1. Field of the Invention
The present invention relates to systems and methods for distributed control of the inductive and capacitive loading of high voltage power transmission lines by using online injection modules that hang on or are connected to the power lines and are enabled for line balancing and distributed control.
2. Prior Art
Long transmission lines 102 of the power transmission system 100 shown in
The foregoing effect is referred to as the Ferranti effect, and is caused by the combined effects of the distributed shunt capacitance and series inductance giving rise to a charging current in the transmission line. In particular, the transmission line 102 of
Consider the lumped model of
Now consider
When the LoadRL 312 is not zero, the Ferranti effect does not disappear, but at least for substantial loads, the effects of the capacitive shunt current becomes masked by the dominance of the effects of the load current {right arrow over (ILoad)} 311, that is the resultant series inductive and resistive drops due the load current {right arrow over (ILoad)} 311 which is normally much larger than the drops due to the capacitive charging current at no-load conditions. The effects of the shunt capacitor charging current, under these conditions, tends to be lumped with the overall characteristics of the power distribution system for any corrections that may be attempted to maintain voltages, power factors, etc. within desirable limits.
It will be good to have an adaptive solution that can prevent or control the Ferranti effect from increasing the voltage at the receiving end of transmission lines when the load is reduced. What is proposed by the present invention is such a solution implemented using the distributed injection modules, which are also sometimes referred to as active impedance injection modules or distributed voltage/impedance injection modules that have been proposed by the parent applications of the current invention.
The drawings are made to point out and distinguish the invention from the prior art. The objects, features, and advantages of the invention are detailed in the description taken together with the drawings.
The invention disclosed herein is generally directed at providing a system and method for controlling or limiting the increase in voltage at the load end of a long transmission line by using impedance/voltage injection modules, such as, but not limited to, those disclosed in U.S. Pat. No. 7,105,952.
A plurality of implementations of injection modules has been proposed by the present inventors to allow balancing of the power transferred over a transmission line by changing the line impedance locally. By making these injection modules intelligent, self-aware, and with local intercommunication capability, it is possible to monitor locally and control the power flow over the high-voltage transmission (HV transmission) lines of the power grid. The distributed injection modules are enabled to recognize changes in the power flow characteristics and inject impedances to compensate for the unwanted changes in the high-voltage (HV) transmission lines.
While these injection modules could be directly connected in series with the transmission line with ground connection, this is not normally done because of the need to provide insulation that can sustain high line voltage differences to ground at each module, which will become prohibitively expensive and also make the modules heavy. In practice, the impedance modules are can be electrically and mechanically connected to the transmission line, and are at line potential, or alternatively only magnetically coupled to the transmission line, but in either case, they are enabled to respond to transmission line current variations. These impedance injection modules are ideal candidates for distributed implementation, as existing high voltage power transmission systems can be retrofitted without disturbing the transmission line itself, though alternate implementation of impedance/voltage injection module installations using movable and other support structures are also usable for correcting the Ferranti effect. (The distributed impedance/voltage injection is described in detail as it is the preferred mode for this application). Thus in substantially all cases, the impedance/voltage injection modules respond to transmission line current and not transmission line voltage. Any transmission line corrections that require line voltage information such as corrections in voltage and power factor by each injection module are made by instructions received by wireless, wireline or power line communication to the module based on current measurements made by that module, other communicably linked modules or other line current measurement capability coupled to the high voltage power lines and again communicably linked to the impedance/voltage injection modules, and voltage measurements made at the next line voltage measurement facility, typically at the next substation.
As previously described, phase diagram
As discussed earlier, concerning the phase diagram 400 in
Since the voltage rise is a distributed function that is cumulative over the length of the HV transmission line, it is possible to introduce corrective changes by the preferred method of injecting the correct voltage (impedance) values by the voltage/impedance injection modules distributed over the HV transmission line. Alternately the correction can be applied, as injected voltages to correct the cumulative effect over sections of the high voltage transmission line by using groups of impedance/voltage injection modules, at different points in the line. Both such corrections will be very effective in overcoming the Ferranti effect.
