Embodiments of the disclosure relate to the field of cybersecurity. More specifically, one embodiment of the disclosure relates to sensor-based object submission for malware analysis conducted by a cluster of network devices remote from the sensor.
Over the last decade, cybersecurity attacks have become a pervasive problem for internet users as many networked devices and other resources have been subjected to attack and compromised. The attack may involve the infiltration of malicious software onto a network device or concentration on an exploit residing within a network device to perpetrate the cybersecurity attack (generally referred to as “malware”).
Recently, malware detection has undertaken three different approaches. One approach involves the installation of anti-virus software within network devices forming an enterprise network. Given that advanced malware is able to circumvent anti-virus analysis, this approach has been determined to be deficient.
Another approach involves the placement of dedicated malware detection appliances at various ingress points throughout a network or subnetwork. The malware detection appliances are configured to extract information propagating over the network at the ingress point, analyze the information to determine a level of suspiciousness, and conduct malware analysis internally within the appliance itself. While successful in detecting advanced malware that is attempting to infect network devices connected to the network (or subnetwork), as network traffic increases, this appliance-based approach may exhibit resource constraints. Stated differently, the dedicated, malware detection appliance has a prescribed (and finite) amount of resources (for example, bandwidth and processing power) that, once fully in use, requires either the malware detection appliance to resort to more selective traffic inspection or additional (and/or upscaled) malware detection appliances to be installed. The later solution requires a large outlay of capital and network downtime, as IT resources are needed to install the new malware detection appliances. Also, these dedicated, malware detection appliances provide limited scalability and flexibility in deployment.
Yet another approach involves the use of exclusive, cloud-based malware detection appliances. However, this exclusive cloud-based solution suffers from a number of disadvantages, including the inability of providing on-site deployment of resources at an enterprise's premises (e.g., as devices that are part of the enterprise's network infrastructure). On-site deployment may be crucial for compliance with requirements as to personally identifiable information (PII) and other sensitive information including those mandated at local, state, country or regional governmental levels.
To achieve increased scalability, the architecture involved in malware detection requires a high level of availability along with seamless, scalable connectivity between on-site components and remotely located analysis components that are collectively involved in malware analysis.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Embodiments of the present disclosure generally relate to a scalable, distributed malware detection system including sensors deployed for retrieving information from network traffic that communicate with a malware detection cluster (referred to as “cluster”). Each cluster is a scalable architecture that includes one or more computing nodes, where each computing node is responsible for detecting malware associated with a portion of the information retrieved by the sensor. The results of a malware analysis, which is performed on the portion of the retrieved information, are provided to the sensor. The sensor is configured to locally store some of the malware analysis results, where some or all of the malware analysis results are sent from the sensor to a management system. The management system may distribute these results to other destinations, such as other clusters to assist in malware detection or a forensic analysis system for more in-depth analysis of the retrieved information.
Within the malware detection system, each sensor is responsible for evaluating information routed over a network and subsequently providing a data submission, which includes at least a portion of the evaluated information, to the cluster for conducting an in-depth malware analysis. Prior to providing the data submission, the sensor may conduct a preliminary analysis of the information, which is copied or intercepted during transit over the network. The preliminary analysis is performed to determine whether an identical or similar object has already been analyzed by the sensor, and if so, repetitive analyses may be avoided. It is contemplated that certain types of objects, such as Uniform Resource Locators (URLs) or other references to dynamically changing data, the preliminary analysis may be bypassed or results of the preliminary analysis are not demonstrative in determining whether the object is suspicious.
More specifically, according to one embodiment of the disclosure, a sensor is configured to receive the copied or intercepted information (e.g., network traffic, electronic mail “email” messages, etc.) and separate metadata within the received information from the data content (referred to as the “object”). Upon receipt of the object and its corresponding metadata, the sensor is configured to conduct a preliminary analysis on portions of the received information. The preliminary analysis may include one or more real-time analyses of the object of the received information, which may be performed sequentially or concurrently (i.e., overlapping at least partially in time). A first real-time analysis may determine whether the object has been previously analyzed by the sensor, which may halt further analysis (e.g., already determined to be benign) or warrant continued analysis. However, given the dynamic nature of content associated with some object types, such as Uniform Resource Locators (URLs) for example, the sensor may bypass the first real-time analysis.
According to this embodiment, the preliminary analysis may include a second real-time analysis of the object, where the second real-time analysis may determine whether the likelihood (probability) of the object being associated with malware exceeds a first prescribed threshold. If the likelihood of the selected object exceeds the first prescribed threshold, the sensor provides the object to the cluster for analysis. The metadata may precede submission of the object to the cluster for use in the selection as to which computing node handles the malware analysis of the object.
In the following description, certain terminology is used to describe features of the invention. In certain situations, each of the terms “computing node,” “sensor” and/or “management system” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, the computing node and/or management system may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.
Alternatively, or in combination with the hardware circuitry described above, the management system or sensor may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware.
The term “message” generally refers to information in a prescribed format and transmitted in accordance with a suitable delivery protocol such as Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Simple Mail Transfer Protocol (SMTP), iMESSAGE, Post Office Protocol (POP), Instant Message Access Protocol (IMAP), or the like. Hence, each message may be in the form of one or more packets, frames, or any other series of bits having the prescribed format. Messages may correspond to HTTP data transmissions, email messages, text messages, or the like.
