embodiments of
In certain implementations, a diode segment includes one or more diodes implemented as a gated diode. For example, a gated diode can include a p-type region (for instance, a P+ region) formed in a semiconductor region (for instance, a p-type or n-type semiconductor well) and an n-type region (for instance, an N+ region) formed in the semiconductor region. Additionally, a transistor gate (for instance, a metal gate of a field-effect transistor) is included between the p-type region and the n-type region over a surface of the semiconductor region. A diode with a gate is referred to herein as a gated diode. In certain implementations, the gated diodes is a FinFET gated diode, and the p-type region corresponds to a P+ fin and the n-type region corresponds to an N+ fin.
Implementing a diode segment using one or more gated diodes provides a number of advantages, such as increased control over low capacitance characteristics in the presence of process, temperature, and/or voltage (PVT) variation.
The core circuit 205 can be any suitable type of circuit, including, but not limited to, a receiver and/or transmitter for a digital or analog interface. Additionally, the signal pad 203 can be any type of signal pad, for instance, an input signal pad, an output signal pad, or a bidirectional signal pad.
Thus, the configurable overstress protection array 204 provides configurability of various protection characteristics to aid in achieving a suitable level of protection for high speed signaling pins (for instance, the signal pad 203) that are sensitive to loading effects and/or operating characteristics of electrical overstress protection circuitry used to protect the pad.
For example, performance of the core circuit 205 can be impacted by loading effects (including, but not limited to, parasitic capacitance and/or leakage current) of the selected segments of the configurable overstress protection array 204. Thus, the configurable overstress protection array 204 provides flexibility after front-end chip processing (after semiconductor devices such as transistors and diodes have been fabricated) to select a proper amount of protection, rather than suffer from degraded performance arising from overdesign of electrical overstress protection circuitry for a worst case scenario.
The configurable overstress protection array of
In the illustrated embodiment, the customizable forward protection circuit 257 includes a first FinFET dual diode segment 259a, a second FinFET dual diode segment 259b, a first FinFET diode segment 261a, a second FinFET diode segment 261b, a third FinFET diode segment 261c, a fourth FinFET diode segment 261d, a first FinFET SCR segment 262a, a second FinFET SCR segment 262b, and first to seventh configuration structures 263a-263g, respectively.
As shown in
Although one embodiment of a customizable forward protection circuit and of a customizable reverse protection circuit is shown, customizable forward protection circuits and customizable reverse protection circuits can be implemented in a wide variety of ways.
The configuration structures 263a-263g/273a-273g can implemented in a wide variety of ways, including, but not limited to, using metallization, fuses, and/or switches. In the illustrated embodiment, a first portion of the device segments (the first FinFET dual diode segment 259a and the first FinFET dual diode segment 269a, in this example) are connected between the signal pad 302 and appropriate power rails to provide a lowest or minimum amount of electrical overstress protection. Additionally, one or more segments from a second portion of the device segments are individually selectable by the configuration structures 263a-263g/273a-273g to provide customizable control over various overstress protection characteristics, such as forward trigger voltage, forward holding voltage, reverse trigger voltage, reverse holding voltage, leakage current, capacitive loading, type of protection element, current handling capability, and/or other characteristics.
Each device segment of the customizable forward protection circuit 257 and the customizable reverse protection circuit 258 can include any number of device segments, for instance, a number of device segments selected in the range of 1 to 100. Furthermore, one or more of the device segments can be omitted and/or other types of device segments can be used.
The diode segments and the SCR segments of the customizable forward protection circuit 257 and the customizable reverse protection circuit 258 can be implemented in a wide variety of ways. For example, the diode segments and/or the SCR segments can be implemented using any of the FinFET diodes and/or FinFET SCRs described with respect to the embodiments of
With general reference to
The graph includes plots of capacitance versus voltage when two segments of n-type FinFET diode are selected, when two segments of p-type FinFET diode are selected, and when both two segments of n-type FinFET diode and two segments of p-type FinFET diode are selected. As shown in
The graph includes plots of capacitance versus voltage when six segments of n-type FinFET diode are selected, when six segments of p-type FinFET diode are selected, and when both six segments of n-type FinFET diode and six segments of p-type FinFET diode are selected with IO loading included. The capacitance is provided for an example in which metallization capacitance for eleven metal layers is included. As shown in
The graph corresponds to a simulation in which one n-type FinFET diode segment is selected. Plots are shown for operating temperatures of 25 degrees Celsius (° C.), 85° C., and 125° C.
