Distributed healthcare communication system

Abstract
A graphical audio station of a nurse call system is operable to permit a user to perform one or more of the following functions: establish a two-way voice communication link with another computer device in another patient and/or with a another computer device located in another staff work area and/or with a wireless communication device carried by caregiver and/or with a telephone of the healthcare facility; broadcast a voice page to a group of other selected computer devices; compose and send a text message to a portable device that is carried by a caregiver and that has wireless communication capability; browse web pages and/or view multimedia content, such as videos, hosted on servers of the healthcare facility and/or that are accessible via the Internet; view and/or acknowledge and/or answer and/or cancel alerts or nurse calls originating in a plurality of patient rooms.
Description
BACKGROUND

The present disclosure relates to healthcare communication systems, such as nurse call systems. In particular the present disclosure relates to healthcare communication systems having a master station and devices in patient rooms that communicate with the master station.


Most hospitals and other types of in-patient healthcare facilities have some sort of a nurse call system. Patients place nurse calls by pressing a nurse call button located on a hospital bed or on a hand-held unit, known in the art as a pillow speaker or pillow speaker unit, or by actuating a wall mounted switch. After a patient places a nurse call, a caregiver at a master station may answer the nurse call which enables voice communications between the caregiver at the master station and the patient. To facilitate such voice communications a microphone and speaker is located somewhere in the patient room. Oftentimes the microphone and speaker are included in the pillow speaker unit or in an audio station mounted to a wall of the patient room or to a headwall unit which, in turn, is mounted to a wall of the patient room.


One example of a known nurse call system is Hill-Ram's COMLINX® system. In addition to the voice communication function, the COMLINX system is connected to the patient's hospital bed to receive bed status information regarding various aspects of the hospital bed such as the position of the siderails of the bed (e.g., up or down), whether the bed's casters are braked or released, whether or not an upper frame of the bed is in its lowest position, and so forth. See, for example, U.S. Pat. Nos. 7,242,308; 6,897,780; 6,362,725; 6,147,592; 5,838,223; 5,699,038; and 5,561,412, which relate to the COMLINX system. Another example of a known nurse call system is G.E. Healthcare's TELLIGENCE™ system.


SUMMARY

The present invention comprises a healthcare communication system and/or method, or a component thereof, that has any one or more of the features listed in the appended claims and/or any one or more of the following features, which alone or in any combination may comprise patentable subject matter:


One or more graphical audio stations may be provided in one or more patient rooms. A master station may be communicatively coupled to the graphical audio stations. Optionally, one or more graphical audio stations may be provided outside the patient rooms, such as in one or more staff work areas. Staff work areas may include, for example, hallways or staff lounges. The graphical audio stations may each have a graphical display screen and user inputs, at least one of which is usable to establish a two-way communication link with a selected one of the other graphical audio stations. Thus, graphical audio stations in patient rooms can be used to establish two-way communications with graphical audio stations in other rooms to permit room-to-room communication by caregivers. At least one of the user inputs of the graphical audio stations may also be usable to establish a two-way communication link with one or more of the following: the master station, a wireless communication device carried by a caregiver, or a telephone of the healthcare facility.


The user inputs of the graphical audio stations may be displayed on the graphical display screen. Thus, the graphical display screen of the audio station may be a touch screen. The user inputs may be included as part of a user interface displayed on the display screen. In some contemplated embodiments, one or more of the user inputs may comprise buttons or keys spaced from the graphical display screen, such as being situated on a housing adjacent the graphical display screen. The graphical audio station may include a speaker and microphone. The graphical audio station may have a housing that carries the graphical display screen, the speaker, the microphone, and associated circuitry. However, this need not be the case and the speaker and microphone may be located in one or more devices other than the graphical audio station and be communicatively coupled to it either directly or via intervening circuitry.


The graphical audio stations located in the patient rooms may each be configured to receive a nurse call signal and to communicate the nurse call signal to the master station. The nurse call signal may be received from a hospital bed. The nurse call signal may be generated in response to a patient manipulating a nurse call input, such as a button or a switch, which is located on the hospital bed. Alternatively or additionally, the nurse call signal may be received from a hand-held pillow speaker unit or from a wall-mounted call unit having a switch, cord, lever, button, or other user input, which is moved or otherwise actuated to initiate the nurse call signal.


The healthcare communication system may further comprise a plurality of dome light assemblies. Each dome light assembly may be located in a hallway near a door of a respective patient room. The nurse call signal may be communicated to the master station via a circuit board located in a housing mounted near a respective dome light assembly. Thus, the two-way communication link may include the circuit board located near a respective dome light assembly. The healthcare communication system may also include a plurality of bed connector units, each of which may be coupled to a respective hospital bed and to either a respective graphical audio station or a respective circuit board located near a respective dome light assembly. One or more bed connector units may be integrated with a graphical audio station. A Power over Ethernet (PoE) switch may also be included in the healthcare communication system and may be coupled to the master station and to the circuit boards of various dome light assemblies. The two-way communication links between the master station and various graphical audio stations may, therefore, include the Power over Ethernet switch.


Each of the graphical audio stations may be configured to receive an alert signal from at least one piece of equipment located in the respective hospital room. The at least one piece of equipment may comprise a hospital bed, for example. Alternatively or additionally, alerts from other types of equipment, such as IV pumps, ventilators, and patient monitors of all types including EKG's, EEG's, blood pressure monitors, and pulse oximeters, for example, may be received by the graphical audio station and communicated to the master and/or to other devices such as other graphical audio stations and portable devices that are carried by one or more caregivers and that have wireless communication capability. The alert signal may correspond to an alarm condition of the at least one piece of equipment or the alert signal may correspond to a non-alarm condition or the alert may be a reminder or message set up by the caregiver or automatically generated by the piece of equipment.


At least one of the user inputs of the plurality of graphical audio stations may be usable to send a one-way voice page to a subset of the plurality of graphical audio stations. At least one of the user inputs of the plurality of graphical audio stations may be usable to select the subset of graphical audio stations to which the one-way voice page is to be sent. The voice page may also be sent to the master station if the master station is selected using the user inputs of the graphical audio station, or if the master station is among the devices in a group of devices selected using the user inputs. Alternatively or additionally, the graphical audio stations may be usable to send a one-page to a pre-selected or pre-determined subset of the graphical audio stations, along with one or more master stations and/or one or more staff stations and/or one or more other types of communication devices such as telephones or wireless communication devices, including cellular telephones, that are included in the subset.


At least one of the user inputs of the graphical audio stations may be usable to send a text message to a wireless device carried by a caregiver. At least one of the user inputs of the plurality of graphical audio stations may be usable to browse web pages hosted on servers of the healthcare facility or that are accessible via the Internet. At least one of the user inputs of the plurality of graphical audio stations may be usable to view multimedia content, such as videos, which are hosted on at least one server of the healthcare facility or which are accessible via the Internet. The videos may be, for example, educational videos regarding pieces of equipment being used to care for the patient or regarding medical procedures or regarding some other topic. At least one of the user inputs of the plurality of graphical audio stations may be usable to perform at least one of the following functions: view alerts or nurse calls, acknowledge alerts or nurse calls, answer alerts or nurse calls, and cancel alerts or nurse calls, including nurse calls and alerts originating in other patient rooms.


The master station may comprise a graphical display screen and a telephone handset. Master station user inputs may be displayed on the graphical display screen of the master station. At least one of the master station user inputs may be usable to initiate a two-way communication link from the master station to at least one of the following: at least one of the plurality of graphical audio stations, a wireless communication device carried by a caregiver, and a telephone of the healthcare facility. By presenting the master station user inputs on the graphical display screen, other alphanumeric inputs, such as phone keypads and computer keyboards, may be omitted from the master station. The master station may sometimes be referred to herein as a master console or primary console.


The healthcare communication system may also have an input/output circuit spaced from the graphical audio stations. At least some of the graphical audio stations may communicate with the input/output circuit according to a first communication protocol and the input/output circuit may communicate with the master station according to a second communication protocol, such as a TCP/IP protocol, for example. The plurality of graphical audio stations and the master station may be configured to comply with the Underwriter's Laboratories (UL) 1069 standard which relates to Hospital Signaling and Nurse Call Equipment.


According to this disclosure, the graphical audio station is among the types of devices that may be referred to as a computer device. Thus, this disclosure contemplates that a computer device located in a patient room of a healthcare facility may be communicatively coupled to the master station, may be configured to receive a nurse call signal and/or an alert signal from a piece of equipment located in the patient room, may have a graphical display screen operable to display at least one user interface, and may be configured to perform one or more of the following functions in response to use of the at least one user interface: establish a two-way voice communication link with the master station; establish a two-way voice communication link with another computer device in another patient room; establish a two-way voice communication link with a computer device located in a staff work area; establish a two-way voice communication link with a wireless communication device carried by caregiver; establish a two-way voice communication link with a telephone of the healthcare facility; broadcast a voice page to a group of other computer devices; select a set of computer devices to which a voice page is to be communicated; send a text message to a portable device that is carried by a caregiver and that has wireless communication capability; compose a text message to be sent to a portable device that is carried by a caregiver and that has wireless communication capability; browse web pages hosted on servers of the healthcare facility; browse web pages accessible via the Internet; view multimedia content, such as videos, hosted on servers of the healthcare facility; view multimedia content accessible via the Internet; view a list of alerts or nurse calls originating in other patient rooms; acknowledge alerts or nurse calls originating in other patient rooms; answer alerts or nurse calls originating in other patient rooms; or cancel alerts or nurse calls originating in other patient rooms.


The computer device may also be configured to automatically perform one or more of the following functions: communicate the nurse call and/or alert signal to the master station; communicate information about the nurse call and/or alert signal to the master station; or process the nurse call and/or alert signal and communicate a processed signal to the master station. The healthcare communication system may have many such computer devices, some of which are located in patient rooms and at least one of which is located in a staff area. The computer devices and the master station may be configured to comply with the UL 1069 standard so as to provide a healthcare facility with a nurse call system.