According to one embodiment, the term “malware” may be construed broadly as any code or activity that initiates a malicious attack or any operations associated with anomalous or unwanted behavior. For instance, malware may correspond to a type of malicious computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. In the alternative, malware may correspond to an exploit, namely information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability in software and/or an action by a person gaining unauthorized access to one or more areas of a network device to cause the network device to experience undesirable or anomalous behaviors. The undesirable or anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner (a file is opened by a first process where the file is configured to be opened by a second process and not the first process); (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. In yet another alternative, malware may correspond to information that pertains to the unwanted behavior such as a process that causes data such as a contact list from a network (endpoint) device to be uploaded by a network to an external storage device without receiving permission from the user.
In certain instances, the terms “compare,” “comparing,” “comparison,” or other tenses thereof generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular pattern.
The term “network device” should be construed as any electronic device with the capability of processing data and connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, standalone appliance, a router or other intermediary communication device, etc. Other examples of a network device includes a sensor (described above) as well as a computing node, namely hardware and/or software that operates as a network device to receive information from a sensor, and when applicable, perform malware analysis on that information.
The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices (e.g., any devices with data processing and network connectivity such as, for example, a sensor, a computing node, mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.) or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), may be used.
The term “data submission” is a collection of data including an object and/or metadata associated with that object. The term “object” generally relates to content having a logical structure or organization that enables it to be classified for purposes of analysis for malware. The content may include an executable (e.g., an application, program, code segment, a script, dynamic link library “dll” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, URL, web page, etc.), or simply a collection of related data. The object may be retrieved from information in transit (e.g., a plurality of packets) or information at rest (e.g., data bytes from a storage medium). Examples of different types of objects may include a data element, one or more flows, or a data element within a flow itself.
Herein, a “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session, where multiple (two or more) flows each being received, transmitted or exchanged within a corresponding communication session is referred to as a “multi-flow”. A “data element” generally refers to as a plurality of packets carrying related payloads, e.g., a single webpage received over a network. The data element may be an executable or a non-executable, as described above.
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition may occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
Referring to
As shown in
More specifically, according to one embodiment of the disclosure, the sensor 1101 may be implemented as a network device that is coupled to the transmission medium 115 directly or is communicatively coupled with the transmission medium 115 via an interface 125 operating as a data capturing device. According to this embodiment, the interface 125 is configured to receive the incoming data and subsequently process the incoming data, as described below. For instance, the interface 125 may operate as a network tap (in some embodiments with mirroring capability) that provides at least one or more data submissions (or copies thereof) extracted from data traffic propagating over the transmission medium 115. Alternatively, although not shown, the sensor 1101 may be configured to receive files or other objects automatically (or on command), accessed from a storage system. As yet another alternative, the sensor 1101 may be configured to receive information that is not provided over the network 120. For instance, as an illustrative example, the interface 125 may operate as a data capturing device (e.g., port) for receiving data submissions manually provided via a suitable dedicated communication link or from portable storage media such as a flash drive.
As further shown in
Although not shown, it is contemplated that the sensor 1101 may be implemented entirely as software for uploading into a network device and operating in cooperation with an operating system running on the network device. For this implementation, the software-based sensor is configured to operate in a manner that is substantially similar or identical to a sensor implemented as a network device. Hence, the logic for the software-based sensor corresponds to software modules that, when executed by a processor, perform functions similarly to the functions performed by logic that is part of the sensor implemented as a network device.
The centralized analysis system 140 features one or more clusters of computing nodes 1501-150N (N≥1), where these computing nodes are grouped in order to conduct collective operations for a set of sensors (e.g., sensors 1101-110M). Each cluster 1501-150N may include computing nodes equipped for malware analysis, including behavioral monitoring, while executing (running) objects within one or more virtual machines (VMs). The virtual machines may have different guest image bundles that include a plurality of software profiles each with a different type of operating system (OS), application program, or both. Alternatively, each cluster 1501-150N may include computing nodes having identical guest image bundles that include software profiles directed to the same operating system (e.g., Windows® OS cluster, MAC® OS X cluster, etc.). Additionally, the cluster 1501-150N may be located to communicate with sensors within the same state, Provence, region or country to ensure compliance with governmental regulations.
As shown, for illustrative purposes, a cluster 1501 may include a plurality of computing nodes 1601-160P (P≥1). The plurality of computing nodes 1601-160P may be arranged in a “blade server” type deployment, which allows additional computing nodes to be seamlessly added to or removed from the cluster 1501 (e.g., computing nodes 1601-160P being connected to a network (e.g., a common bus plane) that may provide both power and signaling between the computing nodes, a hot-swapping deployment of the computing nodes forming the cluster 1501, or any other deployment that allows a scalable computing node architecture). However, it is contemplated that any or all of clusters 1501-150N may be virtualized and implemented as software, where the computing nodes 1601-160P are software modules that communicate with each other via a selected communication protocol.
Additionally according to this embodiment of the disclosure, each of the clusters 1501-150N (e.g., cluster 1501) is communicatively coupled to a distributed data store 170 and a distributed queue 175. The distributed data store 170 and the distributed queue 175 may be provided through a separate memory node 180, which is communicatively coupled to and accessed by computing nodes 1601-160P. For this embodiment, a data store 182 for storage of the malicious objects (hereinafter “object data store”) may be provided in memory node 180. Alternatively, as shown, it is contemplated that the distributed data store 170 and the distributed queue 175 may be provided as a collection of synchronized memories within the computing nodes 1601-160P (e.g., synchronized data stores 1701-170P that collectively form distributed data store 170; synchronized queues 1751-175P that collectively form distributed queue 175 where each of the queues 1751-175P is synchronized to store the same information), each accessible by the computing nodes 1601-160P respectively. The distributed data store 170 (formed by local data stores 1701-170P operating in accordance with a selected memory coherence protocol) are accessible by the computing nodes 1601-160P, and thus, data stores 1701-170P may be configured to store the same information. Alternatively, the data stores 1701-170P may be configured to store different information, provided the collective information is available to all of the computing nodes 1601-160P in the same cluster 1501.