The graph corresponds to a simulation in which one n-type FinFET diode segment is selected.
The graph corresponds to a simulation in which one n-type FinFET diode segment is selected, and plots are provided for two different TLP simulations. As shown in
The graph corresponds to a simulation in which one n-type FinFET diode segment is selected. The simulation is for a FICDM current of about 200 mA.
The graph corresponds to a simulation in which one p-type FinFET diode segment is selected. Plots are shown for operating temperatures of 25° C., 85° C., and 125° C.
The graph corresponds to a simulation in which one p-type FinFET diode segment is selected.
The graph corresponds to a simulation in which one p-type FinFET diode segment is selected, and plots are provided for two different TLP simulations. As shown in
The graph corresponds to a simulation in which one p-type FinFET diode segment is selected. The simulation is for a FICDM current of about 200 mA.
With general reference to
With reference to
With reference to
As shown in
Although
The devices herein can include various wells (for instance, n-type well (NW) and/or p-type well (PW) regions), various active regions (for instance, n-type active (N+) and/or p-type active (P+) regions), gates, and/or other structures. As persons of ordinary skill in the art will appreciate, P+ regions have a higher doping concentration than the PWs. Additionally, N+ regions have a higher doping concentration than NWs. Persons having ordinary skill in the art will appreciate various concentrations of dopants in the regions.
It should be appreciated that because regions within a semiconductor device are defined by doping different parts of a semiconductor material with differing impurities or differing concentrations of impurities, discrete physical boundaries between different regions may not actually exist in the completed device but instead regions may transition from one to another. Some boundaries as shown in the figures of this type and are illustrated as abrupt structures merely for the assistance of the reader. As persons having ordinary skill in the art will appreciate, p-type regions can include a p-type semiconductor material, such as boron, as a dopant. Furthermore, n-type regions can include an n-type semiconductor material, such as phosphorous, as a dopant.
With reference to
The FinFET diode 410 includes gates 405 over the substrate 401, with a portion of the gates 405 positioned between the N+ fins 402 and the P+ fins 403. Thus, the FinFET diode 410 is a gated diode. When the semiconductor region beneath the gates 405 has an n-type doping (for instance when an NW is formed in the substrate 401 beneath the device), the FinFET diode 410 is referred to as an n-type FinFET gated diode. Additionally, when the semiconductor region beneath the gates 405 has a p-type doping (for instance when a PW is formed in the substrate 401 beneath the device), the FinFET diode 410 is referred to as a p-type FinFET gated diode.
Using a gated diode provides a number of advantages, such as reduced leakage current, lower parasitic capacitance, and/or higher holding voltage. Furthermore, a gated diode can have superior low capacitance characteristics in the presence of PVT variation. In certain implementations herein, the gate of a gated diode (for instance, gates 405) is electrically floating during operation.
The FinFET diode 410 operates as a diode 409. For example, the anode electrode 407 is electrically connected to the P+ fins 403 and serves as an anode of the diode 409. Additionally, the cathode electrode 408 is electrically connected to the N+ fins 402 and serves as a cathode of the diode 409.
In the illustrated embodiment, the FinFET diode 410 operates with inter-active isolation (isolation between the P+ and N+ regions) provided by STI. Although
Although not illustrated in
With reference to
The FinFET diode 420 operates as a diode 409. For example, the anode electrodes 407 are electrically connected to the P+ fins 403 and serve as an anode of the diode 409. Additionally, the cathode electrode 408 is electrically connected to the N+ fins 402 and serves as a cathode of the diode 409.
In the illustrated embodiment, the FinFET diode 420 includes multiple sections or legs that can be selectively connected together using configuration structures, such as upper layers of metallization. Implementing the FinFET diode 420 using multiple sections aids in achieving a compact area while providing flexibility to control or configure current handling capability.
