This application claims the benefit of Korean Patent Application Nos. 10-2004-0103066 filed Dec. 8, 2004 and 10-2005-0052575 filed Jun. 17, 2005 in the Korean Intellectual Property Office, the disclosure of which applications is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates generally to a semiconductor laser and a method of fabricating the same and, more particularly, to a distributed feedback (DFB) semiconductor laser and a method of fabricating the same.
2. Description of the Related Art
In general, the distributed feedback (DFB) semiconductor lasers are used in the optical communication systems and the optical measurers. To fabricate a conventional DFB semiconductor laser, a grating typically is formed on or underneath an active area with a period equal to an integer multiple of half of an oscillation wavelength λ, that is nλ/2 where n=1, 2, 3 . . . . The grating enables a single longitudinal mode oscillation, i.e. a single axial mode oscillation.
However, in the DFB semiconductor laser shown in
In this conventional DFB semiconductor laser, an additional photolithography process must be performed to fabricate the grating. Further, a sample must be taken out of a growth apparatus to fabricate the grating, and this exposure can contaminate or oxidize the DFB semiconductor laser. Thus, a difficult process of removing the undesired oxide layer is subsequently required in fabricating this conventional DFB semiconductor laser. In addition, it is also required that the process of forming a photoresist pattern and the etching process must be performed precisely to form the grating on the n-type guide layer 53.
In these conventional DFB semiconductor lasers shown in
Also, these conventional DFB semiconductor lasers shown in
The present invention provides a DFB semiconductor laser lasing a single wavelength, in which the horizontal length of an active layer is controlled to control a transverse electromagnetic mode.
The present invention also provides a method of fabricating a DFB semiconductor laser without an additional photolithography process, to simplify a process and reduce the fabrication cost.
According to an aspect of the present invention, there is provided a distributed feedback semiconductor laser including: a lower clad layer formed on a substrate; a ridge including an active layer and an upper clad layer sequentially formed on the lower clad layer; and a grating formed at a sidewall of the ridge including the active layer in a direction perpendicular to the active layer and a resonance axis so as to enable a single longitudinal mode oscillation.
The active layer may be a separate confinement hetrostructure active layer. The separate confinement hetrostructure active layer may include a lower waveguide, an active layer including quantum dots, and an upper waveguide.
The grating may have a period equal to an integer multiple of half of an oscillation wavelength λ (nλ/2, n=1, 2, 3 . . . ). When the grating is formed at both sidewalls of the ridge, the grating may be symmetrical or asymmetrical.
According to another aspect of the present invention, there is provided a distributed feedback semiconductor laser including: a lower clad layer formed on a substrate; a ridge including an active layer and an upper clad layer sequentially formed on the lower clad layer; a grating formed at a sidewall of the ridge including the active layer in a direction perpendicular to the active layer and a resonance axis so as to enable a single longitudinal mode oscillation; and an oxide layer formed at a sidewall of the upper clad layer constituting the ridge so as to control a transverse electromagnetic mode.
The grating may have a period equal to an integer multiple of half of an oscillation wavelength λ (nλ/2, n=1, 2, 3 . . . ).
According to still another aspect of the present invention, there is provided a method of fabricating a distributed feedback semiconductor laser, including: forming a lower clad layer on a substrate; forming a ridge including an active layer and an upper clad layer sequentially stacked on the lower clad layer; and forming a grating at a sidewall of the ridge including the active layer in a direction perpendicular to the active layer and a resonance axis so as to enable a single longitudinal mode oscillation.
The grating may have a period equal to an integer multiple of half of an oscillation wavelength λ (nλ/2, n=1, 2, 3 . . . ). When the grating is formed at both sidewalls of the ridge, the grating may be symmetrical or asymmetrical.
According to yet another aspect of the present invention, there is provided a method of fabricating a distributed feedback semiconductor laser, including: forming a lower clad layer on a substrate; sequentially forming an active layer, an upper clad layer, an ohmic bonding layer, and a hard mask layer on the lower clad layer; forming a photoresist pattern on the hard mask layer to form a grating in a direction horizontal for the active layer; etching the hard mask layer, the ohmic bonding layer, the upper clad layer, and the active layer using the photoresist pattern as a mask to form a ridge including a grating enabling a single longitudinal mode oscillation in a direction perpendicular to a resonance axis and the active layer; oxidizing both sidewalls of the upper clad layer constituting the ridge to form an oxide layer controlling a transverse electromagnetic mode; forming a passivation spacer on both sidewalls of the ridge; removing the hard mask layer; and forming ohmic metal layers on the ohmic bonding layer and a rear surface of the substrate.