In order to provide sufficient processing capabilities to the sensors 1101-110N deployed throughout the network 120, the centralized analysis system 140 is scalable by allowing a flexible clustering scheme for computing nodes as well as allowing for the number of clusters to be increased or decreased in accordance with system processing capability. Stated differently, one or more computing nodes (e.g., computing node 160P+1) may be added to the cluster 1501 based on an increase in the current workload of the malware detection system 100. Likewise, one or more computing nodes may be removed from the cluster 1501, now forming computing nodes 1601-160P−1, based on a decrease in the current workload.
As an optional feature, one or more of the clusters 1501-150N may be configured with reporting logic 184 to provide alerts to a customer such as a network administrator 190 of the customer for example, that identify degradation of the operability of that cluster. For example, the reporting logic (illustrated in
As further shown, clusters 1501-150N may be configured to provide at least a portion of the malware analysis results for an object to a management system 185 that monitors the health and operability of the network 120 and may include an enrollment service that controls formation of the clusters 1501-150N and monitors for an active subscription that indicates whether or not a sensor is authorized to submit objects to a particular cluster or clusters for evaluation and monitors for the type (level) of subscription (e.g., a service level with basic malware analysis functionality, another service level with more robust malware analysis such as increased analysis time per object, increased or user-selectable guest image support, greater quality of service than offered with the basic subscription, access to computing nodes dedicated to processing certain object types, etc.). Additionally, the object and/or analysis results from any of the clusters 1501-150N may be provided to a forensic analysis system 194 for further detailed analysis as to confirm that the object is associated with malware and the nature of the malware. Although not shown, the clusters 1501-150N may be communicatively coupled to remotely located services to receive threat (malware) signatures that identify uncovered malware (or information to formulate threat signatures) from the clusters 1501-150N and proliferate these signatures throughout the malware detection system 100
Referring now to
According to this illustrative embodiment, sensors 1101-110M are communicatively coupled over a second network 255, which is different than the first network 250, to the first cluster 1501 via the broker computing nodes (e.g., computing node 1601 and computing node 160P). Each analysis coordination system 2201 and 2202 is configured to receive metadata from the sensors 1101-110M, and based on the metadata, fetch corresponding objects for analysis. As an alternative, each analysis coordination system 2201 and 2202 may be configured to receive both the metadata and object from the sensors 1101-110M.
More specifically, as shown, the malware detection system 100 features one or more sensors 1101-110M, each sensor 1101-110M is configured to receive information that includes at least metadata 202 and a corresponding object 204. Upon receipt of the information 200, a sensor (e.g., sensor 1101) separates the metadata 202 from the object 204 and conducts a preliminary analysis to determine whether the object 204 is suspicious (e.g., meets a first level of likelihood that the object is associated with malware). The preliminary analysis may include one or more checks (real-time analyses) being conducted on the metadata 202 and/or object 204 without execution of the object 204. Examples of the checks may include bit pattern comparisons of content forming the metadata 202 or object 204 with pre-stored bit patterns to uncover (i) deviations in messaging practices (e.g., non-compliance in communication protocols, message formats or ordering, and/or payload parameters including size); (ii) presence of content within the object that is highly susceptible to malicious attack; (iii) prior submission via the sensor of certain types of objects (or an object that is highly correlated upon determining shared prescribed amount of similar data) to a cluster for malware analysis, and if so, whether or not such malware analysis has been completed (e.g., completed, experienced timeout event, awaiting processing, etc.) or the like.
In the event that logic within the sensor 1101 (e.g., processing engine 600 of
According to one embodiment of the disclosure, this preliminary analysis may involve a comparison between a representation of the object 204 (e.g., bit pattern representation as a hash of the object 204 or portions of the object 204, certain content of the object 204, etc.) and stored representations of previously analyzed objects. Optionally, the preliminary analysis may further involve a comparison between the representation of the object 204 and representations of other objects analyzed by the cluster 1501 (or even other clusters) that have been determined to be benign (whitelist) or malicious (blacklist).
Additionally, based on a state of the prior preliminary analysis, the sensor 1101 may refrain from supplying the metadata 202 to its associated broker computing node (e.g., computing node 1601 or computing node 1602) to avoid initiating an in-depth malware analysis of the object 204. As an illustrative example, the sensor 1101 may refrain from supplying the metadata 202 when a prior submission has recently occurred and such analysis has not yet completed (and no timeout event has been detected). However, for Uniform Resource Locators (URLs) and other references to dynamically changing data, the presence of any prior preliminary analysis may not operate as a filter in determining whether to conduct a check as to whether the object 204 is suspicious.
In the event that no prior preliminary analysis of the object 204 has occurred (or occurrence with a timeout event) and the sensor 1101 conducts a second real-time analysis of the object 204 to detect whether the object 204 is suspicious, but does not detect that the object 204 is suspicious, the sensor 1101 may refrain from supplying the metadata 202 to its associated broker computing node. In other instances, however, the sensor 1101 may supply at least a portion of the metadata 202 to its associated broker computing node when the object is determined to be suspicious based on the preliminary analysis.