In the illustrated embodiment, the FinFET diode 420 operates with inter-active isolation (isolation between the P+ and N+ regions) provided by gates. Although
With reference to
As shown
To provide electrical overstress protection, the VDD electrode 431, the VSS electrode 432, and the signal electrode 433 are electrically connected to a power high pad, a power low pad, and a signal pad, respectively.
With reference to
As shown
To provide electrical overstress protection, the VDD electrode 431, the VSS electrode 432, and the signal electrode 433 are electrically connected to a power high pad, a power low pad, and a signal pad, respectively.
As shown in
As shown in
As shown in
As shown in
As shown in
The receiver circuit 710 illustrates one embodiment of a core circuit for a chip interface, such as the chip interface 200 of
As shown in
The receiver circuit 730 illustrates another embodiment of a core circuit for a chip interface, such as the chip interface 200 of
By including additional protection circuitry, the receiver circuit 740 operates with enhanced robustness against electrical overstress relative to the receiver circuits of
In the illustrated embodiment, the first protection NMOS FinFET 731 includes a source, a body, and a gate electrically connected to a source, a body, and a gate, respectively, of the first NMOS FinFET 711. Additionally, the first protection NMOS FinFET 731 includes a drain electrically connected to the gate of the first NMOS FinFET 711, thereby operating to protect the first NMOS FinFET 711 from damage by limiting the transistor's gate-to-source voltage. The second protection NMOS FinFET 732 includes a source, a body, and a gate electrically connected to a source, a body, and a gate, respectively, of the second NMOS FinFET 712. Additionally, the second protection NMOS FinFET 732 includes a drain electrically connected to the gate of the second NMOS FinFET 712 to provide protection.
The first protection NMOS FinFET 731 serves to protect the first NMOS FinFET 711, while the second protection NMOS FinFET 732 serves to protection the second NMOS FinFET 712. In certain implementations, an MOS protection transistor is integrated into a layout of a corresponding MOS transistor. In one example, a multi-finger transistor layout includes a first portion of fingers electrically connected to form the first NMOS FinFET 711 and a second portion of the fingers electrically connected to form the first protection NMOS FinFET 731. Accordingly, in certain implementations, a MOS protection transistor is formed using one or more fingers of a multi-finger layout used to form a corresponding MOS transistor.
With continuing reference to
In certain implementations, the first protection diode 733 and/or the second protection diode 734 are implemented as FinFET diodes, for instance, FinFET P-diodes.
By including integrated protection devices (for instance, protection transistors and/or protection didoes) in a receiver or other core circuit of a chip interface, auxiliary protection is provided against electrical overstress. Such protection devices can operate in combination with a configurable overstress protection array to provide secondary protection to the core circuitry, thereby enhancing robustness.
In certain implementations, integrated protection devices are segmented and programmable. For example, a protection diode (for instance, the first protection diode 733 and/or the second protection diode 734) and/or a protection FinFET (for instance, the first protection NMOS FinFET 731 and/or the second protection NMOS FinFET 732) can be segmented and programmable in accordance with the teachings herein.
The transmitter circuit 820 illustrates another embodiment of a core circuit for a chip interface, such as the chip interface 200 of
The first driver circuit 801 and second driver circuit 802 are powered by a power high supply (VDD) and a power low supply (VSS). Additionally, the first driver circuit 801 includes a first NMOS FinFET 811 and a first PMOS FinFET 812, and operates to provide an inverted version of a digital input signal D0 to the first pass gate circuit 803. The second driver circuit 802 includes a second NMOS FinFET 813 and a second PMOS FinFET 814, and operates to provide an inverted version of a digital input signal D1 to the second pass gate circuit 804.
With continuing reference to
In the illustrated embodiment, the first pass gate circuit 803 and the second pass gate circuit 804 each include a ballast resistor of resistance R to provide secondary protection beyond the overstress protection provided by the primary forward overstress protection circuit 807. As shown in
The transmitter circuit 850 of
In particular, the first pass gate circuit 833 of
Segmenting a ballast resistor as shown for the transmitter circuit 850 of
The supply clamp array 910 includes protection clamps between various power high and power low or ground supplies of a chip interface. In this example, the chip interface includes a power high supply for a 1.8 V domain (vdd_1.8), a power low supply for the 1.8 V domain (vss_1.8), a power high supply for a 1.0 V domain (vdd_1.0), a power low supply for the 1.0 V domain (vss_1.0), a power low supply for overstress (esd_vss), and a power low supply for the substrate (substrate).