To create a master station or console, the graphical audio station may be mounted to a base unit which has a telephone handset. The graphical audio stations may also include locating receiver circuitry which receives wireless signals from portable transmitters carried or worn by caregivers to track the whereabouts of the caregivers throughout the healthcare facility. When the receiver circuitry of the graphical audio stations sense the presence of a caregiver, by receiving the wireless signal from the caregiver's associated transmitter, the graphical audio station may turn on a back light and display a particular screen. The master station may be configured to be coupled to the network of the healthcare facility. The graphical audio stations may link to the network of the healthcare facility through the master station.


Additional features, which alone or in combination with any other feature(s), such as those listed above, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of various embodiments exemplifying the best mode of carrying out the embodiments as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures, in which:



FIG. 1 is a block diagram showing various components of a nurse call system, some of which are included as a part of a healthcare communication system according to this disclosure;



FIG. 2 is a block diagram showing a master console of the nurse call system coupling the nurse call system to other computer devices included in a computer network of the healthcare facility;



FIG. 3 is block diagram showing nurse call systems of various nursing units of a healthcare facility coupled to each other and coupled to other computer devices of the healthcare facility;



FIG. 4 is a screen shot of a Start screen that appears on a graphical audio station prior to a caregiver navigating to other screens, the Start screen having a list of incoming calls and having various menu icons that are pressed to navigate to other screens and to perform various functions;



FIG. 5 is a screen shot of a Call Details screen that appears on a graphical audio station after a caregiver selects one of the calls and after a Call Details icon is selected by the caregiver;



FIG. 6 is a screen shot of a Staff Screen that appears on the graphical audio station after a caregiver selects a Staff icon;



FIG. 7 is a screen shot of a Select Contact Method screen that appears on the graphical audio station in response to a staff person being selected on the Staff Screen, the Select Contact Method screen having a window listing the various options for contacting the selected staff person;



FIG. 8 is a screen shot of a Keyboard screen that appears on the graphical audio station when a Search icon is selected or when a caregiver selects the Contact via Text Page icon on the Select Contact Method screen;



FIG. 9 is a screen shot of a Search Results page that appears on the graphical audio station after search criteria have been entered into one or more fields of the Keyboard screen; and



FIG. 10 is a screen shot of a Voice Page screen that appears on the graphical audio station after a Paging Groups tab is selected, the Voice Page screen having a list of various groups of graphical audio stations that are located in selected ones of the patient rooms and staff areas to which a voice page may be sent without sending the voice page to graphical audio stations that are not in the selected group.





DETAILED DESCRIPTION

A healthcare communication system 20 includes a plurality of graphical audio stations 22 and a master station or console 24 which are communicatively coupled as shown diagrammatically in FIG. 1. Many of the stations 22 are located in patient rooms and are mounted, for example, to a wall of the respective room or to a headwall unit that, in turn, is mounted to a wall of the respective room. Stations 22 may be mounted to other architectural support structures, such as service chases or columns just to name a couple. Stations 22 may be located in other areas of the healthcare facility as well, such as in staff work areas including, for example, hallways and staff lounges. The stations 22 located in patient rooms may sometimes be referred to herein as patient stations 22, whereas the stations 22 located in staff work areas may be sometimes be referred to herein as staff stations 22. The functionality of stations 22 described herein is applicable to all stations 22 regardless of whether the station 22 is a patient station 22 or a staff station 22, unless specifically noted otherwise.


Patient stations 22 communicate bidirectionally (e.g., two-way communication) with an input/output (I/O) circuit 27 which is located within a housing 26 mounted near a dome light assembly 28. The bidirectional communication is indicated diagrammatically in FIG. 1 by double headed arrow 30. I/O circuit 27 is also shown diagrammatically in FIG. 2. Dome light assemblies 28 are typically mounted outside respective patient rooms near the doorways of the rooms and are readily visible to caregivers in the hallway to determine whether any calls or other events indicated on the dome light are occurring within the associated room. Thus, housings 26 with I/O circuit 27 therein are mounted generally at these same locations outside patient rooms. Additional details of the dome light assemblies 28, housing 26, and circuit board 27 are provided in U.S. Provisional Patent Application No. 61/066,883 which was filed Feb. 22, 2008, which was titled “Indicator Assembly for Healthcare Communication System,” and which is already incorporated by reference herein.


A 9-page electric circuit schematic illustrating one possible electric circuit implementation of one embodiment of the circuitry of dome light assembly 28 is shown in FIG. 12 of U.S. Provisional Patent Application No. 61/066,877, which was filed Feb. 22, 2008, which was titled “Distributed Healthcare Communication System,” and which is already incorporated by reference herein. In one embodiment, dome light assembly 28 is, for example, an International Business Machines (IBM) Part No. 43T1899 dome light fixture. A 55-page electric circuit schematic illustrating one possible electric circuit implementation of input/output (I/O) circuit 27 according to this disclosure is shown in FIG. 15 of U.S. Provisional Patent Application No. 61/066,877 which is already incorporated by reference herein. In one embodiment, I/O circuit 27 is, for example, an IBM part no. 43T2063 IO Board. In some Appendices of the written description of U.S. Provisional Patent Application No. 61/066,877, I/O circuit 27 may be referred to as an I/O board or an I/O circuit board. However, this is not to imply that all circuit components of the circuitry of I/O circuit 27 need to be on a single circuit board, but that is certainly one possibility. Thus, in some contemplated embodiments I/O circuitry 27 may be distributed among numerous circuit boards, and in other contemplated embodiments some or all of the components of circuit 27 may not be on any circuit board at all. While illustrative circuit 27 is located in housing 26, it is within the scope of this disclosure for various components of circuit 27 to be located in separate housings.


The I/O circuit 27 of assembly 28 communicates bidirectionally with a Power over Ethernet (PoE) switch 32 as indicated diagrammatically in FIG. 1 by double headed arrow 34. PoE switch 32 communicates bidirectionally with master station 24 as indicated diagrammatically by double headed arrow 36. Suitable PoE switches are available from a variety of suppliers and may include, for example, the PoE switch marketed by Hill-Rom Company, Inc. in connection with its NaviCare® Nurse Call™ system or such as one or more of the various Dell PoE switches marketed under the PowerConnect™ brand name. Optionally, an external power supply is coupled to PoE switch 32 to provide back up power to PoE switch 32 in the event that an internal power supply of PoE switch 32 fails. One example of a suitable external power supply is Optimal Power part number OPN300-48SN which is coupled to the PoE switch 32 using an Optimal Power part number OPNC30148 cable. While only one patient station 22 is shown in FIG. 1 as being communicatively coupled to master station 24, via the I/O circuit board 27 of assembly 28 and via PoE switch 32, it will be appreciated that system 20 may have numerous such patient stations 22 that may communicate with master station 24 via respective I/O circuit boards 27 and via PoE switch 32.


Typically, all of the patient stations 22 of a nursing unit communicate with the same master station 24. The master stations 24 and graphical audio stations 22 of different nursing units may be coupled together by interconnecting the respective PoE switches as indicated diagrammatically in FIG. 3 via dotted lines 38. In this way, information can be shared, and communications established, between computers devices, such as stations 22, of different nursing units. This is an improvement over prior art systems having the master stations and audio stations of each nursing unit isolated and unable to communicate with the master stations and audio stations of other nursing units.


In some embodiments, such as the one shown in FIG. 1, system 20 includes bed connector units 40, each of which is communicatively coupled to an associated hospital bed 42 as shown diagrammatically in FIG. 1 via lines 44. Bed connector units 40 are, in turn coupled to a respective circuit board 27 as indicated diagrammatically in FIG. 1 via lines 46. In some other embodiments, bed connector units 22 may be coupled to graphical audio station 22 which communicates with the corresponding circuit board 27 in the way that bed connector units 40 are shown coupling to graphical audio stations 124 (discussed in further detail below) via diagrammatic lines 146 in FIG. 1. In still other embodiments, bed connectors units 40 may be integrated into a common housing of graphical audio stations 22 (and stations 124 as well) in the way that connectors 224, 225 are integrated into standard audio station 222 as shown in FIG. 2. Stations 222 are discussed in further detail below.


One version of bed connector unit 40 is referred to in some of the Appendices of the written description of U.S. Provisional Patent Application No. 61/066,877 as a Bed Interface Unit (BIU) which, in one embodiment, includes a 37-pin connector to attach to a bed cable, includes another connector for attachment of a call pendant or pillow speaker unit, and an includes a button that can be manually pressed to send and/or cancel a nurse call. Another version of a bed connector 228 is referred to as a Silver Plate in some of the Appendices attached in U.S. Provisional Patent Application No. 61/066,877 and is shown in FIG. 2. Bed connector 228 is a low cost connector which includes only a connector to which bed 42 couples via a suitable connection cord. In some embodiments, beds 42 comprise one or more of the beds marketed by Hill-Rom Company, Inc. under the brand names TOTALCARE®, VERSACARE®, ADVANCED-1000™, CCUII™ and ADVANTA™.


Many other types of devices in a patient room may also couple to a respective I/O circuit 27 mounted near the corresponding dome light assembly 28 to communicate with master station 24 and, if desired, other computer devices of the a computer network of the healthcare facility. For example, in FIG. 1, an equipment connector 48 to which patient care equipment, such as patient monitoring equipment, may be connected is coupled to the I/O circuit 27 as indicated diagrammatically by double-headed arrow 50 and a wall-mounted nurse call switch 52 which may be mounted in a lavatory of the patient room, for example, is coupled to the circuit board 27 of assembly 28 as indicated diagrammatically by double-headed arrow 54. Furthermore, a wireless receiver 56, which illustratively is an infrared receiver that receives wireless signals 60 from locating-and-tracking badges 58 worn or carried by caregivers is coupled to the I/O circuit 27 of assembly 28 as indicated diagrammatically by double-headed arrow 62. It is also contemplated herein that a smoke alarm 64 is coupleable to the I/O circuit 27 of assembly 28 as indicated in FIG. 1 by double headed arrow 66.


