Distributed inline proxy

Information

  • Patent Grant
  • 11399075
  • Patent Number
    11,399,075
  • Date Filed
    Thursday, July 23, 2020
    4 years ago
  • Date Issued
    Tuesday, July 26, 2022
    2 years ago
Abstract
In some embodiments, a method instantiates a proxy that stores first state information for first workloads running on a first computing device. The first computing device receives a migrated workload from a second computing device and second state information for a session associated with the migrated workload. The second state information is generated by a proxy on the second computing device that processed one or more packets for the migrated workload on the second computing device. The method stories the second state information for the proxy on the first computing device and resumes the session associated with the migrated workload using the proxy on the first computing device.
Description
BACKGROUND

Man-in-the-middle (MITM) proxy solutions may be used to provide security solutions such as deep packet inspection, instrusion prevention systems (IPS), intrusion detection systems (IDS), uniform resource locator (URL) filtering, etc. The proxy may be a transparent proxy that intercepts client requests towards external servers. The proxy may then dynamically modify the packets, generate new packets, sign server certificates, or provide other services. The proxies are typically centralized and placed at the edge of a network. Accordingly, multiple computing devices communicate through the proxy at the edge, which may introduce scaling issues. For example, as the number of computing devices in the network increases, the load on the proxy increases. A company may have to determine how to scale the centralized proxy to be able to handle the traffic from the computing devices on the network.


Also, when virtualized workload-based solutions are used, some workloads may migrate from one host to another host. Using the centralized proxy may cause an issue as the traffic may need to be redirected from the original host to the new host during the migration. For example, the flows from the proxy to the original host need to be changed to the new host. Further, some packets that were in process while the migration occurs may be sent to the original host instead of the new host. These packets may be lost or need to be redirected to the new host.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a simplified system for an inline distributed proxy according to some embodiments.



FIG. 2 depicts a simplified flowchart of a method for using a proxy to process packets between workload and a destination according to some embodiments.



FIG. 3 depicts a more detailed example of the proxy according to some embodiments.



FIG. 4 depicts an example of a migration of a workload according to some embodiments.



FIG. 5 depicts a simplified flowchart of a method for processing packets for workload #1 according to some embodiments.





DETAILED DESCRIPTION

In the following description, for purposes of explanation, numerous examples and specific details are set forth in order to provide a thorough understanding of embodiments of the present disclosure. Some embodiments as expressed in the claims may include some or all of the features in these examples, alone or in combination with other features described below, and may further include modifications and equivalents of the features and concepts described herein.


Some embodiments use a distributed proxy, which instantiates a proxy, such as a man-in-the-middle (MITM) proxy, on each host in a network. As packets are sent from a client to a server workload running on the host, a hypervisor intercepts the packets and redirects the packets to the proxy. The proxy terminates a first session the client, and extracts state for the first session from the packets. Then, the proxy can start a second session towards the destination, such as a server workload. In other embodiments, as packets are sent from a client workload running on the host, a hypervisor intercepts the packets and redirects the packets to the proxy. The proxy terminates a first session the client workload, and extracts state for the first session from the packets. Then, the proxy can start a second session towards the destination, such as a server. It will be understood that a client workload or server workload may be used.


The proxy may store the extracted state information for each connection. The state information may include information that is needed to maintain the first session and the second session upon a migration of the workload to another host. For example, the state information may include a control block for a transfer control protocol (TCP) session, security information, such as secure socket layer (SSL) keys, and deep-packet inspection (DPI) control information. Because the proxy is terminating the first session with the client and the second session with the server, the proxy can extract this type of state information from the packets.


When the workload is migrated from a first host to a second host, the proxy can retrieve the state information that was stored for the workload. Then, the host migrates the state information with the workload to the second host. The second host can then restore the first session and the second session on a second proxy running on the second host. Using the state information, the second proxy can then resume serving the first session and the second session on the second host. Migrating the state information for the proxy along with the workload transitions the workload to the second host while allowing the second host to restore the active sessions.