Although one example of protection circuitry between various power high and power low supplies is shown, the teachings herein are applicable to protection circuitry implemented in other ways.
In the illustrated embodiment, the active supply clamps 901a-901d include detection resistors 911a-911d, respectively, detection capacitors 912a-912d, respectively, driver circuits 913a-913d, respectively, and clamp transistors 914a-914d (for instance, NMOS FinFETs), respectively. Additionally, each of the active supply clamps 901a-901d includes an n-well guard ring (nwg) terminal for connecting to an embedded n-well guard ring and a substrate terminal (sub) for connecting to a substrate voltage.
An actively-controlled supply clamp is a type of supply clamp that detects for the presence of an electrical overstress event by monitoring for electrical conditions associated with overstress. By implementing a supply clamp with active control, relatively fast activation times, relatively low static power dissipation, and/or relatively compact area can be achieved relative to an implementation that relies on native junction breakdown to provide clamping.
In the illustrated embodiment, each of the active supply clamps 901a-901d includes a detection resistor and a detection capacitor that generate a detection signal in response to detecting electrical overstress between a power high supply and a power low supply that the active supply clamp is connected between. Additionally, each of the active supply clamps 901a-901d further includes a clamp transistor and a driver circuit that turns on the clamp transistor in response to activation of the detection signal. Although one embodiment of active supply clamps is shown, other implementations of active supply clamps are possible.
The active supply clamps 901a-901d are connected to different combinations of power high supplies and power low supplies to provide cross-domain protection. For example, the first active supply clamp 901a is electrically connected between vdd_1.8 and vss_1.8, the second active supply clamp 901b is electrically connected between vdd_1.8 and esd_vss, the third active supply clamp 901c is electrically connected between vdd_1.0 and vss_1.0, and the fourth active supply clamp 901d is electrically connected between vdd_1.0 and esd_vss. The active supply clamps 901a-901d operate with built-in bidirectional conduction capability, in this example.
In the illustrated embodiment, the cross-domain power low overstress protection circuits 902a-902c include first diodes 915a-915c, respectively, and second diodes 916a-916c, respectively, with each corresponding pair of diodes connected in anti-parallel between a first power low supply terminal (vss1) and a second power low supply terminal (vss2). Additionally, each of the cross-domain power low overstress protection circuits 902a-902c includes a deep n-well (DNW) terminal for connecting to an embedded deep n-well isolation tub and a substrate terminal for connecting to a substrate voltage. In certain implementations, the DNW terminals are electrically floating to enhance isolation.
The cross-domain power low overstress protection circuits 902a-902c are connected between different combinations of power low supplies to provide cross-domain protection. For example, the first active supply clamp 902a is electrically connected between the power low supply for the substrate and esd_vss, the second active supply clamp 902b is electrically connected between esd_vss and vss_1.0, and third active supply clamp 902c is electrically connected between esd_vss and vss_1.8.
The active supply clamps 901a-901d and/or the cross-domain power low overstress protection circuits 902a-902c can be implemented in accordance with any of the embodiments herein.
The active supply clamp 1200 is connectable between a power high pad and a power low pad. Additionally, the RC detection circuit 1202 monitors a change in a voltage difference between the power high pad and the power low pad over time, and activates a detection signal in response to detecting electrical overstress between the power high pad and the power low pad. The driver circuit 1202 receives the detection signal, and turns on the clamp circuit 1203 when the detection signal is activated and turns off the clamp circuit 1203 when the detection signal is deactivated. Accordingly, in response to an electrical overstress event, the clamp circuit 1203 turns on to provide a discharge path between the power high pad and the power low pad, thereby alleviating overstress conditions.
As shown in
Although one driver circuit 1202 is shown, is shown, other configurations are possible. In one example, a driver circuit is implemented as a tree of inverters or other circuits used to provide detection signal distribution across the chip interface.