Note also that the Ferranti effect is not a “strong” effect in comparison to other conditions sought to be corrected by the injection modules (line balancing, power factor correction, etc.), but is a cumulative effect of a long transmission line 102. Consequently, the number of injection modules used for overall transmission line control may easily exceed the number needed simply for correction of the Ferranti effect, in which case one might use an equally spaced subset of the available modules for this purpose.
The injection modules are sometimes referred to as impedance/voltage injection modules, as the function of the modules for the present invention is the injection of an effect onto the transmission line with the proper phasing to achieve the desired result, specifically the diminishing or cancellation of the voltage {right arrow over (ΔVL)} 404 as shown in
Even though the invention disclosed is described using specific implementations, circuits, and components, it is intended only to be exemplary and non-limiting. The practitioners of the art will be able to understand and modify the same based on new innovations and concepts, as they are made available. The invention is intended to encompass these modifications.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/055,422 filed Feb. 26, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/264,739 filed Dec. 8, 2015, and is a continuation-in-part of U.S. patent application Ser. No. 15/069,785 filed Mar. 14, 2016, which claims the benefit of U.S. Provisional Application No. 62/264,744 filed Dec. 8, 2015, and this application also claims the benefit of U.S. Provisional Patent Application No. 62/359,885 filed Jul. 8, 2016.
Number | Name | Date | Kind |
---|---|---|---|
2237812 | De Blieux | Apr 1941 | A |
2551841 | Kepple et al. | May 1951 | A |
3556310 | Loukotsky | Jan 1971 | A |
3704001 | Sloop | Nov 1972 | A |
3750992 | Johnson | Aug 1973 | A |
3913003 | Felkel | Oct 1975 | A |
4025824 | Cheatham | May 1977 | A |
4057736 | Jeppson | Nov 1977 | A |
4103853 | Bannan | Aug 1978 | A |
4164345 | Arnold et al. | Aug 1979 | A |
4200899 | Volman et al. | Apr 1980 | A |
4277639 | Olsson | Jul 1981 | A |
4286207 | Spreadbury et al. | Aug 1981 | A |
4323722 | Winkelman | Apr 1982 | A |
4367512 | Fujita | Jan 1983 | A |
4514950 | Goodson, Jr. | May 1985 | A |
4562360 | Fujimoto | Dec 1985 | A |
4577826 | Bergstrom et al. | Mar 1986 | A |
4710850 | Jahn et al. | Dec 1987 | A |
4821138 | Nakano et al. | Apr 1989 | A |
4903927 | Farmer | Feb 1990 | A |
5006846 | Granville et al. | Apr 1991 | A |
5023768 | Collier | Jun 1991 | A |
5032738 | Vithayathil | Jul 1991 | A |
5193774 | Rogers | Mar 1993 | A |
5461300 | Kappenman | Oct 1995 | A |
5469044 | Gyugyi et al. | Nov 1995 | A |
5610501 | Nelson et al. | Mar 1997 | A |
5648888 | Le Francois et al. | Jul 1997 | A |
5844462 | Rapoport et al. | Dec 1998 | A |
5884886 | Hageli | Mar 1999 | A |
5886888 | Akamatsu et al. | Mar 1999 | A |
5986617 | McLellan | Nov 1999 | A |
6088249 | Adamson | Jul 2000 | A |