As previously mentioned, some graphical audio stations 22 are located in staff work areas and are referred to as staff stations or consoles 22. In FIG. 1, a first staff station 22 communicates bidirectionally with PoE switch 32 via a communications link 68 and a second staff station 22 communicates bidirectionally with PoE switch 32 via a communications link 70. The first staff station 22 is mounted to a wall, for example, whereas the second staff station 22 has a graphical display screen module 72 connected to a base module 74 which includes a telephone hand set 76. The master station 24 shown in the FIG. 1 example also has a graphical display screen module 72 connected to a base module 74 which has a telephone handset 76. The FIG. 1 example also shows a personal computer 78 which cooperates with the associated display screen module 72 to provide the master station functionality. In other embodiments, personal computer 78 is the only computer device included in master station 24 while, in still other embodiments, personal computer 78 is omitted. Thus, depending upon the manner in which a graphical display module 72 is programmed it can serve as a patient station 22, a staff station 22 or as a master station 24. When serving as a staff station 22 or a master station 24, module 72 can be coupled to base module 74, if desired. The display screen of module 72 is approximately a 10 inch display screen in some embodiments and therefore is larger than the LCD screen used in, for example, the COMLINX® system.


Each of the communications links 30, 34, 36, 44, 46, 50, 54, 60, 62, 66 shown diagrammatically by lines or arrows in FIG. 1 may include wired links and/or wireless links and/or combinations thereof, along with associated connectors. For example, with regard to links 44 between beds 42 and bed connector units 40, known cables having 37-pin connectors (or similar connectors) may provide these links 44. Alternatively or additionally, some of links 44 may be wireless links, in which case, the respective beds 42 and units 40 have appropriate wireless transmitter and wireless receiver circuitry, which may be in the form of a wireless transceiver. Such wireless communication between beds 42 and units 40 is discussed, for example, in U.S. Pat. No. 7,319,386 and in U.S. Patent Application Publication No. 2007/0210917 A1, both of which are hereby incorporated herein by this reference.


While this disclosure contemplates that the data formatting for the data transmitted over any of links 30, 34, 36, 44, 46, 50, 54, 60, 62, 66, 68, 70 may be according to any suitable data formatting protocol, in one embodiment, the data formatting protocol is according to the protocol discussed in detail in the “Project NCM II, Interface Design Specification, NPD05514” document which is attached to U.S. Provisional Patent Application No. 61/066,877 as Appendix 1 and which is considered part of the written description of that provisional patent application and of this patent application via the incorporation by reference previously made in this application of U.S. Provisional Patent Application No. 61/066,877. In general, the protocol described in Appendix 1 of U.S. Provisional Patent Application No. 61/066,877 uses extensible markup language (XML) strings to transfer data. This protocol is sometimes referred to as the Palmetto Protocol and is sometimes referred to as the XML protocol herein and in some of the documents in the Appendices of the written description of U.S. Provisional Patent Application No. 61/066,877. It is also contemplated that the communication protocol for links 30, 34, 36, 44, 46, 50, 54, 60, 62, 66 may be according to any suitable protocol such as the TCP/IP protocol, the RS-232 protocol, the RS-422 protocol, the RS-423 protocol, or the RS-485 protocol, or similar such protocols, and such as wireless protocols including any of the IEEE 802.11 protocols (where x represents the various revision levels a, b, c, d, e, g and so forth of the 802.11 protocol), the Bluetooth protocol, the Zigbee protocol, or similar such wireless communication protocols.


In one embodiment, links 44, 46, 54, 62, which are the communications links associated with a patient room that communicate between devices in the patient room and the I/O circuit board of dome light assembly 28, are according to the RS-485 protocol, whereas links 34, 36, 68, 70, which are the links to and from PoE switch 32, are according to the TCP/IP protocol. The devices that communicate over these various links are configured and programmed appropriately for the required RS-485 or TCP/IP protocol, as the case may be.


It should be noted that, in one contemplated embodiment, link 30 comprises a coupler that couples to a PoE port of the respective I/O circuit 27 such that communications over link 30 are transmitted according to the TCP/IP protocol and I/O circuit 27 provides feed through of any data, including communication data such as voice data, communicated between station 22 and PoE switch 32. Because stations 22 communicate according to the TCP/IP protocol, staff stations 22 are coupleable to PoE switch 32 without the use of an intervening I/O circuit 27, if desired. As to the various devices coupled to I/O circuit 27 other than station 22, the circuitry of I/O circuit 27 operates to convert the data from these various devices according to their device-specific communication protocols (e.g., serial links to stations 122, 222; locating and tracking receiver 56 room bus protocol; bed connector 40 room bus protocol; and serial to dome light protocol) into the TCP/IP protocol for subsequent transmission to the PoE switch and ultimately to the master station 24 and beyond, if desired.


According to this disclosure, system 20 is scaleable such that basic, intermediate, and advanced nurse call systems can be created depending upon the particular requirements of a particular healthcare facility. The graphical audio stations 22 discussed herein are associated with an advanced nurse call system and are referred to in several of the documents of the Appendices of U.S. Provisional Patent Application No. 61/066,877, which are considered part of this written description via incorporation by reference, as an advanced graphical audio station (AGAS) and are referred to in the documents of the Appendices of U.S. Provisional Patent Application No. 61/145,306, which is also considered part of this written description via incorporation by reference, as a Graphical Room Station 10 (GRS-10). A 42-page electric circuit schematic illustrating one possible electric circuit implementation of one embodiment of an advanced graphical audio station (AGAS) 22 according to this disclosure is shown in FIG. 11 of U.S. Provisional Patent Application No. 61/066,877. In one embodiment, audio graphical station 22 is an IBM part no. 43T2058 station.


A graphical audio station 122, shown in FIG. 1, provides mid-range or intermediate functionality and includes a smaller graphical display screen 124 than the display screen of stations 22. This type of intermediate station 122 referred to in the documents of the Appendices of U.S. Provisional Patent Application No. 61/066,877 as a graphical audio station (GAS) and in the documents of the Appendices of U.S. Provisional Patent Application No. 61/145,306 as a Graphical Room Station 5 (GRS-5). FIGS. 13 and 14 of U.S. Provisional Patent Application No. 61/066,877 cooperate to provide an electric circuit schematic illustrating one possible electric circuit implementation of one embodiment of graphical audio station (GAS) 122. Graphical audio station 122 in one embodiment comprises IBM part nos. 43T2071 and 43T2067.


A standard audio station 222, shown in FIG. 2 and referred to in the documents of the Appendices of U.S. Provisional Patent Application No. 61/066,877 as a standard audio station (SAS) and referred to in the Appendices of U.S. Provisional Patent Application No. 61/145,306 as Standard Room Station (SRS) has no graphical display screen. A 20-page electric circuit schematic illustrating one possible electric circuit implementation of one embodiment of standard audio station 222 is shown in FIG. 16 of U.S. Provisional Patent Application No. 61/066,877. Graphical audio station 222 in one embodiment comprises IBM part no. 43T2082. Additional details of stations 22, 24, 122, 222 are provided in a U.S. Provisional Patent Application No. 61/066,882 which was filed Feb. 22, 2008, which is titled “User Station for Healthcare Communication System,” and which is already incorporated by reference herein.


Standard audio stations 222 are a low cost offering that provides call cancel, call placement, reception for signals from badges 58, and voice communication functionality. As mentioned already, stations 222 do not have a graphical display. Stations 222 connect to the I/O circuit board of assembly 28 via an RS-485 connection 30. Stations 222 can be configured as a patient station, staff station, or visitor station. As indicated in FIG. 2, beds 42 may couple to stations 222 via an audio station bed connector (ASIC) 224. Also, pillow speaker units 226 and/or a call switch 52 (e.g., a call cord in some instances) may couple to station 222, such as by coupling to a connector 225 included as part of station 222. It is contemplated that bed connector 224 can be integrated into station 22 and thus, in FIG. 2, reference numeral 224 is used to denote such an integrated connector 224 of station 222 as well as the separate bed connector block 224. In the FIG. 2 example, however, bed 42 is coupled to a Silver Plate 228 which is, in turn, coupled to the associated I/O board 27. The term “Silver” refers to the general color of the plate, not its material.


While FIG. 2 shows one block representative of I/O circuit 27 and shows two separate dome light assemblies 28 linked to it via unnumbered double-headed arrows, it should be appreciated that in some embodiments each assembly 28 has its own I/O circuit 27 as discussed previously. However, this need not be the case in all instances and therefore, having I/O circuits 27 located elsewhere in system 20 is within the scope of this disclosure. As further shown in FIG. 2, bed connector 40 is coupled to I/O circuit board 27 via an RS-485 communications link 230. FIG. 2 also shows station 22 coupled to I/O circuit 27 via link 30, PoE switch coupled to I/O circuit 27 via link 34, nurse call switch 52 coupled to I/O circuit 27 via link 54, a wireless receiver 56 coupled to I/O circuit 27 via link 62, and PoE switch 32 coupled to master station 24 via link 36. A staff station 22 is also shown in FIG. 2 in communication with master station 22 via link 70. While link 70 is shown directly between master console 24 and staff console 22, this is intended to be representative of a “logical link” to indicate that staff stations 22 communicate all received commands to the master station 24 and receive information about all other devices, such as patient stations 22, of the nursing unit from master station 24. Thus, staff stations 22 communicate with master station 24 via PoE switch 32.