Instantiating a proxy on each host for the workloads running on the host and creates a distributed inline proxy at the host. The inline proxy is in the forwarding path for the workload. Unlike the centralized proxy at the edge, the distributed proxy is on the host. Thus, if the workload migrates to from a first host to a second host, the workload's proxy may be on the first host. This would cause the existing sessions for the workload to be terminated or the second host would have to communicate packets from the migrated workload to the first host causing unnecessary traffic on the network. To address this, the proxy terminates the sessions and can extract the state information for the sessions from the packets. Then, the first host can migrate the state for the proxy along with the workload to maintain the inline proxy for the workload on the second host.


Accordingly, by instantiating a proxy per workload, a distributed inline proxy is provided. This provides advantages compared to a proxy situated on the edge server as the distributed inline proxy may be able to scale as load increases. For example, as additional workloads and hosts are added to a network, a proxy situated on the edger server may have to serve the additional workloads and hosts. However, using a distributed inline proxy, the proxies may be instantiated on the new hosts or on the existing hosts as workloads are added. The resources used by the proxies are then distributed on the hosts instead of at a single point at the edge server.


Further, when workloads migrate to other hosts, the proxy state can be migrated to a proxy service running on the new host concurrent with the workload migration. This solves a problem of using a distributed inline proxy because if the proxy state was not migrated, the communications may have had to continue to go back though the original host to the proxy, and then forwarded to the new host that is running the migrated workload. Further, when using an edge proxy, the edge server may not need to be reconfigured for the migrated workload. However, in some embodiments, when the workload is migrated to the new host, the state information for the sessions can be used by the proxy on the new host to maintain the active sessions for the workload without requiring reconfiguration of a centralized proxy at the edge server.


System Overview



FIG. 1 depicts a simplified system 100 for an inline distributed proxy according to some embodiments. System 100 includes hosts 101 that may be connected to a physical network 120. For example, hosts 101 may be part of a data center or other network, which may include any number of hosts (also known as computing devices, host computers, host devices, host systems, physical servers, service systems, etc.) where each host may support any number of workloads 104. Hypervisor 102 is capable of hardware virtualization.


Hosts 101 may include workloads 104-1 to 104-N. Workloads may refer to virtual machines that are running on a respective host, but this is one example of a virtualized computing instance or compute node. Any suitable technology may be used to provide a workload. Workloads may include not only virtual machines, but also containers (e.g., running on top of a host operating system without the need for a hypervisor or separate operating system or implemented as an operating system level virtualization), virtual private servers, client computers, etc. The workloads may also be complete computation environments containing virtual equivalents of the hardware and software components of a physical computing system. Also, as used herein, the term hypervisor may refer generally to a software layer or component that supports the execution of multiple workloads including system-level software that supports name space containers.


Workloads 104-1 to 104-N may send packets through virtual network interface cards (VNIC) 116-1 to 116-N. The packets may be sent through hypervisor 102 to a physical network interface card (PNIC) 114 in hardware 112. Then, packets are routed through physical network 120 to edge server 118, which may be situated at the edge of physical network 120. Edge server 118 may receive packets from hosts 101 and send the packets to an external network. Also, hosts 101 may route packets through physical network 120 to other hosts 101 connected to physical network 120.


A proxy 108 may be instantiated in hypervisor 102 and/or a workload 106. In other embodiments, proxy 108 may be instantiated as a service VM running on host 101. Proxy 108 may be a man-in-the-middle forward proxy that can receive packets from workloads 104 that are running on host 101. In some embodiments, each workload 104-1 to 104-N is associated with a proxy. The proxy may be implemented in different ways. Fore example, instead of running a separate proxy process for each workload 104-1, 104-2, and 104-N, in some examples, proxy 108 may run as a single process on each host 101. Proxy 108 may logically partition a storage space for each workload. Accordingly, each workload 104 may have a separate logical partition of storage space in which to store state information. In this way, proxy 108 may run as a single process, but still operate a logically separate proxy for each workload. In other examples, each workload 104 may be associated with a different process running a separate proxy.