6134105 | Lueker | Oct 2000 | A |
6147581 | Rancourt et al. | Nov 2000 | A |
6215653 | Cochran et al. | Apr 2001 | B1 |
6233137 | Kolos et al. | May 2001 | B1 |
6335613 | Sen et al. | Jan 2002 | B1 |
6486569 | Couture | Nov 2002 | B2 |
6727604 | Couture | Apr 2004 | B2 |
6831377 | Yampolsky et al. | Dec 2004 | B2 |
6895373 | Garcia et al. | May 2005 | B2 |
6914195 | Archambault et al. | Jul 2005 | B2 |
7090176 | Chavot et al. | Aug 2006 | B2 |
7091703 | Folts et al. | Aug 2006 | B2 |
7105952 | Divan et al. | Sep 2006 | B2 |
7193338 | Ghali | Mar 2007 | B2 |
7352564 | Courtney | Apr 2008 | B2 |
7460931 | Jacobson | Dec 2008 | B2 |
7642757 | Yoon et al. | Jan 2010 | B2 |
7688043 | Toki et al. | Mar 2010 | B2 |
7834736 | Johnson et al. | Nov 2010 | B1 |
7835128 | Divan et al. | Nov 2010 | B2 |
7932621 | Spellman | Apr 2011 | B1 |
8019484 | Korba et al. | Sep 2011 | B2 |
8249836 | Yoon et al. | Aug 2012 | B2 |
8270558 | Dielissen | Sep 2012 | B2 |
8310099 | Engel et al. | Nov 2012 | B2 |
8401709 | Cherian et al. | Mar 2013 | B2 |
8441778 | Ashmore | May 2013 | B1 |
8497592 | Jones | Jul 2013 | B1 |
8680720 | Schauder et al. | Mar 2014 | B2 |
8681479 | Englert et al. | Mar 2014 | B2 |
8816527 | Ramsay et al. | Aug 2014 | B1 |
8825218 | Cherian et al. | Sep 2014 | B2 |
8867244 | Trainer et al. | Oct 2014 | B2 |
8872366 | Campion et al. | Oct 2014 | B2 |
8890373 | Savolainen | Nov 2014 | B2 |
8896988 | Subbaiahthever et al. | Nov 2014 | B2 |
8922038 | Bywaters et al. | Dec 2014 | B2 |
8957752 | Sharma et al. | Feb 2015 | B2 |
8996183 | Forbes, Jr. | Mar 2015 | B2 |
9099893 | Schmiegel et al. | Aug 2015 | B2 |
9124100 | Ukai et al. | Sep 2015 | B2 |
9124138 | Mori et al. | Sep 2015 | B2 |
9130458 | Crookes et al. | Sep 2015 | B2 |
9172246 | Ramsay | Oct 2015 | B2 |
9178456 | Smith et al. | Nov 2015 | B2 |
9185000 | Mabilleau et al. | Nov 2015 | B2 |
9207698 | Forbes, Jr. | Dec 2015 | B2 |
9217762 | Kreikebaum et al. | Dec 2015 | B2 |
9246325 | Coca Figuerola et al. | Jan 2016 | B2 |
9325173 | Varma et al. | Apr 2016 | B2 |
9331482 | Huang | May 2016 | B2 |
9659114 | He et al. | May 2017 | B2 |
9843176 | Gibson | Dec 2017 | B2 |
20020005668 | Couture | Jan 2002 | A1 |
20020042696 | Garcia et al. | Apr 2002 | A1 |
20030006652 | Couture | Jan 2003 | A1 |
20030098768 | Hoffmann et al. | May 2003 | A1 |
20040217836 | Archambault et al. | Nov 2004 | A1 |
20050052801 | Ghali | Mar 2005 | A1 |
20050073200 | Divan et al. | Apr 2005 | A1 |
20050194944 | Folts et al. | Sep 2005 | A1 |
20050205726 | Chavot et al. | Sep 2005 | A1 |
20060085097 | Courtney | Apr 2006 | A1 |
20070135972 | Jacobson | Jun 2007 | A1 |
20070250217 | Yoon et al. | Oct 2007 | A1 |
20080103737 | Yoon et al. | May 2008 | A1 |
20080157728 | Toki et al. | Jul 2008 | A1 |
20080177425 | Korba et al. | Jul 2008 | A1 |
20080278976 | Schneider et al. | Nov 2008 | A1 |
20080310069 | Divan et al. | Dec 2008 | A1 |
20090243876 | Lilien et al. | Oct 2009 | A1 |
20090281679 | Taft et al. | Nov 2009 | A1 |
20100026275 | Walton | Feb 2010 | A1 |