Intermediate level audio stations 122 are a mid range offering that provides all of the functionality that a standard audio station 222 provides. In addition, stations 122 have small touch screen displays 124 that allow for monitoring calls, monitoring other types of alerts, view the location of staff, call located staff, change bed status (e.g., clean or dirty status), enable and disable nurse calls and alerts for a location or for a nursing unit. Unlike station 222, station 122 runs a Linux operating system (OS) that drives the graphical display and responds to user interaction. The content for display 124 of station 122 is controlled by the associated I/O circuit board 27 and by advanced services which are resident on other computer devices of system 20 as will be further discussed below. For base functionality, the I/O circuit controls the display of station 122 by sending XML strings to station 122. The circuitry of station 122 interprets those strings and displays a corresponding user interface (UI). If an advanced functionality is requested by station 122, the I/O circuit forwards the request for the advanced service(s) and the computer device of system 20 having the advanced service(s) replies back with the content in the appropriately formatted XML string.


In the illustrative example, advanced level audio stations 22, 24 provide all of the functionality of stations 122 except stations 22 couple to bed connectors 40, 224 via I/O circuits and not directly. However, in other embodiments contemplated herein, either of connectors 40, 224 may be integrated into station 22 or connected thereto in a manner similar to which they are integrated or connected in stations 122, 222 as described above. Stations 22, 24 also run a Linux OS, but it is written in C# programming code and executed under Mono, an open source implementation of the .NET framework maintained by Novell. This permits some code sharing between base and advanced systems as discussed in more detail below, an in the Appendices U.S. Provisional Patent Application No. 61/066,877, and as discussed in further detail in a U.S. Patent Application No. 61/066,918 which was filed Feb. 22, 2008, which is titled “Distributed Fault Tolerant Architecture for a Healthcare Communication System,” and which is already incorporated by reference herein.


In broad general terms, it is the stations 22, 24 which are configured to communicate with various other computer devices, such as servers, included in the Ethernet of a healthcare facilities' system 20 and it is this additional communication capability that distinguishes these devices as advanced graphical audio stations. According to this disclosure, the components of system 20 which cooperate to provide a healthcare facility with a nurse call system are referred to collectively as a “base nurse call system.” Thus, stations 22, 122, 222 and I/O circuit 27, dome light assemblies 28, and any of the equipment described above that is capable of providing a nurse call signal, as well as the associated master station 24 and PoE switch 32 along with any of the communication links interconnecting these components, are among the components which comprise a “base nurse call system” according to this disclosure. Staff stations 22, if present, are also considered to comprise part of the base nurse call system.


If voice communication capability among stations 22, 24, 122, 222 is to be a function of the nurse call system, then a Voice over Internet Protocol (VoIP) sever 250 is also included in the base nurse call system and is coupled to PoE switch 32 via a TCP/IP communications link 252 as shown in FIG. 2. Server 250 facilitates communication between which ever of stations 22, 24, 122, 222 are present in the system 20. Server 250 is configured to translate system operations and communications to the corresponding messages that then control endpoint devices, such as stations 22, 122, consoles 24, or room input/output circuits 27. As such, server 250 includes a soft telephony switch and other associated components. Server 250 may also provide integration with the hospital telecommunications structure (e.g., PBX or other voice communication system), although some other server may do so as well as is discussed below. In the illustrated embodiment, server 250 is a Windows server running 3CX. The components of the base nurse call system of illustrative system 20 are compliant with Underwriter's Laboratories 1069 standard according to this disclosure. This is not to imply that these components may not also be compliant with other standards relating to nurse call systems or relating to some other aspect of these devices.


According to this disclosure, stations 22, 24 also permit users to perform functions associated with an “advanced services system.” The software code, such as applets or plug-ins, that provides stations 22 with these advanced functions may be communicated from various servers, or similar such computer devices discussed below, to stations 22 via stations 24, PoE switch 32, I/O boards 27, and the associated links 30, 34, 36. Thus, stations 22, 24 are dependent upon some devices that are not part of the base nurse call system, but instead are part of the advanced services system, to provide the advanced functionality to stations 22, 24. However, if these other devices are inoperable or communications with such devices of the advanced services system cannot be established or is otherwise faulty, the base nurse call system functionality is still able to operate. Thus, functionally, the base nurse call system is isolated from the advanced services system from a hardware standpoint and from a software standpoint.


System 20 includes an enterprise server 260 which is included as part of the advanced services system as shown in FIGS. 1-3. Server 260 links to the nurse call portion of system 20 to provide advanced services thereto. A communication link 262 exists between server 260 and master station 24 via an appropriate switch device, such as a PoE switch 32 or other type of switch. Multiple master stations 24 may connect to server 260 via a switch 32 as shown in FIG. 3. As shown in FIG. 1, a private branch exchange (PBX) 264 may be coupled to server 260 via a VoIP communications link 266 to permit two-way voice calls to be placed over the public switched telephone network (PSTN) 268 to telephones outside the healthcare facility from graphical audio stations 22, 24, 122 by appropriate use of user inputs of user interfaces displayed on stations 22, 24, 122 as part of an associated advanced service. Two-way voice calls may be made similarly via server 260 and PBX 264 to wireless voice communication devices, such as a wireless communication badge 270 (e.g., a Vocera™ badge) or a wireless hand set 272, shown in FIG. 3, in response to appropriate use of the user interfaces of stations 22, 24, 122. Text messages may be sent to devices both inside and outside the healthcare facility via these same communications links in response to use of the user interfaces of stations 22, 24, 122. PSTN 268 is intended to represent, diagrammatically, a variety of telecommunication devices, including analog and digital devices, fixed telephones and mobile or cellular devices, personal data assistants (PDAs), pagers and the like.


As shown in FIG. 2, a non-exhaustive list of examples of other computer devices, each of which is optional according to this disclosure, that communicate via appropriate communications links with enterprise server 260 and therefore, with associated master stations 24 of one or more nurse call systems, include a database server 280; one or more third party servers 282; a first wireless communications server 284 for managing communications to and from wireless telecommunications devices; a second wireless communications server 286 for handling communications to and from other devices such as wireless badges for locating and tracking of staff members; a user authentication server 288 for managing user accounts, passwords, and user authorization; a workflow server 290, which facilitates integration with workflow software systems; a hospital administrative client 292 for conducting administrative tasks relating to patients and staff, such as adding patients and assigning staff to patients; and a status or reports server 294 for managing displays and reports of calls and notifications for one or more locations in the facility. An electronic status board 296 may also be coupled to server 260 as shown diagrammatically in FIG. 2. Status board 296 is operable to display locations within the facility and current information about them, such as active calls, bed status information, staff located in the healthcare facility, and staff assigned to the location.


While the term “server” is used herein, it will be understood by those skilled in the art that the functionality represented or performed by devices referred to as “severs” may comprise and be performed by any suitable computer device having software programs or services that may be resident and/or executable by any computer, device or equipment in the system or more than one computer, device or equipment in the network. Thus, there term “server” is intended to broadly encompass any computer device that is capable of performing the mentioned functions.


In the illustrated embodiment, server 284 is configured to provide communication and configuration for wireless devices using Emergin Wireless Office; server 286 is configured to provide communication and configuration for wireless Vocera devices; server 290 is configured to interface with or be included as part of a Hill-Rom® NaviCare™ system to receive and process task assignment and completion information. Plug-ins or applets or similar such software code may be resident on any of servers 260, 282, 284, 286, 288, 290, 292, 294, for example, and be retrieved by stations 22, 24 via server 260 as part of the “advanced services system” functionality. The software to display a particular user interface associated with an advanced service on a particular station 22, 24 which is operated by a user in a manner resulting in the request of the advance service may be executed on a device other than the one that requested it. For example, such advance service software may be executed by the circuitry of a master station 24 or I/O circuit 27, but yet the resulting user interface is display on one of stations 22. Additional details of the advanced services functionality are shown and described in the “Code Blue Advanced System Software, Architectural Design Specification, NPD05503” document attached to U.S. Provisional Patent Application No. 61/066,877 as Appendix 2 and is considered part of the written description of this patent application via incorporation by referenced of U.S. Provisional Patent Application No. 61/066,877. Still more details of system 20 and its “advanced services system” functionality is provided in a U.S. Provisional Patent Application No. 61/066,918 which is already incorporated by reference herein.


Referring now to FIGS. 4-10, examples of user interfaces which may appear on the graphical display screens of stations 22, 24 and, if appropriately programmed and configured on stations 122. The description below will discuss the various screens as appearing on one of stations 22. However, it should be understood that the discussion is applicable to the screens of stations 24 and, possibly, stations 122 in some embodiments. The Appendices of U.S. Provisional Patent Application No. 61/066,877 include a whole host of additional and alternative screen shot examples which are illustrative of the wide variety of functions that caregivers can perform by use of the multitude of user interfaces which are displayed on the display screens of stations 22, 24, 122 in connection with the operation of these device as part of a base nurse call system and when used as part of the advance services system.



FIG. 4 is a screen shot of an example of a Start screen 300 that appears on a graphical audio station prior to a caregiver navigating to other screens. Screen 300 becomes backlight when the locating circuitry senses the presence of a badge 60 of an approaching caregiver in some embodiments. Prior to sensing the caregiver, station 22 may still show screen 300 but without backlighting or station 22 may operate to show a blank screen or to show some other screen that doesn't show any or all of the information of screen 300. In other embodiments, the screen my become backlit when a user touches screen 300 or otherwise uses station 22.


Screen 300 includes a calls window 302 with a room column 304 listing the room numbers from which calls and/or alerts have been placed, a name column 306 showing the names of the patient in the associated room, a type column 308 indicating the type of alarm or call that has been placed, and a status column 310 indicating whether the call is being answered, is on hold, or has not yet been answered such as by having a timer 312 that counts up to indicate the seconds and minutes since the call has been placed but not yet answered or canceled. With regard to the status column 308, other statuses include “assigned waiting” which means the call was on a reminder list and came off of the reminder list at the time the reminder to make the call is to be displayed. Up and down arrows 314, 316 are provided in window 302 to permit a user to scroll up and down the list of calls in window 302 if there are more than five active calls, which in the illustrative embodiment, is the maximum amount of calls that appear in window 302 of screen 300 at once.