In some embodiments, proxy 108 is a transparent inline proxy where packets from clients 122 arriving via edge server 118 are not addressed to an address of proxy 108. In the transparent inline proxy, each client 122 believes it is communicating with a destination. In some embodiments, the proxy may be a transparent inline proxy. For example, the hypervisor intercepts the packets from client 122 or a load balancer without having the client address the packets to the proxy. However, proxy 108 terminates the connection with client 122 and creates a first session with client 122. Also, packets from workload 104 are intercepted by hypervisor 102 and directed to proxy 108 without having workload 104 address the packets to proxy 108. Proxy 108 creates a second session with workload 104. Additionally, proxy 108 may send the packets in the second session, which does not require the adding of the proxy's address to the packets being sent to the client 122. However, both the client 122 and workload believe they are communicating with each other.



FIG. 2 depicts a simplified flowchart 200 of a method for using proxy 108 to process packets between workload 104 and a destination according to some embodiments. At 202, hypervisor 102 intercepts a packet sent from client 122. Hypervisor 102 may be configured via network settings to intercept all packets being sent from client 122. Different methods of intercepting the packets may be appreciated.


At 204, hypervisor 102 redirects the packet to proxy 108. As described above, proxy 108 may be instantiated in hypervisor 102 or in the user space in workload 104. Hypervisor 102 may use different techniques to redirect packets to proxy 108 including encapsulation or by re-writing the IP or media access control (MAC) address for the packet to the proxy's address.


At 206, proxy 108 terminates the first session with client 122. As will be discussed in more detail below, some embodiments migrate workloads 104 from a first host to a second host. Additionally, the state information for the proxy for the workload is migrated where the proxy on the new host can maintain the active sessions. To extract the type of state information to maintain the sessions, proxy 108 may need to terminate the session to retrieve the type of state information needed, such as layer 7 state information. By terminating the first session, proxy 108 may be responsible for responding to the packet, if needed.


At 208, proxy 108 extracts and stores the state information for the first session. Some examples of state information include layer 7 information, such as a control block of a secured communication layer, such as transport layer security (TLS) or secure socket layer (SSL). The control block of the secure communication layer may include context information for the TLS session, cached information for the TLS session, keys, sequence numbers, partial buffers, data stream segments, and flags. Additional state information that may be extracted includes information for the connection, such as the transfer control protocol (TCP) connection. For example, a TCP control block may include sequence numbers for the packets, pending packets, socket interfaces, etc. Also, other state information may be from a deep-packet inspection (DPI), which may be metadata for the streams, such as a hypertext transfer protocol (HTTP) header. Proxy 108 may store the state information for each workload 104 in a data structure. As mentioned above, proxy 108 may store state information for each workload 104 in its own logical space in the data structure.


At 210, proxy 108 starts a second session with the destination workload 104. For example, proxy 108 may extract the server name indication (SNI) in session ID from the packet and start a new session toward the destination server workload. By starting a second session, in addition to forwarding packets from client 122 to the destination server workload 104, proxy 108 may be responsible for responding to packets from the destination server workload 104.


At 212, proxy 108 sends the packet towards the destination server workload. For example, proxy 108 may forward the packet for workload 104 in hypervisor 102 to the destination. By forwarding the packet of workload 104, proxy 108 does not need to insert an address associated with proxy 108 as being the originator of the packet.


The destination server workload receives the packets and can respond to the packets by sending return packets to the address of client 122. Upon receiving the return packets, hypervisor 102 intercepts the packets and redirects the packets to proxy 108. As with packets sent from client 122, proxy 108 may extract any state information from the return packets received from the destination, and store the state information. Also, proxy 108 may then respond to the return packets from the destination, if needed.


Accordingly, when proxy 108 receives the packet from client 122, by terminating the connection, proxy 108 is able to extract state information from the packet that is required for proxy 108 to resume sessions between a client 122 and any destination server workloads. This is different from a passthrough proxy that may only forward the packets and generally be able to inspect the headers of the packet, which may not include enough information to maintain the session upon migration. As discussed above, although a server workload is described, a client workload running on host 101 may communicate with a server located outside of edge server 118.