In response to the sensor 1101 detecting that the object 204 is suspicious, additional metadata may be added to the metadata 202 for storage, including a timeout period that is allocated based, at least in part, on characteristics of object 204 (e.g., object type). Metadata 202 and other metadata produced therefrom produces aggregated metadata 206, which is provided to one of the broker computing nodes (e.g., computing node 1601) that is assigned to support the sensor 1101 during a prior enrollment process and to initiate an in-depth malware analysis of the suspicious object 204. The aggregated metadata 206 may include (i) a sensor identifier (ID) 207 that identifies sensor 1101 as the source of metadata 202 (e.g., a serial number, a device identifier such as a Media Access Control “MAC” address, an IP address, and/or another identifier unique to the cluster 1501), (ii) a timestamp 208 that denotes a particular time during initial analysis of the suspicious object 204 (e.g., time of receipt, time of detection of suspiciousness, etc.), (iii) a timeout value 209 that denotes a total time remaining from an overall amount of time allocated for malware analysis of the object, (iv) representative content 210 of the suspicious object 204 (e.g., hash value, checksum, etc.), (v) object identifier 211, and/or (vi) an operation mode identifier 212 (e.g. active or passive). Other optional metadata may include, but is not limited or restricted to source or destination IP addresses, or the like.
In particular, a portion of the aggregated metadata 206 (generally referred to as “metadata 206”) is analyzed by the analysis coordination system 2201 to determine whether an identical object or a determined malicious object with similar metadata (e.g., from the same malicious source, etc.) has already been analyzed by any of the computing nodes 1601-1604. This may be accomplished by conducting a search of representative objects within the distributed data store 170 as shown in
As shown in
More specifically, each object analysis system 2401-2404, when determined to have sufficient processing capability or otherwise determined to have suitable analytical capabilities to meet the required analysis, accesses the queue 175 to obtain metadata associated with a suspicious object awaiting malware analysis. For example, during operation, the object analysis system 2401 may periodically and/or aperiodically (e.g., in response to completion of a prior malware analysis) access the queue 175 and obtain the metadata 206 associated with the suspicious object 204. Responsive to obtaining the metadata 206, the object analysis system 2401 accesses a portion of the metadata 206 to locate the storage location of the suspicious object 204, and thereafter, fetches the suspicious object 204. The suspicious object 204 may be stored in the sensor 1101, in the computing node 1601 or in an external network device (not shown).
Upon receipt of the suspicious object 204, the object analysis system 2401 conducts an in-depth malware analysis, namely any combination of behavior (dynamic) analysis, static analysis, or object emulation in order to determine a second level of likelihood (probability) of the suspicious object 204 being associated with malware. The second level of likelihood is at least equal to and likely exceeding (in probability, in computed score, etc.) the first level of likelihood.
As shown, the analysis coordination system 2201 is configured to receive metadata associated with specific objects and provide information, inclusive of some or all of the metadata, to the queue 175. Thereafter, the analysis coordination system 2201 has no involvement in the routing of such metadata to any of the object analysis systems 2401-2404 of the computing nodes. An object analysis system 2401, . . . , or 2404 is configured to fetch metadata that is stored in the queue 175 when that object analysis system is determined to have sufficient processing capability to handle a deeper level analysis of the object.
Referring to
The processor(s) is a multi-purpose, processing component that is configured to execute logic 350 maintained within the non-transitory storage medium 310 that is operating as a data store. As described below, the logic 350 may include, but is not limited or restricted to, (i) subscription control logic 352, (ii) packet (object) analysis logic 355, (iii) metadata extraction logic 360, (iv) timestamp generator logic 365, (v) events (timeout) monitoring logic 370, (vi) metadata data store (MDS) monitoring logic 375, (vii) notification logic 380, and/or (viii) result aggregation logic 385. One example of processor(s) 300 include an Intel® (x86) central processing unit (CPU) with an instruction set architecture. Alternatively, processor(s) 300 may include another type of CPUs, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array (FPGA), or any other hardware component with data processing capability.
According to one embodiment of the disclosure, the sensor 1101 may include subscription control logic 352 that controls the signaling (handshaking) with an enrollment service (e.g., within the management system 185 of
As shown, the network interface(s) 320 is configured to receive the information 200, including metadata 202 and object 204, directly from the network or via a network tap. The information 200 may be temporarily stored prior to processing. Herein, upon receiving the information 200, the processor(s) 300 (e.g., packet analysis logic 355) may conduct an analysis of at least a portion of the information 200, such as the object 204 for example, to determine whether the object 204 is suspicious.
Upon detecting the object 204 is suspicious, the processor 300 processes the metadata extraction logic 360 that, during such processing, extracts the metadata 202 from the received information 200 and assigns the object identifier 211 for the metadata 202 and the suspicious object 204, which may be unique for the cluster (referred to as “universally unique identifier” or “UUID”). The metadata 202 along with other information is stored in a metadata data store 390. The suspicious object 204, UUID 211 along with certain information associated with the suspicious object 204 may be stored in a content data store 395. The content data store 395 may be part of the non-transitory storage medium 310 of the sensor 1101. It is contemplated, however, that the content data store 395 may be stored externally from the sensor 1101 in another network device.