The cross-domain communication circuitry 1010 illustrates one embodiment of circuitry for communicating between one power domain and another power domain of a chip. For example, the cross-domain communication circuitry 1010 represents one embodiment of a portion of the chip interface 200 of
Absent protection, certain electrical overstress events, such as FICDM events can lead to a flow of charge from the power low pad of one power domain to the power high pad of another power domain. For example, the cross-domain communication circuitry 1010 of
In the illustrated embodiment, the first protection diode 1001 has been included to block the flow of charge between AVSS and DVDD, and the second protection diode 1002 has been included to block the flow of charge between DVSS and AVDD. Although not shown in
Any of the embodiments herein can include one or more protection diodes for blocking current from flowing from a power low supply of one power domain to a power high supply of another power domain, thereby enhancing protection against FICDM events and/or other overstress.
The PMOS FinFET 1021 and the NMOS FinFET 1022 illustrate one implementation of the digital core circuit 132 of
As shown in
The circuitry of
The cross-domain secondary overstress protection circuit 1110 illustrates one embodiment of the cross-domain secondary overstress protection circuit 163 of
As shown in
The cross-domain secondary overstress protection circuit 1110 can be used to provide secondary cross-domain overstress protection for certain signal nodes, such as interface nodes between a digital power domain and an analog power domain or vice versa. Such interface nodes can include, but are not limited to, digital circuits communicating between one power domain and another power domain and/or cross-domain signal nodes that are not directly connected to signal pads.
As shown in
The configuration structures 1102a, 1102b, . . . 1102n can be implemented in a wide variety of ways, including, but not limited to, using metallization, fuses, and/or switches.
Applications
Devices employing the above described schemes can be implemented into various electronic devices. Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products, electronic test equipment, communication infrastructure applications, etc. Further, the electronic device can include unfinished products, including those for communication, industrial, medical and automotive applications.
The foregoing description may refer to elements or features as being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “connected” means that one element/feature is directly or indirectly connected to another element/feature, and not necessarily mechanically. Likewise, unless expressly stated otherwise, “coupled” means that one element/feature is directly or indirectly coupled to another element/feature, and not necessarily mechanically. Thus, although the various schematics shown in the figures depict example arrangements of elements and components, additional intervening elements, devices, features, or components may be present in an actual embodiment (assuming that the functionality of the depicted circuits is not adversely affected).
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while the disclosed embodiments are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some elements may be deleted, moved, added, subdivided, combined, and/or modified. Each of these elements may be implemented in a variety of different ways. Any suitable combination of the elements and acts of the various embodiments described above can be combined to provide further embodiments. Accordingly, the scope of the present invention is defined only by reference to the appended claims.
Although the claims presented here are in single dependency format for filing at the USPTO, it is to be understood that any claim may depend on any preceding claim of the same type except when that is clearly not technically feasible.