Proxy Structure



FIG. 3 depicts a more detailed example of proxy 108 according to some embodiments. The example in FIG. 3 shows the scenario where a single instance of proxy 108 is instantiated on host 101 and servicing all workloads. Also, although one process is described, the number of processes running proxies may be scaled on the host. For example, if there are initially 10 workloads, a first process may have an instantiated proxy for the 10 workloads. However, if the number of workloads increases to 20 workloads, then a second instantiation of a second proxy to support the additional ten workloads may be used. Alternatively, the same process may support all 20 workloads and additional processes may be instantiated based on the load (e.g., when a threshold of connections is reached).


In this example, hosts 101 include workloads 104-1 to 104-N (workloads #1 to #N). These workloads may be identified by identifiers, such as an identifier (ID) #1, ID #2 and ID #N, respectively, for workloads #1 to #N. The identifiers may be information that may uniquely identify a workload on host 101, such as a VNIC ID; however, other information may be used to identify workloads.


Proxy 108 may include a data structure 202, which may be partitioned logically for each workload running on host 101. For example, different slices of data structure 202 may be reserved for different workloads and may be accessed using identifiers associated with each workload. In some examples, the IDs may be used as keys to slices of data structure 202, but other methods of identifying slices of data structure 202 may be used.


As shown, proxy 108 may use an ID #1 to access a workload #1 state 304-1, an ID #2 to access a workload #2 state 304-2, and an ID #N to access a workload #N state 304-N. When proxy 108 receives a packet, proxy 108 can retrieve the identifier from the packet, such as the VNIC ID, and store state in data structure 202 in a slice that is associated with the ID.


Workload Migration


Workload #1 104-1 may migrate from one host 101 to another host. FIG. 4 depicts an example of a migration of a workload 104 according to some embodiments. In FIG. 4, a workload #1 104-1 is migrated from host 101-1 to host 101-2. In some examples, host 101-1 and host 101-2 are in the same data center connected to physical network 120. Host 101-1 may be executing its own workloads and host 101-2 is executing its own workloads. In other embodiments, the hosts may reside on different networks or in different data centers in different geographic regions. Also, each host 101 may also be running its own proxy 108.


Proxy 108-1 in host 101-1 may include a data structure 202-1 that includes a workload #1 state 204-1. This may be session state information established for sessions from client 122 to proxy 108 and from proxy 108 to workload 104. In some examples, the state information may be extracted when the migration occurs and may reside in the network stack before the migration. However, the migrated information may be stored in data structure 202-2 in host 101-2.


When the migration occurs, host 101-1 may migrate workload #1 104-1 in addition to workload #1 state 204-1 to host 101-2. Proxy 108-2 stores the migrated state for workload #1 in data structure 202-2. For example, proxy 108-2 uses an ID #1 to identify workload #1 state 204-1 in data structure 202-2. Proxy 108-2 in host 101-2 may also include a data structure 202-2 that stores state for workloads executing on host 101-2. For example, a workload #4 state 202-4 corresponds to a workload #4 104-4 running on host 101-2.


Once the state has been migrated, proxy 108-2 can process packets for workload #1. FIG. 5 depicts a simplified flowchart 500 of a method for processing packets for workload #1 according to some embodiments. At 502, proxy 108-2 receives a packet from workload #1. The packet may be intercepted by a hypervisor in host 101-2 and redirected to workload #1. Proxy 108-2 then determines an identifier for workload #1. For example, proxy 108-2 may determine the identifier from the packet.


At 506, proxy 108-2 then retrieves the migrated state for workload #1 in data structure 202-2. For example, workload #1 state 204-1 may have been stored in a slice of data structure 202-2 and is identified by the workload #1 identifier. The migrated state stored in data structure 202-2 includes information needed to continue the first session with workload #1. For example, the migrated state may include information from the TCP stack for the TCP connection of the first session. Proxy 108-2 uses the information from the TCP stack to restart the first session on second host 101-2 and also the second session with the destination. Also, once the first session and the second session are restarted, at 510, proxy 108-2 forwards the packet to destination using the migrated state. The packet is forwarded in the second session that was established on host 101-1. Additionally, proxy 108-2 could receive packets from the destination and forward the packets to workload #1 in the first session.