In response to detecting the storage of the metadata 202 in the metadata data store 390, the MDS monitoring logic 375 accesses the metadata data store 390 to obtain at least a portion of the aggregated metadata 206. The portion of the metadata 206 may include (i) a sensor identifier 207, (ii) a timestamp 208, (iii) the timeout value 209, (iv) a representation 210 of the suspicious object 204 (e.g., hash value, checksum, etc.), (v) UUID 211, and/or (vi) the operation mode identifier 212 (e.g. active or passive), as illustrated. Thereafter, the MDS monitoring logic 375 determines a (remaining) timeout value, which represents an amount of time allocated for analyzing the object 204 for malware that still remains, and provides the metadata 206 to the cluster 1501. The MDS monitoring logic 375 may use the timeout period assigned to the object 204 and timestamp 208 to produce the timeout value 209, representing an amount of the time period that is remaining to complete malware analysis of the object 204. Thereafter, the MDS monitoring logic 375 generates a request message 376, including the portion of the metadata 206, to send to an analysis coordination system associated with a broker computing node that is assigned to service the sensor 1101.
Additionally, the UUID 211 along with certain information associated with suspicious object 204 may be stored in a content data store 395. The content data store 395 may include a data store that is part of the non-transitory storage medium 310 of the sensor 1101. It is contemplated, however, that the content data store 395 may be stored on the computing node 1601, or stored externally from the sensor 1101 in another network device.
For a certain type of object, such as the suspicious object 204 being a file for example, the file and its related UUID are collectively stored in the content data store 395. For another type of object, such as a URL or a document with an embedded script for example, the URL (or document with the embedded script) along with information associated with network traffic pertaining to the URL (or document with embedded script) may be collectively stored with its related UUID. The information associated with the network traffic may include information associated with web pages accessed via the URL (or script) over a period of time (e.g., during a communication session, portion of a communication session, etc.).
Additionally, the sensor 1101 comprises timestamp generator logic 365, which is configured to receive a time value from a source clock (e.g., real-time clock, not shown) and generate a timestamp based on the clock value and the received information 200. For instance, according to one embodiment of the disclosure, the timestamp generator logic 365 generates a timestamp once the packet analysis logic 355 determines that the object 204 is suspicious (and no prior preliminary analysis of the object 204 precludes continued analysis of the object 204 as described above). Of course, it is contemplated that the timestamp generator logic 365 may be configured to generate the timestamp in response to extraction of the metadata by the metadata extraction logic 360 or storage of the suspicious object 204 with the content data store 395.
The sensor 1101 further includes notification logic 380, which is responsible for handling communications 377 with particular logic within the computing node 1601, namely sensor notification logic (see
As an illustrative example, in response to receipt of communications from the sensor notification logic, which may include the UUID 211 for the suspicious object 204, the sensor identifier and the unique identifier of a previously analyzed object, the notification logic 380 may access the metadata data store 390 in order to identify that the suspicious object 204 has been processed (e.g., set a timeout indicator associated with an entry of the metadata data store 390 that includes the suspicious object 204). Although not shown, the notification logic 380 may further notify the event (timeout) monitoring logic 370 that analysis of the suspicious object 204 has been completed and no timeout events have occurred.
Referring to both
In response to neither the notification logic 380 nor the result aggregation logic 385 receiving information that conveys the suspicious object 204 has been analyzed before a timeout period has elapsed (e.g., no analysis results have been uploaded into the distributed data store 1701 of
Referring now to
As shown, the processor(s) 400 is figured to activate or deactivate the analysis coordination system 2201 as illustrated by a control line 420. When the analysis coordination system 2201 is activated, the processor(s) 400 supports communications between the analysis coordination system 2201 and any enrolled sensors (e.g., sensor 1101). The contents of the analysis coordination system 2201 are shown in
Referring to
The request detector/ID generator logic 500 is configured to detect the request message 376 with the metadata 206 from the MDS monitoring logic 375 of
The pre-analysis (filtering) logic 510 determines whether the metadata associated with a suspicious object for analysis corresponds to any previously analyzed suspicious object. This determination may involve a comparison of representative content 210 of the suspicious object 204, which is included as part of the received metadata 206, against representative content 535 of previously analyzed suspicious objects stored in the distributed data store 170, including distributed data store 1701. The representative content 210 of the suspicious object 204 may include a checksum or a hash value of the suspicious object 204. It is contemplated that the representative content 210 may include other parameters such as an indicator of a timeout event has occurred during processing of the suspicious object 204 or the original name of the object, especially when the suspicious object 204 is a file. The presence of other parameters may be useful in reducing the chances of false negatives in such detection.
Additionally, it is contemplated that the pre-analysis (filtering) logic 510 may be configured to identify one or more characteristics of the suspicious object 204, and based on the characteristic(s), determine whether further in-depth malware analysis of the suspicious object 204 is not desired in order to reduce workload. For example, the metadata 206 may provide information that identifies the suspicious object 204 is a type of object for which further in-depth malware analysis is not currently targeting or has little significance when compared to other types of objects. As another example, the metadata 206 may identify that the suspicious object 204 originated from a trusted source. Yet as another example, the metadata 206 may identify that the suspicious object 204 is associated with a particular software profile that is different from objects with certain software profiles that are now more frequently under attack. This determination may involve a comparison of the sensor ID 207 and/or the representative content 210 of the suspicious object 204, which is included as part of the received metadata 206, against content 535 stored in the distributed data store 170, including distributed data store 1701.
In response to determining that the representative content 210 associated with the suspicious object under analysis compares to representative content 535 of a previously analyzed object, the sensor notification logic 520 signals the notification logic 380 of
In response to determining that the representative content 210 associated with the suspicious object 204 under analysis fails to compare to any representative content associated with previously analyzed objects stored in the distributed data store 170, the pre-analysis (filtering) logic 510 records the UUID 211 along with the representative content 210 and the sensor ID 207 that are provided as part of the metadata 206 into the distributed data store 1701. The results of the analysis are subsequently uploaded to a corresponding entry associated with the UUID 211 at a later time after completion of the malware analysis of the suspicious object 204. The results may be referenced by other analysis coordination systems (analysis coordinators) within the cluster to mitigate unnecessary workload.