This application is a divisional of U.S. application Ser. No. 16/294,431, filed Mar. 6, 2019, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5610790 | Staab et al. | Mar 1997 | A |
6768616 | Mergens et al. | Jul 2004 | B2 |
7285828 | Salcedo et al. | Oct 2007 | B2 |
7566914 | Salcedo et al. | Jul 2009 | B2 |
7601991 | Salcedo et al. | Oct 2009 | B2 |
8044457 | Salcedo et al. | Oct 2011 | B2 |
8222698 | Salcedo et al. | Jul 2012 | B2 |
8320091 | Salcedo et al. | Nov 2012 | B2 |
8368116 | Salcedo et al. | Feb 2013 | B2 |
8416543 | Salcedo | Apr 2013 | B2 |
8422187 | Parthasarathy et al. | Apr 2013 | B2 |
8432651 | Salcedo et al. | Apr 2013 | B2 |
8466489 | Salcedo et al. | Jun 2013 | B2 |
8553380 | Salcedo | Oct 2013 | B2 |
8564065 | Donovan et al. | Oct 2013 | B2 |
8570698 | Lee et al. | Oct 2013 | B2 |
8592860 | Salcedo et al. | Nov 2013 | B2 |
8598641 | Chen et al. | Dec 2013 | B2 |
8610251 | Salcedo | Dec 2013 | B1 |
8637899 | Salcedo | Jan 2014 | B2 |
8665571 | Salcedo et al. | Mar 2014 | B2 |
8680620 | Salcedo et al. | Mar 2014 | B2 |
8779518 | Lin et al. | Jul 2014 | B2 |
8796729 | Clarke et al. | Aug 2014 | B2 |
8860080 | Salcedo | Oct 2014 | B2 |
8946822 | Salcedo et al. | Feb 2015 | B2 |
8947841 | Salcedo et al. | Feb 2015 | B2 |
8958187 | Parthasarathy et al. | Feb 2015 | B2 |
9006781 | Salcedo et al. | Apr 2015 | B2 |
9088256 | Cosgrave et al. | Jul 2015 | B2 |
9123540 | Salcedo et al. | Sep 2015 | B2 |
9147677 | Salcedo et al. | Sep 2015 | B2 |
9171832 | Salcedo et al. | Oct 2015 | B2 |
9275991 | Salcedo et al. | Mar 2016 | B2 |
9293912 | Parthasarathy et al. | Mar 2016 | B2 |
9318479 | Li et al. | Apr 2016 | B2 |
9478608 | Salcedo et al. | Oct 2016 | B2 |
9634482 | Parthasarathy et al. | Apr 2017 | B2 |
9653448 | Zhang et al. | May 2017 | B2 |
9831233 | Salcedo et al. | Nov 2017 | B2 |
9876005 | Su et al. | Jan 2018 | B2 |
10083952 | Lee et al. | Sep 2018 | B2 |
10158029 | Parthasarathy et al. | Dec 2018 | B2 |
10177566 | Zhao et al. | Jan 2019 | B2 |
10199369 | Parthasarathy et al. | Feb 2019 | B2 |
10249609 | Salcedo et al. | Apr 2019 | B2 |
10340370 | Wang et al. | Jul 2019 | B2 |
10504886 | Yam et al. | Dec 2019 | B1 |
11004849 | Salcedo et al. | May 2021 | B2 |
20020089017 | Lai | Jul 2002 | A1 |
20140268438 | Davis et al. | Sep 2014 | A1 |
20150008476 | Shrivastava et al. | Jan 2015 | A1 |
20150029622 | Su et al. | Jan 2015 | A1 |
20160056146 | Li et al. | Feb 2016 | A1 |
20160056147 | Li | Feb 2016 | A1 |
20160204096 | Zhao et al. | Jul 2016 | A1 |
20160261110 | Ivanov et al. | Sep 2016 | A1 |
20160285255 | O'Donnell et al. | Sep 2016 | A1 |
20160300830 | Salcedo et al. | Oct 2016 | A1 |
20160336740 | Parthasarathy et al. | Nov 2016 | A1 |
20160336744 | Parthasarathy et al. | Nov 2016 | A1 |
20170069616 | Cai | Mar 2017 | A1 |
20170256534 | Parthasarathy et al. | Sep 2017 | A1 |
20170317070 | Salcedo et al. | Nov 2017 | A1 |
20180026440 | Zhao et al. | Jan 2018 | A1 |
20180068996 | Lee | Mar 2018 | A1 |
20180158814 | Salcedo et al. | Jun 2018 | A1 |
20180158935 | Wang et al. | Jun 2018 | A1 |
20180211951 | Luo et al. | Jul 2018 | A1 |
20180226788 | Salcedo et al. | Aug 2018 | A1 |
20190013310 | Paul et al. | Jan 2019 | A1 |
20190027470 | Han et al. | Jan 2019 | A1 |
20190131787 | He et al. | May 2019 | A1 |
20200111778 | Lai | Apr 2020 | A1 |
20200403007 | Thomson et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
109166850 | Jan 2019 | CN |
WO 2017078676 | May 2017 | WO |
Entry |
---|
Karp et al., “FinFET MPSoC 32 Gb/s transceivers: Custom ESD protection and verification.” 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2016, in 4 pages. |
Number | Date | Country | |
---|---|---|---|
20210257364 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16294431 | Mar 2019 | US |
Child | 17306563 | US |