CONCLUSION

Accordingly, some embodiments provide a distributed inline proxy that includes proxies on each host. To account for the possible migration of workloads, some embodiments store state needed to pause and restart sessions for workloads. The state is then migrated along with the workloads to allow a new proxy to restart the paused sessions on the new host.


Many variations, modifications, additions, and improvements are possible, regardless the degree of virtualization. The virtualization software can therefore include components of a host, console, or guest operating system that performs virtualization functions. Plural instances may be provided for components, operations or structures described herein as a single instance. Finally, boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of the disclosure(s). In general, structures and functionality presented as separate components in exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components.


Some embodiments described herein can employ various computer-implemented operations involving data stored in computer systems. For example, these operations can require physical manipulation of physical quantities—usually, though not necessarily, these quantities take the form of electrical or magnetic signals, where they (or representations of them) are capable of being stored, transferred, combined, compared, or otherwise manipulated. Such manipulations are often referred to in terms such as producing, identifying, determining, comparing, etc. Any operations described herein that form part of one or more embodiments can be useful machine operations.


Further, one or more embodiments can relate to a device or an apparatus for performing the foregoing operations. The apparatus can be specially constructed for specific required purposes, or it can be a general purpose computer system selectively activated or configured by program code stored in the computer system. In particular, various general purpose machines may be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations. The various embodiments described herein can be practiced with other computer system configurations including handheld devices, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like.


Yet further, one or more embodiments can be implemented as one or more computer programs or as one or more computer program modules embodied in one or more non-transitory computer readable storage media. The term non-transitory computer readable storage medium refers to any data storage device that can store data which can thereafter be input to a computer system. The non-transitory computer readable media may be based on any existing or subsequently developed technology for embodying computer programs in a manner that enables them to be read by a computer system. Examples of non-transitory computer readable media include a hard drive, network attached storage (NAS), read-only memory, random-access memory, flash-based nonvolatile memory (e.g., a flash memory card or a solid state disk), a CD (Compact Disc) (e.g., CD-ROM, CD-R, CD-RW, etc.), a DVD (Digital Versatile Disc), a magnetic tape, and other optical and non-optical data storage devices. The non-transitory computer readable media can also be distributed over a network coupled computer system so that the computer readable code is stored and executed in a distributed fashion.


Finally, boundaries between various components, operations, and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of the invention(s). In general, structures and functionality presented as separate components in exemplary configurations can be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component can be implemented as separate components.


These and other variations, modifications, additions, and improvements may fall within the scope of the appended claims(s). As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.


The above description illustrates various embodiments of the present disclosure along with examples of how aspects of the present disclosure may be implemented. The above examples and embodiments should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the present disclosure as defined by the following claims. Based on the above disclosure and the following claims, other arrangements, embodiments, implementations and equivalents may be employed without departing from the scope of the disclosure as defined by the claims.