20100177450 | Holcomb et al. | Jul 2010 | A1 |
20100213765 | Engel et al. | Aug 2010 | A1 |
20100302744 | Englert et al. | Dec 2010 | A1 |
20110060474 | Schmiegel et al. | Mar 2011 | A1 |
20110095162 | Parduhn et al. | Apr 2011 | A1 |
20110106321 | Cherian et al. | May 2011 | A1 |
20110172837 | Forbes, Jr. | Jul 2011 | A1 |
20120105023 | Schauder et al. | May 2012 | A1 |
20120146335 | Bywaters et al. | Jun 2012 | A1 |
20120205981 | Varma et al. | Aug 2012 | A1 |
20120242150 | Ukai et al. | Sep 2012 | A1 |
20120255920 | Shaw et al. | Oct 2012 | A1 |
20120293920 | Subbaiahthever et al. | Nov 2012 | A1 |
20130002032 | Mori et al. | Jan 2013 | A1 |
20130033103 | McJunkin et al. | Feb 2013 | A1 |
20130044407 | Byeon et al. | Feb 2013 | A1 |
20130094264 | Crookes et al. | Apr 2013 | A1 |
20130128636 | Trainer et al. | May 2013 | A1 |
20130166085 | Cherian et al. | Jun 2013 | A1 |
20130169044 | Stinessen et al. | Jul 2013 | A1 |
20130182355 | Coca Figuerola et al. | Jul 2013 | A1 |
20130184894 | Sakuma et al. | Jul 2013 | A1 |
20130200617 | Smith et al. | Aug 2013 | A1 |
20130277082 | Hyde et al. | Oct 2013 | A1 |
20130345888 | Forbes, Jr. | Dec 2013 | A1 |
20140025217 | Jin et al. | Jan 2014 | A1 |
20140032000 | Chandrashekhara et al. | Jan 2014 | A1 |
20140111297 | Earhart et al. | Apr 2014 | A1 |
20140129195 | He et al. | May 2014 | A1 |
20140132229 | Huang | May 2014 | A1 |
20140153383 | Mabilleau et al. | Jun 2014 | A1 |
20140188689 | Kalsi et al. | Jul 2014 | A1 |
20140203640 | Stinessen | Jul 2014 | A1 |
20140210213 | Campion et al. | Jul 2014 | A1 |
20140246914 | Chopra et al. | Sep 2014 | A1 |
20140247554 | Sharma et al. | Sep 2014 | A1 |
20140268458 | Luciani et al. | Sep 2014 | A1 |
20140312859 | Ramsay et al. | Oct 2014 | A1 |
20140327305 | Ramsay et al. | Nov 2014 | A1 |
20140347158 | Goeke et al. | Nov 2014 | A1 |
20150012146 | Cherian et al. | Jan 2015 | A1 |
20150029764 | Peng | Jan 2015 | A1 |
20150051744 | Mitra | Feb 2015 | A1 |
20150184415 | Bushore | Jul 2015 | A1 |
20150226772 | Kreikebaum et al. | Aug 2015 | A1 |
20150244307 | Cameron | Aug 2015 | A1 |
20150270689 | Gibson et al. | Sep 2015 | A1 |
20160036231 | Ramsay et al. | Feb 2016 | A1 |
20160036341 | Jang et al. | Feb 2016 | A1 |
20170163036 | Munguia et al. | Jun 2017 | A1 |
20170169928 | Carrow et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
660094 | Mar 1987 | CH |
103256337 | Aug 2013 | CN |
203668968 | Jun 2014 | CN |
2002-199563 | Jul 2002 | JP |
2005-045888 | Feb 2005 | JP |
2015-086692 | May 2015 | JP |
10-1053514 | Aug 2011 | KR |
WO-2008082820 | Jul 2008 | WO |
WO-2014035881 | Mar 2014 | WO |
WO-2014074956 | May 2014 | WO |
WO-2014099876 | Jun 2014 | WO |
WO-2015074538 | May 2015 | WO |
WO-2015119789 | Aug 2015 | WO |
Entry |
---|
“Office Action dated Nov. 3, 2017; U.S. Appl. No. 15/157,726”, Nov. 3, 2017. |
“Office Action dated Jul. 26, 2017; U.S. Appl. No. 15/069,785”, (Jul. 26, 2017). |
Amin, S. M., et al., “Toward a Smart Grid: Power Delivery for the 21st Century”, IEEE power & energy magazine, vol. 3, No. 5, (Sep./Oct. 2005), pp. 34-41. |