Start screen 300, as well as many other screens, include a menu 317 beneath window 302 with a Calls button 318, a Locations button 320, a Patients button 322, a Staff button 324, and an Admin button 326. Buttons 318, 320, 322, 324, 326 are touched to change the type of information being displayed in window 302 and/or on other areas of the display screen. Beneath menu 317 is a staff emergency button 328 which is touched to place a staff emergency call and a staff assist button 330 which is touched to place a staff assist call, which is a lower priority type of call than a staff emergency call. To the right of window 302 is a menu 332 which includes a cancel button 334 that is used to cancel a selected call, an answer button 336 that is used to answer a selected call, a hold button 338 that is touched to place a selected call on hold, and a call details button 340 that is touched to obtain more information about a selected call. To select a call, the caregiver touches the display screen in window 302 over any portions of the rows of information for a particular call and then presses the answer button 336 to answer the selected call. After the answer button 336 is pressed to answer a call, it becomes a “hang up” button which is touched to end the call. The cancel button 334 only becomes active if the caregiver uses another portion of the user interface of screen 300.


The order in which incoming calls are listed in window 302 is dictated by the priority level of the type of call received. Calls configured with the highest priority, such as a Code Blue call indicating that a patient is experiencing cardiac arrest, are displayed at the top of the list. If multiple calls having the same priority are received, the calls will be displayed from oldest to newest with the oldest of the calls at the top of the list or the top of the group of calls having the same priority in the event a higher priority call is also received. Other types of calls having no priority are displayed beneath those that have a priority level designated. The information in the rows of window 302 regarding the calls being received may be color coded. For example, in one embodiment, Code Blue calls are blue, emergency calls are red, and other calls are black.


As is apparent from the discussion of screen 300 of FIG. 4, a caregiver at a patient station 22 in a particular room, can answer a call in any other room listed in the calls window 302, which results in a two-way voice communication link being established between the patient station 22 in one room with the patient station 22 in another room. A caregiver at the master station 24 does not need to be involved in setting up or otherwise initiating or maintaining this room-to-room two-way voice connection. In the upper right hand corner region of screen 300 is a speaker phone button 342 which appears when screen 300 is associated with any stations 22, 24 mounted to a base unit 74 having a handset 76 to give the caregiver the option of operating the master or staff console 22, 24 as a speaker phone rather than needing to pick up the hand set 76.


Also in the upper right hand corner region of screen 300 is a Control Volume button 344 which, when touched, results in the display of a vertical slider for volume control of the call, and a Help button 346 which, when touched, results in the display of various help options selection buttons. Among the help options selection buttons include a first button that is touched to permit the caregiver to browse web pages hosted on servers of the healthcare facility on the display screen of station 22; a second button that is touched to permit the caregiver to browse web pages accessible via the Internet on the display screen of station 22; a third button that is touched to permit the caregiver to view on the display screen of station 22 multimedia content, such as videos, hosted on servers of the healthcare facility; and a fourth button that is touched to permit the caregiver to view on the display screen of station 22 multimedia content accessible via the Internet. The videos may include, for example, educational videos regarding equipment in the patient room and regarding medical procedures, but the videos are not limited to these and may be a video concerning any topic. The media content may include, for example, user manuals for equipment in the patient room or other medical information, but again, any type of media content is contemplated by this disclosure as potentially being accessible using station 22. The access to multimedia content just described is considered part of the “advanced services” functionality and not part of the “base nurse call system” functionality of station 22.


In response to a caregiver touching the call details button, a call details window 350 appears on the display screen and partially overlaps window 302 as shown in FIG. 5. Call details window 350 includes text indicating the patient's name, the room number, and a notes text block 352 in which additional notes about the patient's condition or risks may be entered. In the illustrative example, block 352 includes the text “Fall Risk, VAP, Skin Breakdown” but of course caregivers may enter any notes of their choosing in block 352. VAP stands for “ventilator assisted pneumonia” in this example. Up and down arrows 354, 356 are provided for scrolling up and down if not all of the notes are viewable in block 352 at the same time.


Call Details window 350 also includes a Caregivers text block 358 which lists the various caregivers that have been assigned to the associated patient. In some embodiments, a caregiver using station 22 may be able to touch a Caregiver's name in block 358 and/or touch a Call button 360 which is adjacent block 358 and be presented with a menu of options for contacting that selected caregiver, including calling that caregiver's home phone number, office phone number, or cellular telephone number. Thus, this is an example of how station 22 may be used to place a call to a telephone, including a cellular telephone, located outside the healthcare facility. Window 350 also includes Answer and Hold buttons 336, 338 which are redundant to buttons 336, 337 of menu 332 and so similar reference numerals are used to denote these. However, only the buttons 336, 337 in window 350 are active when window 350 is displayed. If a user decides to contact one of the assigned caregivers using window 350, the user first touches the hold button 338 to place the current call on hold, after which button 338 becomes an “unhold” button. After the user places the call, the Call button becomes a “hang up” button which is touched to end the call. A Close button 362 is included in window 350 and may be touched to close out of window 350.


In response to a caregiver touching staff button 324, a Staff screen 374 appears on the display screen of graphical audio station 22 as shown, for example, in FIG. 6. Screen 374 has a staff window 376. Window 376 has room, name, type, and status columns 304, 306, 308, 310, as was the case with window 302 of screen 300. However, the information appearing in the rows of window 376 under columns 304, 306, 308, 310 correspond to staff members which are assigned to the particular nursing unit associated with the particular station 22 on which screen 374 appears. If desired, additional staff members, such a staff members in other nursing units or staff members associated with other portions of a healthcare facility that are not otherwise characterized as nursing units (e.g., emergency room, imaging, housekeeping, and maintenance, just to name a few) are listed. In some embodiments, if a staff person is located but is not in a patient room, the information in the room column 304 is left blank. This situation may occur, for example, if the staff person is in a hallway of the healthcare facility.


As indicated by a wireless phone icon 378 appearing next to the information in the first row of information in window 376 under columns 304, 306, 308, 310, the associated staff member (e.g., “Perkins, Betty” in the illustrative example as shown in the name column) is carrying a wireless communication device. In window 376, the status column 310 indicates whether or not a corresponding staff member has been located by an associated locating and tracking system of system 20. If a staff member is located, the location appears in the room column 304 for the associated caregiver. The type column 308 provides an indication of the type of caregiver. In the illustrative example, two of the listed staff members are LPN's and one of the listed caregivers is an RN. Other staff member types may include technician, housekeeper, doctor, therapist, and so on and suitable abbreviations of these types of caregivers may be used in type column 308. Up and down arrow icons 314 and 316 are provided to scroll to other staff member rows if more staff members are located than can be viewed in window 376 at the same time.


To contact a desired staff member appearing in window 376, a caregiver using station 22 touches any portion of the row associated with the desired staff member. In response to selection of a staff member to be contacted in this manner, a Select Contact Method 380 window appears on screen 374 and partially overlaps window 376 as shown, for example, in FIG. 7. A list of the various methods by which the selected staff member may be contacted appears in window 376. In the illustrative example, “Contact via wireless device”; “Contact via audio station”; and “Contact via Text Page” are the options that are listed in window 380. Depending on the available methods of contacting the caregiver, more or less similar such messages may appear in window 380.


The caregiver using station 22 (sometimes referred to as the “user”) selects the desired call method option by touching that listed option on window 380. If the user selects the “Contact via wireless device option” or the “Contact via audio station option,” the user then touches a call button 382 appearing in window 380 to initiate the call to the selected type of device (wireless device or audio station in the illustrative example). A Close button 384 also appears in window 380 and if a user touches button 384, window 380 closes and the start screen 300 reappears. If a staff member to be contacted is carrying a device that permits a text page or message, then the user first touches the “Contact via Text Page” option shown in window 380 and then touches a Page button 386. After button 386 is pressed, a keyboard (similar to keyboard 392 appearing in FIG. 8) is presented to the user on the display screen of station 22 for composing the text message to be sent to the staff member to be contacted. A text message window is provided on the display screen along with the keyboard so the user can view the text page message the user is creating. A Send message button is also presented to the user on the display screen of station 22 and the user presses the Send message button to send the text page after it has been composed.


In response to a search button 338 being touched, a Keyboard screen 390 appears on the display screen of graphical audio station 22 as shown, for example, in FIG. 8. Screen 390 has a keyboard 392 which, in turn, has a multitude of number and letter buttons which are laid out similar to a standard QWERTY keyboard. Keyboard 392 also has function keys such as a space bar button, a backspace button, a caps lock button, and a shift button. A symbols button 394 is included on keyboard 392 which is touched to change the function of the number buttons and letter buttons of keyboard 392 to symbol buttons which are touched to type corresponding symbols (e.g., !, @, #, $, %, &, *, etc.).


Window 390 has a last name text box 396 and a first name text box 398 into which the name of a particular staff member may be typed to search for the location in the facility of that individual staff member. A title box 400 has a drop down menu arrow 402 which, when pressed, results in a list of various staff titles (e.g., RN, LPN, doctor, physical therapist, housekeeper, transporter, maintenance, etc.) being present to the user on the display screen of station 22. The user then touches the screen on the type of staff persons the user wishes to search. To initiate the search after the search criteria are entered into one or more of boxes 396, 398, 400, the user presses a search button 404 of window 390. A cancel button 406 is provided on window and is pressed to cancel the search while it is running. Window 390 also has a close button 408 which is pressed to return to screen 374. After the search is complete, a Search Results screen 410 appears on the display screen of station 22 and includes a search results window 412 which lists the staff members that met the search criteria as shown, for example, in FIG. 9. The layout of window 412 is similar to window 376 of screen 374 discussed above and so like reference numerals are used to denote like features of these screens. The caregivers listed in window 412 may be contacted in the same manner as described above in connection with FIGS. 6 and 7.