The grating may have a period equal to an integer multiple of half of an oscillation wavelength λ (nλ/2, n=1, 2, 3 . . . ). The grating may be formed at one sidewall or both sidewalls of the ridge including the active layer in a direction perpendicular to the active layer and the resonance axis.
The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in many different forms, and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. In the present specification, “( )” denotes materials that may or may not be included. For example, an In(Ga)As layer can denote either an InAs layer or an InGaAs layer.
When the active layer 109 includes the quantum dots 107, a wide band communication wavelength ranging from 800 nm to 1600 nm can be produced, and a high speed signal of 20 Gbps or more can be transmitted in terms of optical modulation characteristics.
An upper clad layer 115 is formed on the upper optical waveguide 111 constituting the SCH active layer 113. Here, the upper clad layer 115 is formed of InAlAs layer. An ohmic bonding layer 117 is formed on the upper clad layer 115. Here, the ohmic bonding layer 117 is formed of InGaAs layer. A hard mask layer 119 is formed on the ohmic bonding layer 117. Here, the hard mask layer 119 is formed of SiONx layer (x being a positive integer).
Referring to
Uneven (prominence and depression) structures are formed at both sides of the photoresist pattern 121 along the resonance axis (which is the z-axis), i.e. a direction horizontal for the active layer 109. These uneven structures are used later to embody a grating.
Referring to
The grating 123 has a plurality of grooves equally spaced at a period P equal to an integer multiple of half of a resonance wavelength λ, that is nλ/2 where n=1, 2, 3 . . . , to obtain a distributed feedback effect so as to enable a single longitudinal mode oscillation. In other words, the laser oscillation of a single wavelength can be created by the grating 123. The grooves of the grating 123 formed on both parallel sidewalls of the ridge 125 may be symmetrical or asymmetrical in the X-axis direction. After the ridge 125 including the grating 123 is formed, the photoresist pattern 121 is removed.
The oxide layer 127 is formed at both sidewalls of the upper clad layer 115 and on the surface of the lower clad layer 130 exposed by the ridge 125. The degree of oxidization of the oxide layer 127 formed at the both sidewalls of the upper clad layer 115 constituting the ridge 125 may be controlled to determine the horizontal length of the active layer 109 in the X-axis direction. As a result, a transverse electromagnetic mode of an oscillated laser beam may be controlled.
Referring to
As shown in
Referring to
The present embodiment is generally same as the previous embodiment except that a grating is formed only at one sidewall of a ridge. Reference numerals common to
Referring to
Referring to
The grating 123a is formed with a period P equal to an integer multiple of half of an oscillation wavelength λ, that is nλ/2 where n=1, 2, 3 . . . , to obtain a distributed feedback effect so as to enable a single longitudinal mode oscillation. In other words, a laser having a single wavelength may be oscillated by the grating 123a. After the ridge 125a including the grating 123a is formed, the photoresist pattern 121a is removed.
The oxide layer 127a is formed at both sidewalls of the upper clad layer 115 constituting the ridge 125a, and on the surface of the lower clad layer 103 exposed by the ridge 125a, as in the previous embodiment. The degree of oxidization of the oxide layer 127a formed at a sidewall of the upper clad layer 115 constituting the ridge 125a may be controlled to determine the horizontal length of the active layer 109 in an X-axis direction. As a result, a transverse electromagnetic mode of oscillated laser beam may be controlled.
Referring to
As shown in
Referring to
As described above, according to the DFB semiconductor laser of the present invention and the method of fabricating the DFB semiconductor laser of the present invention, a grating is formed at one sidewall or both sidewalls of a ridge (such as 125) having an active layer (such as 113) such that the grating is formed in the direction perpendicular to the active layer (such as 113) and the resonance axis (such as the z-axis) so as to enable a single longitudinal mode oscillation.
Further, the upper clad layer (such as 115) can be selectively oxidized to control the horizontal length of the active layer (such as 113) so as to control a transverse electromagnetic mode.
In addition, it is not necessary to insert a grating on or underneath the active layer (such as 113). Thus, an additional photolithography process is not required, and a fabricating process can be simplified. As a result, the fabricating cost is reduced.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0103066 | Dec 2004 | KR | national |
10-2005-0052575 | Jun 2005 | KR | national |