Angeladas, Emmanouil , “High Voltage Substations Overview (part 1)”, Siemens, (Jan. 24, 2013), pp. 1-8. |
Aquino-Lugo, Angel A., “Distributed and Decentralized Control of the Power Grid”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, (2010), 172 pp. total. |
Dash, P. K., et al., “Digital Protection of Power Transmission Lines in the Presence of Series Connected FACTS Devices”, IEEE Power Engineering Society Winter Meeting, (2000), pp. 1967-1972. |
Divan, D. M., “Nondissipative Switched Networks for High-Power Applications”, Electronics Letters, vol. 20, No. 7, (Mar. 29, 1984), pp. 277-279. |
Funato, Hirohito , et al., “Realization of Negative Inductance Using Variable Active-Passive Reactance (VAPAR)”, IEEE Transactions on Power Electronics, vol. 12, No. 4, (Jul. 1997), pp. 589-596. |
Gyugyi, Laszlo , et al., “Status Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines”, IEEE Transactions on Power Delivery, vol. 12, No. 1, (Jan. 1997), pp. 406-417. |
Gyugyi, Laszlo , et al., “The Interline Power Flow Controller Concept: A New Approach to Power Flow Management in Transmission Systems”, IEEE Transactions on Power Delivery, vol. 14, No. 3, (Jul. 1999), pp. 1115-1123. |
Kavitha, M. , et al., “Integration of FACTS into Energy Storage Systems for Future Power Systems Applications”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, Issue 2, (Feb. 2013), pp. 800-810. |
Kumbhar, Mahesh M., et al., “Smart Grid: Advanced Electricity Distribution Network”, IOSR Journal of Engineering (IOSRJEN), vol. 2, Issue 6, (Jun. 2012), pp. 23-29. |
Lambert, Frank C., “Power Flow Control”, ISGT Europe, 2014, Istanbul, Turkey, (Oct. 13, 2014), pp. 1-15. |
Lehmkoster, Carsten , “Security Constrained Optimal Power Flow for an Economical Operation of FACTS-Devices in Liberalized Energy Markets”, IEEE Transactions on Power Delivery, vol. 17, No. 2, (Apr. 2002), pp. 603-608. |
Mali, Bhairavanath N., et al., “Performance Study of Transmission Line Ferranti Effect and Fault Simulation Model Using MATLAB”, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 4, Issue 4, (Apr. 2016), pp. 49-52. |
Mutale, Joseph , et al., “Transmission Network Reinforcement Versus FACTS: An Economic Assessment”, IEEE Transactions on Power Systems, vol. 15, No. 3, (Aug. 2000), pp. 961-967. |
Ramchurn, Sarvapali D., et al., “Putting the ‘Smarts’ into the Smart Grid: A Grand Challenge for Artificial Intelligence”, Communications of the ACM, vol. 55, No. 4, (Apr. 2012), pp. 86-97. |
Reddy, D. M., et al., “FACTS Controllers Implementation in Energy Storage Systems for Advanced Power Electronic Applications—A Solution”, American Journal of Sustainable Cities and Society, Issue 2, vol. 1, (Jan. 2013), pp. 36-63. |
Renz, B. A., et al., “AEP Unified Power Flow Controller Performance”, IEEE Transactions on Power Delivery, vol. 14, No. 4, (Oct. 1999), pp. 1374-1381. |