Referring now to FIG. 10, a Voice Page screen 420 is shown. Screen 420 appears after locations button 320 is pressed and then after a paging groups tab 422 is pressed. In FIG. 10, the locations button 420 has moved from menu 317 and appears as a tab above alongside tab 422 above a paging groups window 424. Window 424 includes a zone column 426 and a name column 428. The rows under columns 426, 428 list the information about various subgroups of stations 22, 24, 122, 222 to which a voice page (i.e., similar to an overhead page or intercom page) can be sent from the station 22 at which the user is standing. Paging to a limited number of other stations 22 and/or stations 24, 122, 222 prevents unnecessary voice paging in areas for which there is no reason for such pages to be heard. This is an improvement over prior art nurse call systems in which paging from a patient room was not even possible, let alone to just a selected subset of other audio stations. Master stations 24 also have this type of “limited area” voice paging capability according to this disclosure, which is an improvement over prior art nurse call systems in which voice pages from a master station were sent to all audio stations associated with the master station.


To send a voice pale to a desired subgroup of other stations 22, 24, 122, 222, the user presses the row associated with the group of devices the user wishes to page and then presses a page button 430 of window 420. Pressing page 430 results in a one-way voice communication channel being created or opened to the devices associated with the selected group. A cancel button 432 is pressed to end the voice page. Additional screen shot examples appear in the Appendices of the written description of U.S. Provisional Patent Application No. 61/066,877 as mentioned previously.


As mentioned previously, a system 20 according to this disclosure is marketed by Hill-Rom Company, Inc. as the Hill-Rom® NaviCare® Nurse Call™ system. Additional details of the components and operability of that system are shown in the Appendices of the U.S. Provisional Patent Applications to which the present application claims the benefit. Each of those U.S. Provisional Patent Applications, including the Appendices of their written descriptions, will be available electronically (i.e., published) on the Patent Application Information Retrieval (PAIR) portion of the U.S. Patent and Trademark Office website when the present application is published.


Although certain illustrative embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.

Claims
  • 1. A healthcare communication method implemented in a healthcare facility having a plurality of patient rooms, the healthcare communication method comprising: providing a plurality of graphical audio stations, each of the patient rooms having at least one of the plurality of graphical audio stations located therein, each of the plurality of graphical audio stations having a graphical display screen,displaying on the graphical display screen of at least one graphical audio station of the plurality of graphical audio stations a list of nurse calls for the room in which the at least one graphical audio station is located and for other rooms,providing a master station communicatively coupled to each of the graphical audio stations, andusing user inputs of at least one graphical audio station of the plurality of graphical audio stations to conduct a search for a location within the healthcare facility of a specific caregiver.
  • 2. The healthcare communication method of claim 1, wherein the user inputs comprise a keyboard shown on the graphical display screen of the at least on graphical audio station, and wherein using user inputs to conduct the search includes entering a name of the specific caregiver to be located using the keyboard.
  • 3. The health care communication method of claim 2, wherein entering the name of the specific caregiver to be located includes entering the first name of the specific caregiver in a first box shown on the graphical display screen of the at least one graphical audio station and entering the last name of the specific caregiver in a second box shown on the graphical display screen of the at least one graphical audio station.
  • 4. The healthcare communication method of claim 1, further comprising using the user inputs to conduct a search for locations of caregivers having specific job titles.
  • 5. The healthcare communication method of claim 4, wherein the specific job titles include one or more of the following: registered nurse (RN), licensed practical nurse (LPN), doctor, physical therapist, housekeeper, transporter, and/or maintenance personnel.
  • 6. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to establish a two-way communication link with the master station.
  • 7. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to establish a two-way communication link with a wireless communication device carried by a caregiver.
  • 8. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to establish a two-way communication link with a telephone of the healthcare facility or a telephone outside the healthcare facility.
  • 9. The healthcare communication method of claim 1, wherein the graphical audio stations located in the patient rooms are each configured to receive a nurse call signal and further comprising communicating the nurse call signal to the master station.
  • 10. The healthcare communication method of claim 1, further comprising providing a plurality of dome light assemblies, each dome light assembly being located in a hallway near a door of a respective patient room, and establishing a two-way communication link between the at least one graphical audio station and the master station using a circuit board located in a housing mounted near a respective one of the plurality of dome light assemblies.
  • 11. The healthcare communication method of claim 1, further comprising receiving at the at least one graphical audio station an alert signal from at least one piece of equipment located in the respective patient room.
  • 12. The healthcare communication method of claim 11, wherein the at least one piece of equipment comprises a hospital bed.
  • 13. The healthcare communication method of claim 11, wherein the alert signal corresponds to an alarm condition of the at least one piece of equipment.
  • 14. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to send a one-way voice page to a subset of the plurality of graphical audio stations.
  • 15. The healthcare communication method of claim 14, further comprising using the user inputs of the at least one graphical audio station to select the subset of graphical audio stations to which the one-way voice page is to be sent.
  • 16. The healthcare communication method of claim 14, further comprising using the user inputs of the at least one graphical audio station to send the one-way voice page to the master station.
  • 17. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to send a text message to a wireless device carried by a caregiver.
  • 18. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to select a contact method from among different contact methods for contacting the specific caregiver.
  • 19. The healthcare communication method of claim 18, further comprising providing locating equipment operable to determine whereabouts of caregivers in the healthcare facility and wherein the different contact methods includes contacting a specific one of the plurality of graphical audio stations corresponding to the location within the healthcare facility of the specific caregiver.
  • 20. The healthcare communication method of claim 1, further comprising using the user inputs of the at least one graphical audio station to perform at least one or more of the following functions: acknowledge alerts or nurse calls, answer alerts or nurse calls, and/or cancel alerts or nurse calls.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 16/398,775, filed Apr. 30, 2019, issued as U.S. Pat. No. 10,638,983, which is a continuation of U.S. application Ser. No. 15/939,762, filed Mar. 29, 2018, issued as U.S. Pat. No. 10,307,113, which is a continuation of U.S. application Ser. No. 15/332,699, filed Oct. 24, 2016, issued as U.S. Pat. No. 9,955,926, which is a continuation of U.S. application Ser. No. 15/053,303, filed Feb. 25, 2016, issued as U.S. Pat. No. 9,517,035, which is a continuation of U.S. application Ser. No. 14/091,392, filed Nov. 27, 2013, issued as U.S. Pat. No. 9,299,242, which is a continuation of U.S. application Ser. No. 12/369,813, filed Feb. 12, 2009, issued as U.S. Pat. No. 8,598,995, and which claimed the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Patent Application Nos. 61/066,877, 61/066,882, 61/066,883, and 61/066,918, each of which was filed Feb. 22, 2008, and U.S. Provisional Patent Application No. 61/145,306, which was filed Jan. 16, 2009, the disclosures of all of which are hereby expressly incorporated by reference herein.