The timeout monitoring logic 530 is responsible for monitoring at least two different types of timeout events at the queue 1751. For a first type of timeout event, namely the object 204 failing to undergo malware analysis by a prescribed timeout period and, the timeout monitoring logic 530 utilizes the timeout value 209 provided as part of the queued metadata 206. The timeout value 209 generally synchronizes timing in the monitoring of timeout events by the object analysis system 2401 and the sensor 1101. For this type of timeout event, the timeout monitoring logic 530 monitors the metadata queuing time for the metadata 206 associated with the object 204 to determination where this duration exceeds the timeout value 209 (e.g., the duration that the metadata 206 resides in the queue 1751 exceeds the timeout value 209). For the second type of timeout event, the timeout monitoring logic 530 monitors the metadata queuing time for the object 204, where the duration exceeds a prescribed threshold, the timeout monitoring logic 530 may initiate actions that cause the metadata 206 to be made available to other object analysis systems. The timeout monitoring logic 530 is communicatively coupled to the distributed data store 1701 and the sensor notification logic 520 to identify whether metadata 206 experienced a timeout event.
Referring back to
Referring to
Herein, the capacity determination logic 560 is responsible for determining whether the computing node 1601 featuring the object analysis system 2401 has sufficient processing capacity to handle another in-depth malware analysis of a suspicious object. This may involve a checking of current processor workload, the number of virtual machines available for behavioral analysis of the suspicious object, or the like. If not, the capacity determination logic 560 refrains from notifying the queue access logic 562 to access metadata within the distributed queue 175. If so, the capacity determination logic 560 notifies the queue access logic 562 to commence selection of metadata from the distributed queue 175 of
Also, queue access logic 562 may include timeout monitor logic 563 that determines whether the metadata removed from the distributed queue 175 has experienced a timeout. If so, the timeout monitor logic 563 provides the UUID and sensor ID associated with the metadata to the reporting logic 590 via communication path 568 to bypass in-depth malware analysis of the suspicious object by the object processing logic 570. In response, the reporting logic 590 is configured to provide information 591 associated with the timeout event (hereinafter “timeout event information 591”) to the distributed data store 170 and/or the notification logic 380 of the sensor 1101 of
Upon receipt of the selected metadata, the content retrieval logic 564 commences retrieval of the suspicious object corresponding to the metadata. This retrieval may be accomplished by obtaining the sensor ID 207 that indicates what sensor is responsible for the submission of the retrieved metadata and storage of the object, along with the UUID provided by the metadata for identifying the object corresponding to the metadata. A request message 565 is sent to the sensor including the sensor identifier 207 and UUID 211 as parameters. A response message 566 may be returned from the sensor, where the response message 566 includes a link to the suspicious object (from which the suspicious object may be accessed), such as IP addresses, URLs, domain names, or the suspicious object itself (i.e., object 204). Although this illustrative embodiment describes the object analysis system 2401 acquiring the suspicious object 204 directly from the sensor 1101, it is contemplated that all communications with the sensor 1101 may be coordinated through the analysis coordination system (e.g., system 2201) of the broker computing node in communication with sensor 1101.
Thereafter, the returned information (link to object or object 204) may be temporarily stored in a data store (not shown) awaiting processing by one or more of the static analysis logic subsystem 582, the behavior analysis logic subsystem 584, and/or the emulation analysis logic subsystem 586. The control logic 580 controls the processing of the suspicious object 204 as described below for
The analytic results from the correlation/classification logic 588 along with certain portions of the metadata associated with the object (e.g., UUID 211) are provided to the reporting logic 590. The reporting logic 590 may be responsible for generating alerts directed to the client administrators or management system as shown in
Referring to
After receipt of the information 200, the processing engine 600 (e.g., logic 355-365 of
Additionally, logic within the processing engine 600 (e.g., timestamp generator logic 365 of
The MDS monitoring logic 375 may be configured to poll the metadata data store 390 for newly stored metadata (e.g., metadata 206). In response to detecting storage of the metadata 206 in the metadata data store 390, the MDS monitoring logic 375 fetches at least a portion of the metadata 206 for forwarding to the analysis coordination system 2201 of the computing node 1601 and computes the timeout value 209 based on the timeout period. This portion of the metadata 206 may include, but is not limited or restricted to the following: (i) the sensor ID 207 for sensor 1101, (ii) the timestamp 208 that identifies a start time for the analysis of the suspicious object 204, (iii) the assigned timeout value 209 (e.g., a time remaining from a time assigned by the processing engine that is based, at least in part, on the object type), (iv) representative content 210 of the suspicious object 204 (e.g., hash value, checksum, etc.), (v) UUID 211 of the suspicious object, and/or (vi) the operation mode identifier 212. Thereafter, the MDS monitoring logic 375 generates a request message 376, including some or all of the metadata 206, to the analysis coordination system 2201 that is assigned to service the sensor 1101.
The request detector/ID generator logic 500 is configured to receive the request message 376 from the MDS monitoring logic 375 and provide the metadata 206 to the pre-analysis (filtering) logic 510. It is contemplated that, in response to providing the request message 376 to the request detector/ID generator logic 500, the request detector/ID generator logic 500 may additionally assign a UUID associated with at least a portion of the metadata 206 and return the UUID to the MDS monitoring logic 375. Thereafter, the MDS monitoring logic 375 would relate the UUID to the metadata 206, where such metadata and its relationship are stored in the metadata data store 390.