Ribeiro, P. , et al., “Energy Storage Systems”, Chapters 1-2.4 of Section entitled “Energy Storage Systems” in Electrical Engineering—vol. III, edited by Kit Po Wong, Encyclopedia of Life Support Systems (EOLSS) Publications, (Dec. 13, 2009), 11 pp. total. |
Schauder, C. D., et al., “Operation of the Unified Power Flow Controller (UPFC) Under Practical Constraints”, IEEE Transactions on Power Delivery, vol. 13, No. 2, (Apr. 1998), pp. 630-639. |
Siemens SAS, “Portable Power Solutions, “Plug and play” High Voltage E-Houses, skids and mobile high voltage substations up to 420 kV”, (Nov. 2015), 8 pp. total. |
Swain, S. C., et al., “Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm”, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 5, No. 3, (2011), pp. 399-407. |
Xue, Yiyan , et al., “Charging Current in Long Lines and High-Voltage Cables—Protection Application Considerations”, 67th Annual Georgia Tech Protective Relaying Conference, Atlanta, Georgia, (May 8-10, 2013), pp. 1-17. |
“International Search Report and Written Opinion of the International Searching Authority dated Feb. 2, 2017; International Application No. PCT/US2016/062358”, (Feb. 2, 2017). |
“International Search Report and Written Opinion of the International Searching Authority dated Feb. 2, 2017; International Application No. PCT/US2016/062620”, (Feb. 2, 2017). |
“International Search Report and Written Opinion of the International Searching Authority dated Mar. 2, 2017; International Application No. PCT/US2016/061009”, (Mar. 2, 2017). |
“Invitation of the International Searching Authority to Pay Additional Fees dated Dec. 15, 2016; International Application No. PCT/US2016/061009”, (Dec. 15, 2016). |
“Notice of Allowance dated Feb. 22, 2018; U.S. Appl. No. 15/069,785”, Feb. 22, 2018. |
“Office Action dated Apr. 6, 2018; U.S. Appl. No. 15/055,422”, Apr. 6, 2018. |
“Office Action dated Apr. 6, 2018; U.S. Appl. No. 15/157,726”, Apr. 6, 2018. |
“Office Action dated Jul. 27, 2018; U.S. Appl. No. 15/055,422”, Jul. 27, 2018. |
Albasri, Fadhel A. et al., “Performance Comparison of Distance Protection Schemes for Shung-FACTS Compensated Transmission Lines”, IEEE Transactions on Power Delivery, vol. 22, No. 4, Oct. 2007, pp. 2116-2125. |
Bhaskar, M. A. et al., “Impact of FACTS devices on distance protection in Transmission System”, 2014 IEEE National Conference on Emerging Trends in New & Renewable Energy Sources and Energy Management (NCET NRES EM), Dec. 16, 2014, pp. 52-58. |
Samantaray, S. R. , “A Data-Mining Model for Protection of FACTS-Based Transmission Line”, IEEE Transactions on Power Delivery, vol. 28, No. 2, Apr. 2013, pp. 612-618. |
“Notice of Allowance dated Sep. 24, 2018; U.S. Appl. No. 15/157,726”, Sep. 24, 2018. |
“Office Action dated Oct. 4, 2018; U.S. Appl. No. 15/975,373”, Oct. 4, 2018. |
Number | Date | Country | |
---|---|---|---|
20170160762 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62359885 | Jul 2016 | US | |
62264744 | Dec 2015 | US | |
62264739 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15069785 | Mar 2016 | US |
Child | 15345065 | US | |
Parent | 15055422 | Feb 2016 | US |
Child | 15069785 | US |