US Referenced Citations (414)
Number Name Date Kind
2330356 Belliveau Sep 1943 A
2335524 Lomax Nov 1943 A
2736888 McLain Feb 1956 A
2896021 Philipps Jul 1959 A
3098220 De Graaf Jul 1963 A
3439320 Ward Apr 1969 A
3478344 Schwitzgebel et al. Nov 1969 A
3553383 Rochtus Jan 1971 A
3599199 Bunting Aug 1971 A
3599200 Bunting Aug 1971 A
3696384 Lester Oct 1972 A
3739329 Lester Jun 1973 A
3767859 Doering et al. Oct 1973 A
3805265 Lester Apr 1974 A
3913153 Adams et al. Oct 1975 A
3973200 Akerberg Aug 1976 A
4067005 Levy et al. Jan 1978 A
4150284 Trenkler et al. Apr 1979 A
4151407 McBride et al. Apr 1979 A
4183015 Drew et al. Jan 1980 A
4216462 McGrath et al. Aug 1980 A
4225953 Simon et al. Sep 1980 A
4228426 Roberts Oct 1980 A
4237344 Moore Dec 1980 A
4264982 Sakarya Apr 1981 A
4275385 White Jun 1981 A
4279433 Petaja Jul 1981 A
4298863 Natitus et al. Nov 1981 A
4331953 Blevins et al. May 1982 A
4356475 Neumann et al. Oct 1982 A
4418334 Burnett Nov 1983 A
4455548 Burnett Jun 1984 A
4489387 Lamb et al. Dec 1984 A
4495495 Ormanns et al. Jan 1985 A
4495496 Miller, III Jan 1985 A
4539560 Fleck et al. Sep 1985 A
4577185 Andersen Mar 1986 A
4578671 Flowers Mar 1986 A
4593273 Narcisse Jun 1986 A
4598275 Ross et al. Jul 1986 A
4601064 Shipley Jul 1986 A
4649385 Aires et al. Mar 1987 A
4680790 Packard et al. Jul 1987 A
4709330 Yokoi et al. Nov 1987 A
4740788 Konneker Apr 1988 A
4752951 Konneker Jun 1988 A
4792798 Wilowski Dec 1988 A
4795905 Zierhut Jan 1989 A
4814751 Hawkins et al. Mar 1989 A
4833452 Currier May 1989 A
4833467 Kobayashi et al. May 1989 A
4837568 Snaper Jun 1989 A
4853692 Wolk et al. Aug 1989 A
4899135 Chahariiran Feb 1990 A
4907845 Wood Mar 1990 A
4947152 Hodges Aug 1990 A
4955000 Nastrom Sep 1990 A
4967195 Shipley Oct 1990 A
4990892 Guest et al. Feb 1991 A
4998095 Shields Mar 1991 A
4998939 Potthast et al. Mar 1991 A
5006830 Merritt Apr 1991 A
5027314 Linwood et al. Jun 1991 A
5041086 Koenig et al. Aug 1991 A
5062151 Shipley Oct 1991 A
5065154 Kaiser Nov 1991 A
5075523 Ford Dec 1991 A
5086290 Murray et al. Feb 1992 A
5103108 Crimmins Apr 1992 A
5124991 Allen Jun 1992 A
5137033 Norton Aug 1992 A
5140309 Gusakov Aug 1992 A
5153584 Engira Oct 1992 A
5235258 Schuerch Aug 1993 A
5266944 Carroll et al. Nov 1993 A
5276680 Messenger Jan 1994 A
5291399 Chaco Mar 1994 A
5319355 Russek Jun 1994 A
5319363 Welch et al. Jun 1994 A
5327592 Stump Jul 1994 A
5351439 Takeda et al. Oct 1994 A
5357254 Kah, Jr. Oct 1994 A
5375604 Kelly et al. Dec 1994 A
5396224 Dukes et al. Mar 1995 A
5396227 Carroll et al. Mar 1995 A
5416695 Stutman et al. May 1995 A
5430900 Kim Jul 1995 A
5434775 Sims et al. Jul 1995 A
5446678 Saltzstein et al. Aug 1995 A
5455560 Owen Oct 1995 A
5458123 Unger Oct 1995 A
5461390 Hoshen Oct 1995 A
5475367 Prevost Dec 1995 A
5511256 Capaldi Apr 1996 A
5534851 Russek Jul 1996 A
5537459 Price et al. Jul 1996 A
5548637 Heller et al. Aug 1996 A
5549113 Halleck et al. Aug 1996 A
5561412 Novak et al. Oct 1996 A
5564108 Hunsaker et al. Oct 1996 A
5568119 Schipper et al. Oct 1996 A
5576452 Dever et al. Nov 1996 A
5576952 Stutman et al. Nov 1996 A
5579001 Dempsey et al. Nov 1996 A
5588005 Ali et al. Dec 1996 A
5594786 Chaco et al. Jan 1997 A
5600214 Fromson Feb 1997 A
5621388 Sherburne et al. Apr 1997 A
5635907 Bernard et al. Jun 1997 A
5636245 Ernst et al. Jun 1997 A
5640953 Bishop et al. Jun 1997 A
5649833 Pfeuffer et al. Jul 1997 A
5650769 Campana, Jr. Jul 1997 A
5650770 Schlager et al. Jul 1997 A
5664270 Bell et al. Sep 1997 A
5682139 Pradeep et al. Oct 1997 A
5686888 Welles, II Nov 1997 A
5686902 Reis et al. Nov 1997 A
5687734 Dempsey et al. Nov 1997 A
5689229 Chaco et al. Nov 1997 A
5691980 Welles, II et al. Nov 1997 A
5699038 Ulrich et al. Dec 1997 A
5705980 Shapiro Jan 1998 A
5708421 Boyd Jan 1998 A
5713856 Eggers et al. Feb 1998 A
5714548 Ma et al. Feb 1998 A
5719761 Gatti et al. Feb 1998 A
5731757 Layson, Jr. Mar 1998 A
5742237 Bledsoe Apr 1998 A
5751246 Hertel May 1998 A
5752917 Fuchs May 1998 A
5760704 Barton et al. Jun 1998 A
5767791 Stoop et al. Jun 1998 A
5781442 Engleson et al. Jul 1998 A
5781921 Nichols Jul 1998 A
5787528 Antinori Aug 1998 A
5793290 Eagleson et al. Aug 1998 A
5808564 Simms et al. Sep 1998 A
5812056 Law Sep 1998 A
5822418 Yacenda et al. Oct 1998 A
5822544 Chaco et al. Oct 1998 A
5838223 Gallant et al. Nov 1998 A
5844488 Musick Dec 1998 A
5867821 Ballantyne et al. Feb 1999 A
5877675 Rebstock et al. Mar 1999 A
5901391 Kato May 1999 A
5933488 Marcus et al. Aug 1999 A
5936539 Fuchs Aug 1999 A
5942986 Shabot et al. Aug 1999 A
5944659 Flach et al. Aug 1999 A
5956539 Fitterman et al. Sep 1999 A
5963137 Waters, Sr. Oct 1999 A
5974389 Clark et al. Oct 1999 A
5991728 DeBusk et al. Nov 1999 A
5995937 DeBusk et al. Nov 1999 A
6014633 DeBusk et al. Jan 2000 A
6037723 Shafer et al. Mar 2000 A
6057758 Dempsey et al. May 2000 A
6057782 Koenig May 2000 A
6067019 Scott May 2000 A
6076166 Moshfeghi et al. Jun 2000 A
6078261 Davsko Jun 2000 A
6085493 DeBusk et al. Jul 2000 A
6088362 Tumbull et al. Jul 2000 A
6093146 Filangeri Jul 2000 A
6097308 Albert et al. Aug 2000 A
6101644 Gagneur et al. Aug 2000 A
6111509 Holmes Aug 2000 A
6125350 Dirbas Sep 2000 A
6133837 Riley Oct 2000 A
6147592 Ulrich et al. Nov 2000 A
6183417 Geheb et al. Feb 2001 B1
6208250 Dixon et al. Mar 2001 B1
6241668 Herzog Jun 2001 B1
6259355 Chaco et al. Jul 2001 B1
6264614 Albert et al. Jul 2001 B1
6272347 Griffith et al. Aug 2001 B1
6279183 Kummer et al. Aug 2001 B1
6287253 Ortega et al. Sep 2001 B1
6302844 Walker et al. Oct 2001 B1
6314556 DeBusk et al. Nov 2001 B1
6320510 Menkedick et al. Nov 2001 B2
6344794 Ulrich et al. Feb 2002 B1
6348777 Brown et al. Feb 2002 B1
6362725 Ulrich et al. Mar 2002 B1
6364834 Reuss et al. Apr 2002 B1
6398727 Bui et al. Jun 2002 B1
6406426 Reuss et al. Jun 2002 B1
6407335 Franklin-Lees et al. Jun 2002 B1
6412980 Lounsberry et al. Jul 2002 B1
6416471 Kumar et al. Jul 2002 B1
6421649 Rattner Jul 2002 B1
6439769 Polkus et al. Aug 2002 B1
6441742 Lovely et al. Aug 2002 B1
6442290 Ellis et al. Aug 2002 B1
6445299 Rojas, Jr. Sep 2002 B1
6450956 Rappaport et al. Sep 2002 B1
6462656 Ulrich et al. Oct 2002 B2
6483264 Shafer et al. Nov 2002 B1
6486792 Moster et al. Nov 2002 B1
6493568 Bell et al. Dec 2002 B1
6494831 Koritzinsky Dec 2002 B1
6510344 Halpern Jan 2003 B1
6516324 Jones et al. Feb 2003 B1
6526310 Carter et al. Feb 2003 B1
6529164 Carter Mar 2003 B1
6533453 Heidsieck et al. Mar 2003 B1
6535576 Vafi et al. Mar 2003 B2
6539393 Kabala Mar 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6553105 Chea, Jr. et al. Apr 2003 B2
6553106 Gould et al. Apr 2003 B1
6554174 Aceves Apr 2003 B1
6556630 Brinsfield et al. Apr 2003 B1
6560224 Kung et al. May 2003 B1
6560274 Leitgeb et al. May 2003 B1
6572556 Stoycos et al. Jun 2003 B2
6575901 Stoycos et al. Jun 2003 B2
6581204 DeBusk et al. Jun 2003 B2
6584182 Brodnick Jun 2003 B2
6584454 Hummel, Jr. et al. Jun 2003 B1
6585645 Hutchinson Jul 2003 B2
6589170 Flach et al. Jul 2003 B1
6593528 Franklin-Lees et al. Jul 2003 B2
6594146 Frangesch et al. Jul 2003 B2
6594519 Stoycos et al. Jul 2003 B2
6600421 Freeman Jul 2003 B2
6603494 Banks et al. Aug 2003 B1
6609115 Mehring et al. Aug 2003 B1
6616606 Petersen et al. Sep 2003 B1
6622088 Hood Sep 2003 B2
6640246 Gary, Jr. et al. Oct 2003 B1
6643238 Nakajima Nov 2003 B2
6650346 Jaeger et al. Nov 2003 B1
6659947 Carter et al. Dec 2003 B1
6665358 Oldagiri Dec 2003 B1
6665385 Rogers et al. Dec 2003 B2
6665820 Frowein et al. Dec 2003 B1
6669630 Joliat et al. Dec 2003 B1
6671547 Lyster et al. Dec 2003 B2
6671563 Engelson et al. Dec 2003 B1
6685633 Albert et al. Feb 2004 B2
6689091 Bui et al. Feb 2004 B2
6693514 Perea, Jr. et al. Feb 2004 B2
6694367 Miesbauer et al. Feb 2004 B1
6694509 Stoval et al. Feb 2004 B1
6697765 Kuth Feb 2004 B2
6707476 Hochstedler Mar 2004 B1