As shown, the request detector/ID generator logic 500 of the analysis coordination system 2201 provides the metadata 206 to the pre-analysis (filtering) logic 510. Herein, the pre-analysis (filtering) logic 510 determines, from content within the metadata 206, whether the suspicious object 204 corresponds to any previously analyzed suspicious object within the cluster 1501 or perhaps within other clusters 1502-150N where the distributed data store 1701 is updated based on stored content in other computing nodes 1602-160P or computing nodes in other clusters 1502-150N. This determination involves a comparison of representative content 210 (e.g., checksum, hash value, etc.) UUID 211 (or original object name) of the suspicious object 204, which is part of the metadata 206, against representative content of previously analyzed suspicious objects stored in the distributed data store 170.
In response to determining that the representative content 210 for the suspicious object 204 compares to representative content of a previously analyzed object, the pre-analysis (filtering) unit 510 signals the sensor notification logic 520 to transmit a message to the notification logic 380 within the sensor 1101 that signifies that the suspicious object 204 has already been processed. The message may include the UUID 211 and sensor ID 207 associated with the metadata 206 being processed by the pre-analysis (filtering) logic 510 and the UUID associated with the previously analyzed object. Thereafter, the results of the analysis may be obtained from the distributed data store 170 utilizing the UUID associated with the previously analyzed object.
Responsible for handling communications with the sensor notification logic 520 and upon receipt of communications from the sensor notification logic, the notification logic 380 uses the UUID 211 of the suspicious object 204 to access the metadata data store 390 to indicate that the suspicious object 204 has been processed and notify the event (timeout) monitoring logic 370, through modification of an entry associated with the metadata 206 corresponding to object 204 in metadata data store 390 that analysis of the suspicious object 204 has been completed. The result aggregation logic 385 may be configured to periodically or aperiodically (e.g., in response to a timeout event) send a request message to retrieval logic 525 to access the distributed data store 170 for results associated with the suspicious object 204 corresponding to the UUID 211.
However, in response to determining that the representative content 210 of the suspicious object 204 under analysis fails to compare to any representative content within the distributed data store 170, the pre-analysis (filtering) logic 510 creates a storage entry associated with the suspicious object 204, including the UUID 211 along with the representative content 210 and the sensor ID 207 that are provided as part of the metadata 206 into the distributed data store 170. The results of the analysis are subsequently uploaded into this storage entry after completion of the malware analysis of the object.
In the event that the timeout monitoring logic 370 detects a timeout event, which signifies that the suspicious object 204 has not been analyzed by an analysis system before a timeout period has elapsed (e.g., the result aggregation logic 385 has not been able to retrieve analytic results 595 associated with the suspicious object 204 from the distributed data store 1701 when broker computing node 1601 is operating in passive mode), the timeout monitoring logic 370 notifies the processing engine 600 of the timeout event. Additionally, the notification logic 380 may be adapted to signify a timeout event (or failure to analyze the suspicious object 204 associated with provided metadata 206 within a prescribed period of time that may be determined based on the timeout period, the timestamp 208 and/or the current clock value) in response to receipt of timeout event information 591 when broker computing node 1601 is operating in active mode or receipt of information 532 that identifies metadata associated with suspicious object 204 has not been timely processed. This information (or portion thereof) 534 may also be provided for storage within the distributed data store 170 (via distributed data store 1701), which is accessible by other computing nodes 1602-160P.
Herein, the processing engine 600 may record information associated with the timeout event into the log 398, which maintains analytic data associated with the sensor operations (e.g., number of timeout events, number of objects offered for analysis by the sensor 1101, etc.). Alternatively, the processing engine 600 may resubmit the suspicious object 204, which may be accomplished, for example, by toggling a flag associated with a storage entry for the metadata 206 that causes the metadata 206 to appear as being newly added to the metadata data store 390. The MDS monitoring logic 375 would commence fetching a portion of the metadata 206, as described above.
Referring to
Within the object analysis system 2401, the capacity determination logic 560 determines whether the object analysis system 2401 corresponds to a “qualified” analyzer. This qualification may be determined when the object analysis system 2401 has sufficient processing capacity to handle an in-depth malware analysis of a suspicious object associated with the metadata 206, is provisioned with guest images necessary for conducting a particular malware analysis on the object 204 associated with the metadata 206, is configured for handling an object type corresponding to the object 204, or the like. This may involve an analysis of the operating state of the computing node 1601, such as determining whether the current processing capacity of the processor 400 of
If the operating state of the computing node 1601 would support performance of a malware analysis of a suspicious object, the capacity determination logic 560 notifies the queue access logic 562 to commence selection of metadata from the distributed queue 175 of
It is contemplated that the queue access logic 562 may include timeout monitor logic 563 that determines whether the portion of the metadata 206 removed from the distributed queue 175 has experienced a timeout. If so, the timeout monitor logic 563 provides the UUID and sensor ID associated with the metadata 206 to the reporting logic 590 via the communication path 568. In response, the reporting logic 590 is configured to provide the timeout event information 591 to the distributed data store 170 and/or the notification logic 380 of the sensor 1101 of
Upon receipt of the metadata 206, the content retrieval logic 564 commences retrieval of the suspicious object 204 that corresponds to the metadata. First, the content retrieval logic 564 obtains the sensor ID 207 that identifies sensor 1101 submitted the metadata 206 and is responsible for storage of the suspicious object 204. Second, besides the sensor ID 207, the content retrieval logic 564 further obtains the UUID 211 accompanying the metadata 206 for use in identifying the suspicious object 204. The content retrieval logic 564 sends the request message 565 including the sensor ID 207 and the UUID 211 as parameters to logic 396 that manages accesses to the content data store 395 (sometimes referred to as “data store management logic”) and awaits the response message 566 that includes a link to the object (from which the object may be accessed) or the suspicious object itself (i.e., suspicious object 204). Although not shown, it is contemplated that an object stored in the content data store 395 is deleted in response to a timeout event occurring for that object, as detected by the timeout monitoring logic 370.