Claims
  • 1. A method comprising: instantiating, by a first computing device, a proxy that stores first state information for first workloads running on the first computing device; receiving, by the first computing device, a migrated workload from a second computing device and second state information for a session associated with the migrated workload, wherein the second state information is generated by a proxy on the second computing device that processed one or more packets for the migrated workload on the second computing device;storing, by the first computing device, the second state information for the proxy on the first computing device; andresuming, by the first computing device, the session associated with the migrated workload using the proxy on the first computing device.
  • 2. The method of claim 1, wherein the second state information comprises information extracted from the one or more packets that are sent in the session at the second computing device.
  • 3. The method of claim 1, wherein the proxy on the first computing device establishes a first session between the proxy on the first computing device and a destination and a second session between the proxy on the first computing device and the migrated workload using the second state information.
  • 4. The method of claim 1, further comprising: determining an identifier for the migrated workload; andstoring the second state information for the migrated workload in a portion of a data structure associated with the identifier, wherein the data structure stores the first state information for the first workloads running on the first computing device.
  • 5. The method of claim 1, wherein the second state information comprises layer 7 information that the proxy on the first computing device uses to resume the session.
  • 6. The method of claim 1, wherein each of the first workloads running on the first computing device and the migrated workload is associated with an instantiation of the proxy on the first computing device.
  • 7. The method of claim 1, further comprising: intercepting, by a hypervisor, a packet being sent to the migrated workload or a packet being sent from the migrated workload; andsending the packet to the proxy on the first computing device, wherein the proxy on the first computing device processes the packet.
  • 8. A non-transitory computer-readable storage medium containing instructions, that when executed, control a first computing device to be configured for: instantiating a proxy that stores first state information for first workloads running on the first computing device;receiving a migrated workload from a second computing device and second state information for a session associated with the migrated workload, wherein the second state information is generated by a proxy on the second computing device that processed one or more packets for the migrated workload on the second computing device;storing the second state information for the proxy on the first computing device; andresuming the session associated with the migrated workload using the proxy on the first computing device.
  • 9. The non-transitory computer-readable storage medium of claim 8, wherein the second state information comprises information extracted from the one or more packets that are sent in the session at the second computing device.
  • 10. The non-transitory computer-readable storage medium of claim 8, wherein the proxy on the first computing device establishes a first session between the proxy on the first computing device and a destination and a second session between the proxy on the first computing device and the migrated workload using the second state information.
  • 11. The non-transitory computer-readable storage medium of claim 8, further operable for: determining an identifier for the migrated workload; andstoring the second state information for the migrated workload in a portion of a data structure associated with the identifier, wherein the data structure stores the first state information for the first workloads running on the first computing device.
  • 12. The non-transitory computer-readable storage medium of claim 8, wherein the second state information comprises layer 7 information that the proxy on the first computing device uses to resume the session.
  • 13. The non-transitory computer-readable storage medium of claim 8, wherein each of the first workloads running on the first computing device and the migrated workload is associated with an instantiation of the proxy on the first computing device.