6714913 Brandt et al. Mar 2004 B2
6721818 Nakamura Apr 2004 B1
6726634 Freeman Apr 2004 B2
6727818 Wildman et al. Apr 2004 B1
6731311 Bufe et al. May 2004 B2
6731989 Engleson et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6749566 Russ Jun 2004 B2
6751630 Franks et al. Jun 2004 B1
6754545 Haeuser et al. Jun 2004 B2
6754883 DeBusk et al. Jun 2004 B2
6759607 Engler Jul 2004 B2
6759959 Wildman Jul 2004 B2
6763541 Mahoney et al. Jul 2004 B2
6771172 Robinson et al. Aug 2004 B1
6773396 Flach et al. Aug 2004 B2
6778225 David Aug 2004 B2
6781517 Moster et al. Aug 2004 B2
6784797 Smith et al. Aug 2004 B2
6788206 Edwards Sep 2004 B1
6791460 Dixon et al. Sep 2004 B2
6792396 Inda et al. Sep 2004 B2
6801227 Bocionek et al. Oct 2004 B2
6807543 Muthya Oct 2004 B2
6825763 Ulrich et al. Nov 2004 B2
6826578 Brackett et al. Nov 2004 B2
6828992 Freeman et al. Dec 2004 B1
6829796 Salvatini et al. Dec 2004 B2
6830549 Bui et al. Dec 2004 B2
6832199 Kucek et al. Dec 2004 B1
6840117 Hubbard, Jr. Jan 2005 B2
6847814 Vogeleisen Jan 2005 B1
6864795 Smith et al. Mar 2005 B2
6868256 Dooley et al. Mar 2005 B2
6870484 Brinsfield et al. Mar 2005 B1
6871211 Labounty et al. Mar 2005 B2
6873884 Brackett et al. Mar 2005 B2
6876303 Reeder et al. Apr 2005 B2
6876985 Kawanaka Apr 2005 B2
6885288 Pincus Apr 2005 B2
6891909 Hurley et al. May 2005 B2
6892083 Shostak May 2005 B2
6904161 Becker et al. Jun 2005 B1
6909974 Yung et al. Jun 2005 B2
6909995 Shiraishi Jun 2005 B2
6912549 Rotter et al. Jun 2005 B2
6915170 Engleson et al. Jul 2005 B2
6925367 Fontius Aug 2005 B2
6930878 Brackett et al. Aug 2005 B2
6958706 Chaco et al. Oct 2005 B2
6968375 Brown Nov 2005 B1
6982639 Brackett et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6998986 Smith Feb 2006 B2
7020921 Wang Apr 2006 B2
7023821 Wotherspoon et al. Apr 2006 B2
7038584 Carter May 2006 B2
7053767 Petite et al. May 2006 B2
7061396 Conrad et al. Jun 2006 B1
7068143 Doering et al. Jun 2006 B2
7071820 Callaway Jul 2006 B2
7079036 Cooper et al. Jul 2006 B2
7088235 Carricut Aug 2006 B1
7092376 Schuman Aug 2006 B2
7107642 Wong et al. Sep 2006 B2
7138902 Menard Nov 2006 B2
7151457 Riley et al. Dec 2006 B2
7160133 Karadimas et al. Jan 2007 B2
7248881 Shostak Jul 2007 B2
7263669 Denholm Aug 2007 B2
7275220 Brummel et al. Sep 2007 B2
7290299 Votel Nov 2007 B2
7292135 Bixler et al. Nov 2007 B2
7299512 Cavalier et al. Nov 2007 B2
7301451 Hastings Nov 2007 B2
7307522 Dawson Dec 2007 B2
7310541 Shostak Dec 2007 B2
7319386 Collins, Jr. et al. Jan 2008 B2
7333002 Bixler et al. Feb 2008 B2
7336187 Hubbard, Jr. et al. Feb 2008 B2
8598995 Schuman et al. Dec 2013 B2
9299242 Schuman et al. Mar 2016 B2
9361021 Jordan Jun 2016 B2
9517035 Schuman et al. Dec 2016 B2
9955926 Schuman et al. May 2018 B2
10307113 Schuman et al. Jun 2019 B2
10638983 Schuman et al. May 2020 B2
20010044823 Labounty et al. Nov 2001 A1
20010050610 Gelston Dec 2001 A1
20010051765 Walker et al. Dec 2001 A1
20020014951 Kramer et al. Feb 2002 A1
20020032583 Joao Mar 2002 A1
20020044043 Chaco et al. Apr 2002 A1
20020044059 Reeder et al. Apr 2002 A1
20020067273 Jaques et al. Jun 2002 A1
20020070867 Conway et al. Jun 2002 A1
20020080037 Dixon et al. Jun 2002 A1
20020101349 Rojas, Jr. Aug 2002 A1
20020103674 Reeder et al. Aug 2002 A1
20020151990 Ulrich et al. Oct 2002 A1
20020173991 Avitall Nov 2002 A1
20020186136 Schuman Dec 2002 A1
20020196141 Boone et al. Dec 2002 A1
20030010345 Koblasz et al. Jan 2003 A1
20030028449 Heinen et al. Feb 2003 A1
20030030569 Ulrich et al. Feb 2003 A1
20030052787 Zerhusen et al. Mar 2003 A1
20030074222 Rosow et al. Apr 2003 A1
20030093300 Denholm May 2003 A1
20030146835 Carter Aug 2003 A1
20030149598 Santoso et al. Aug 2003 A1
20030176798 Simon Sep 2003 A1
20030179099 Perea, Jr. et al. Sep 2003 A1
20030197614 Smith et al. Oct 2003 A1
20030206116 Weiner et al. Nov 2003 A1
20030212575 Saalsaa et al. Nov 2003 A1
20030230469 Engler Dec 2003 A1
20040064890 Kim et al. Apr 2004 A1
20040158922 Eberler et al. Aug 2004 A1
20040183681 Smith Sep 2004 A1
20040183684 Callaway Sep 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040193449 Wildman et al. Sep 2004 A1
20040222897 Schuhmann et al. Nov 2004 A1
20040243446 Wyatt Dec 2004 A1
20040249670 Noguchi et al. Dec 2004 A1
20040261184 Flick Dec 2004 A1
20050035862 Wildman et al. Feb 2005 A1
20050055779 Damewood Mar 2005 A1
20050076441 Dominati et al. Apr 2005 A1
20050110617 Kile et al. May 2005 A1
20050155149 Pedersen Jul 2005 A1
20050170863 Shostak Aug 2005 A1
20050206505 Arcaria Sep 2005 A1
20050242946 Hubbard, Jr. et al. Nov 2005 A1
20060046579 Karadimas et al. Mar 2006 A1
20060049936 Collins, Jr. et al. Mar 2006 A1
20060114854 Wotherspoon et al. Jun 2006 A1
20060126560 Wotherspoon et al. Jun 2006 A1
20060136265 Summers et al. Jun 2006 A1
20060214786 Bixler et al. Sep 2006 A1
20060220798 Willis Oct 2006 A1
20060239195 Camins et al. Oct 2006 A1
20060248221 Hottel et al. Nov 2006 A1
20060267740 Bixler et al. Nov 2006 A1
20070071114 Sanderford, Jr. et al. Mar 2007 A1
20070135688 Brown Jun 2007 A1
20070156456 McGillin et al. Jul 2007 A1
20070210917 Collins, Jr. et al. Sep 2007 A1
20070229249 McNeal et al. Oct 2007 A1
20070237487 Lin Oct 2007 A1
20070239484 Around et al. Oct 2007 A1
20070257788 Carlson et al. Nov 2007 A1
20080004904 Tran Jan 2008 A1
20080015900 Denholm Jan 2008 A1
20080018436 Traughber et al. Jan 2008 A1
20080027754 Auker et al. Jan 2008 A1
20090212925 Schuman, Sr. et al. Aug 2009 A1
20090212956 Schuman et al. Aug 2009 A1
20090217080 Ferguson et al. Aug 2009 A1
20160166214 Schuman et al. Jun 2016 A1
20170049408 Schuman et al. Feb 2017 A1
20180220974 Schuman et al. Aug 2018 A1
20190254613 Schuman et al. Aug 2019 A1
Foreign Referenced Citations (11)
Number Date Country
1463269 Sep 2004 EP
1 623 666 Feb 2006 EP
1 679 648 Jul 2006 EP
250 769 Apr 1926 GB
1-76197 Feb 1989 JP
WO 9523378 Aug 1995 WO
WO 9808203 Feb 1998 WO
0198936 Dec 2001 WO
WO 0193175 Dec 2001 WO
WO 02091297 Nov 2002 WO
WO 2004036390 Apr 2004 WO
Non-Patent Literature Citations (12)
Entry
Hill-Rom A Hillenbrand Industry, The COMposer® System Installation Manual, 2003.
Hill-Rom A Hillenbrand Industry, The COMposer Communication System Service Manual, 1995.
Hill-Rom A Hillenbrand Industry, COMLinx™ Enterprise Solutions Nurse Communication Module, User's Guide, 2000.
Partial European Search Report from EP 09 25 0420, dated Jun. 16, 2009.
European Search Report for European Patent Application No. 12164815.8, dated Mar. 9, 2012, 8 pages.
COMLinx Nurse Communication Module Technological Advances, Jul. 13, 2006, 4 pages.
European Search Report for EP 09 25 0419, dated Aug. 13, 2010, (7 pages).
European Search Report for European Patent Application No. 12164817.4, dated Mar. 9, 2012, 9 pages.
Notice of Allowance and Fee(s) Due, Part B—Fee(s) Transmittal, Determination of Patent Term Adjustment Under 35 U.S.C. 1.54(b) and Notice of Allowability for U.S. Appl. No. 12/369,832, dated Jan. 19, 2012, 7 pages.
European Search Report for European Patent Application No. 12164812.5, dated Mar. 9, 2012, 8 pages.
Extended European Search Report for European Patent Application No. 19197129.0 dated Oct. 15, 2019; 11 pages.
Communication from the European Patent Office for European Patent Application No. 17197129.0 dated Oct. 23, 2020 (6 pages).
Related Publications (1)
Number Date Country
20200229776 A1 Jul 2020 US
Provisional Applications (5)
Number Date Country
61066877 Feb 2008 US
61066882 Feb 2008 US
61066883 Feb 2008 US
61066918 Feb 2008 US
61145306 Jan 2009 US
Continuations (6)
Number Date Country
Parent 16398775 Apr 2019 US
Child 16841009 US
Parent 15939762 Mar 2018 US
Child 16398775 US
Parent 15332699 Oct 2016 US
Child 15939762 US
Parent 15053303 Feb 2016 US
Child 15332699 US
Parent 14091392 Nov 2013 US
Child 15053303 US
Parent 12369813 Feb 2009 US
Child 14091392 US