  • 14. The non-transitory computer-readable storage medium of claim 8, further operable for: intercepting, by a hypervisor, a packet being sent to the migrated workload or a packet being sent from the migrated workload; andsending the packet to the proxy on the first computing device, wherein the proxy on the first computing device processes the packet.
  • 15. A first computing device comprising: one or more computer processors; anda non-transitory computer-readable storage medium comprising instructions, that when executed, control the one or more computer processors to be configured for:instantiating a proxy that stores first state information for first workloads running on the first computing device;receiving a migrated workload From a second computing device and second state information for a session associated with the migrated workload, wherein the second state information is generated by a proxy on the second computing device that processed one or more packets for the migrated workload on the second computing device;storing the second state information for the proxy on the first computing device; andresuming the session associated with the migrated workload using the proxy on the first computing device.
  • 16. The first computing device of claim 15, wherein the second state information comprises information extracted from the one or more packets that are sent in the session at the second computing device.
  • 17. The first computing device of claim 15, wherein the proxy on the first computing device establishes a first session between the proxy on the first computing device and a destination and a second session between the proxy on the first computing device and the migrated workload using the second state information.
  • 18. The first computing device of claim 15, further operable for: determining an identifier for the migrated workload; andstoring the second state information for the migrated workload in a portion of a data structure associated with the identifier, wherein the data structure stores the first state information for the first workloads running on the first computing device.
  • 19. The first computing device of claim 15, wherein the second state information comprises layer 7 information that the proxy on the first computing device uses to resume the session.
  • 20. The first computing device of claim 15, wherein each of the first workloads running on the first computing device and the migrated workload is associated with an instantiation of the proxy on the first computing device.
  • 21. The first computing device of claim 15, further operable for: intercepting, by a hypervisor, a packet being sent to the migrated workload or a packet being sent from the migrated workload; andsending the packet to the proxy on the first computing device, wherein the proxy on the first computing device processes the packet.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application and, pursuant to 35 U.S.C. § 120, is entitled to and claims the benefit of earlier filed application U.S. application Ser. No. 16/207,031 filed Nov. 30, 2018, now issued as U.S. Pat. No. 10,735,541, the content of which is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (131)
Number Name Date Kind
5113523 Colley et al. May 1992 A
5504921 Dev et al. Apr 1996 A
5550816 Hardwick et al. Aug 1996 A
5557747 Rogers et al. Sep 1996 A
5729685 Chatwani et al. Mar 1998 A
5751967 Raab et al. May 1998 A
5796936 Watabe et al. Aug 1998 A
6104699 Holender et al. Aug 2000 A
6219699 McCloghrie et al. Apr 2001 B1
6421711 Blumenau et al. Jul 2002 B1
6512745 Abe et al. Jan 2003 B1
6539432 Taguchi et al. Mar 2003 B1
6680934 Cain Jan 2004 B1
6785843 McRae et al. Aug 2004 B1
6941487 Balakrishnan et al. Sep 2005 B1
6963585 Pennec et al. Nov 2005 B1
7079544 Wakayama et al. Jul 2006 B2
7197572 Matters et al. Mar 2007 B2
7200144 Ferrell et al. Apr 2007 B2
7209439 Rawlins et al. Apr 2007 B2
7286490 Saleh et al. Oct 2007 B2
7359971 Jorgensen Apr 2008 B2
7450598 Chen et al. Nov 2008 B2
7483370 Dayal et al. Jan 2009 B1
7606260 Oguchi et al. Oct 2009 B2
7649851 Fakashige et al. Jan 2010 B2
7710874 Balakrishnan et al. May 2010 B2
7730486 Herington Jun 2010 B2
7792987 Zohra et al. Sep 2010 B1
7802251 Kitamura Sep 2010 B2
7818452 Matthews et al. Oct 2010 B2
7826482 Minei et al. Nov 2010 B1
7885276 Lin Feb 2011 B1
7912955 Machiraju et al. Mar 2011 B1
7925850 Waldspurger et al. Apr 2011 B1
7937438 Miller et al. May 2011 B1
7948986 Ghosh et al. May 2011 B1
8027354 Portolani et al. Sep 2011 B1
8046456 Miller et al. Oct 2011 B1
8054832 Shukla et al. Nov 2011 B1
8055789 Richardson et al. Nov 2011 B2
8102781 Smith Jan 2012 B2
8166201 Richardson et al. Apr 2012 B2
8194680 Brandwine et al. Jun 2012 B1
8223668 Allan et al. Jul 2012 B2
8224931 Brandwine et al. Jul 2012 B1
8224971 Miller et al. Jul 2012 B1
8312129 Miller et al. Nov 2012 B1
8456984 Ranganathan et al. Jun 2013 B2
8504718 Wang et al. Aug 2013 B2
8621058 Eswaran et al. Dec 2013 B2
8644188 Brandwine et al. Feb 2014 B1
8705513 Merwe et al. Apr 2014 B2
9195491 Zhang et al. Nov 2015 B2
9547516 Thakkar et al. Jan 2017 B2
9552219 Zhang et al. Jan 2017 B2
9609025 Betzler Mar 2017 B1
9858100 Thakkar et al. Jan 2018 B2
9875127 Thakkar et al. Jan 2018 B2
10063443 Haraszti Aug 2018 B2
10235199 Zhang et al. Mar 2019 B2
10481933 Thakkar et al. Nov 2019 B2
10735541 Jain et al. Aug 2020 B2
20030093481 Mitchell et al. May 2003 A1
20040047286 Larsen et al. Mar 2004 A1
20040073659 Rajsic et al. Apr 2004 A1
20040098505 Clemmensen May 2004 A1
20040267897 Hill et al. Dec 2004 A1
20050018669 Arndt et al. Jan 2005 A1
20050038834 Souder et al. Feb 2005 A1
20050083953 May Apr 2005 A1
20050120160 Plouffe et al. Jun 2005 A1
20060002370 Rabie et al. Jan 2006 A1
20060026225 Canali et al. Feb 2006 A1
20060092861 Corday et al. May 2006 A1
20060092940 Ansari et al. May 2006 A1
20060092976 Lakshman et al. May 2006 A1
20060174087 Hashimoto et al. Aug 2006 A1
20060184937 Abels et al. Aug 2006 A1
20060193266 Siddha et al. Aug 2006 A1
20070043860 Pabari Feb 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070220358 Goodill et al. Sep 2007 A1
20070260721 Bose et al. Nov 2007 A1
20070283348 White Dec 2007 A1
20070297428 Bose et al. Dec 2007 A1
20080002579 Lindholm et al. Jan 2008 A1
20080040467 Mendiratta et al. Feb 2008 A1
20080049621 McGuire et al. Feb 2008 A1
20080059556 Greenspan et al. Mar 2008 A1
20080060026 Cheung et al. Mar 2008 A1
20080071900 Hecker et al. Mar 2008 A1
20080159301 Heer Jul 2008 A1
20080165704 Marchetti et al. Jul 2008 A1
20090109841 Nozaki et al. Apr 2009 A1
20090150527 Tripathi et al. Jun 2009 A1
20090183180 Nelson Jul 2009 A1
20090296726 Snively et al. Dec 2009 A1
20100115080 Kageyama May 2010 A1
20100125667 Soundararajan May 2010 A1
20100165876 Shukla et al. Jul 2010 A1
20100165877 Shukla et al. Jul 2010 A1
20100275199 Smith et al. Oct 2010 A1
20100287548 Zhou et al. Nov 2010 A1
20110103259 Aybay et al. May 2011 A1
20110119748 Edwards et al. May 2011 A1
20110296052 Guo et al. Dec 2011 A1
20120127854 Khetan et al. May 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120179804 Katanp et al. Jul 2012 A1
20130024579 Zhang et al. Jan 2013 A1
20130060940 Koponen et al. Mar 2013 A1
20130121154 Guay et al. May 2013 A1
20130125120 Zhang May 2013 A1
20130332602 Nakil et al. Dec 2013 A1
20130332619 Xie et al. Dec 2013 A1
20130332982 Rao et al. Dec 2013 A1
20140244808 Axelrod et al. Aug 2014 A1
20140372638 Anderson et al. Dec 2014 A1
20140373007 Donnellan et al. Dec 2014 A1
20150006953 Holbrook et al. Jan 2015 A1
20150063364 Thakkar et al. Mar 2015 A1
20150106804 Chandrashekhar et al. Apr 2015 A1
20150117179 Sato Apr 2015 A1
20160055019 Thakkar et al. Feb 2016 A1
20160057005 Thakkar et al. Feb 2016 A1
20160057006 Thakkar et al. Feb 2016 A1
20160057014 Thakkar et al. Feb 2016 A1
20160070588 Zhang et al. Mar 2016 A1
20170116023 Zhang et al. Apr 2017 A1
20200177691 Jain et al. Jun 2020 A1
Foreign Referenced Citations (2)
Number Date Country
2013074847 May 2013 WO
2013184846 Dec 2013 WO
Non-Patent Literature Citations (9)
Entry
Abbasi, Abu Zafar, et al., “Xylus: A Virtualized Programming Environment,” 2010 International Conference on Information and Emerging Technologies, Jun. 14-16, 2010, 5 pages, IEEE, Karachi, Pakistan.
Author Unknown, “Virtual Machine Backup Guide,” Nov. 2007, 78 pages, VMware, Inc., Palo Alto, California.
Author Unknown, “Apache Cassandra™ 1.2 Documentation,” Jan. 13, 2013, 201 pages, DataStax.
Ioannidis, Sotiris, et al., “Implementing a Distributed Firewall,” CCS '00, Month Unknown 2000, 10 pages, ACM, Athens, Greece.
Moreno-Vozmediano, Rafael, et al., “IaaS Cloud Architecture: From Virtualized Datacenters to Federated Cloud Infrastructures,” Computer, Dec. 2012, 8 pages, vol. 45, Issue 12, IEEE.
Zhao, Ming, et al., “Towards Autonomic Grid Data Management with Virtualized Distributed File Systems,” 2006 IEEE International Conference on Autonomic Computing, Jun. 13-16, 2006, 10 pages, IEEE, Dublin, Ireland.
“CRIU Integration with Docker Experimental”, 4 pages, Mar. 2017.
P.Haul, “CRIU Integration with Live Migration” 2 pages, Nov. 2017.
Corbit, “TCP Connection Repair”, 2 pages, May 1, 2012.
Related Publications (1)
Number Date Country
20200358867 A1 Nov 2020 US
Continuations (1)
Number Date Country
Parent 16207031 Nov 2018 US
Child 16937278 US