Thereafter, the returned information (link to object or object) may be temporarily stored in a data store 700 awaiting processing by the object processing logic 570, which includes one or more of the static analysis logic subsystem 582, the behavior analysis logic subsystem 584, and/or the emulation analysis logic subsystem 586. The control logic 580 controls the processing of the suspicious object 204.
More specifically, the object processing logic 570 includes the static analysis logic subsystem 582, the behavior analysis logic subsystem 584, and/or the emulation analysis logic subsystem 586 as well as the correlation/classification logic 588 and the control logic 580. Although the analysis logic 582, 584 and 586 disposed within the object analysis system 2401 is shown in a parallel topology, it is contemplated that the analysis logic 582, 584 and 586 may be communicatively coupled in a serial configuration or a daisy-chain configuration. It should be appreciated that the static analysis logic subsystem 582, the behavior analysis logic subsystem 584, the emulation analysis logic subsystem 586, the correlation/classification logic 588, and the reporting logic 590 may each be separate and distinct components, but any combination of such logic may also be implemented in a single memory block and/or core.
According to one embodiment, it is contemplated that the metadata 206 that may be used, at least in part by a virtual machine manager (VMM) 710, for provisioning one or more virtual machines 720 in the behavior analysis logic subsystem 584. The one or more virtual machines (VMs) 720 may conduct run-time processing of at least some of the information associated with the suspicious object 204. It is contemplated that the metadata 206 may include data directed to the object type (e.g., PDF file, word processing document, HTML (web page) file, etc.), the type of operating system at the source that provided the object 160, web browser type, or the like.
Additionally, or in an alternative, the metadata 206 may further include information that may be utilized by the correlation/classification logic 588 for classifying the suspicious object 204. The metadata 206 may include information associated with the delivery mechanism for the suspicious object 204 which, depending on the object type, may include information extracted from a header of a packet (e.g., source IP address, destination IP address, etc.) or from the body or header of the email message (e.g., sender's email address, recipient's email address, subject line, etc.). Hence, although not shown in detail, the metadata 206 may operate as another analysis type in addition to the static analysis (characteristics), dynamic analysis (behaviors), and/or emulation (e.g., emulation results).
Referring still to
Additionally, the static analysis logic subsystem 582 may feature a plurality of rules that may be stored on the data store 700, for example, wherein the rules control the analysis conducted on the suspicious object 204. The rules may be based, at least in part, on machine learning; pattern matching; heuristic, probabilistic, or determinative analysis results; experiential knowledge; analyzed deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, HTTPS, TCP, etc.); analyzed compliance with certain message formats established for the protocol (e.g., out-of-order commands); and/or analyzed header or payload parameters to determine compliance. It is envisioned that the rules may be updated from an external source, such as via a remote source (e.g., threat intelligence network), in a periodic or aperiodic manner.
It is envisioned that information associated with the suspicious object 204 may be further analyzed using the behavior (dynamic) analysis logic subsystem 584. Herein, the behavior analysis logic subsystem 584 features the VMM 710 and one or more virtual machines (VMs) 720, namely VM1 7251-VMR 725R (R≥1), and monitoring logic 730. One or more of the VMs 7251-725R are configured to process the suspicious object 204, and the behaviors of the suspicious object 204 and/or VM(s) 7251-725R may include anomalous behaviors. In general terms, each of the VMs 720 includes at least one run-time environment, which features a selected operating system and one or more applications to process the suspicious object 204, which is expected for the type of suspicious object 204 under analysis or based on the targeted destination for the suspicious object 204. For instance, where the suspicious object 204 is a URL, the run-time environment may include a specific OS type along with one or more web browser applications. Herein, the control logic 580 or logic within the dynamic analysis logic subsystem 584 may be adapted to provision one or more VMs 7251-725R (e.g., VM1-VMR) using information within the metadata 206 and/or information from the static analysis logic subsystem 582.
Herein, it is contemplated that the VMs 7251-725R may be provisioned with the same or different guest image bundles, where one VM 7251 may be provisioned with one or more application instances supported by a first type of operating system (e.g., Windows®) while another VM 7252 may be provisioned with a second type of operating system (e.g., MAC® OS X) supporting one or more other application instances. Furthermore, VMs 7251-725R may be provisioned with customer specific guest image instances. According to one embodiment, the provisioning may be accomplished through a customer preference configuration option that is uploaded to the VMM 710 of the dynamic analysis logic subsystem 584. The configuration option may be structured to identify the application version(s) and/or operating system(s) supported by the VMs 7251-725R. As an illustrative embodiment, each VM 7251. . . or 725R may be provisioned with one or more guest images directed to a single application version/operating system version (e.g., Microsoft® Word 2013 and Windows® 7 OS), multiple (two or more) application versions and a single OS version (e.g., Microsoft® Words® applications supported by Windows® 10 OS), multiple application versions and multiple OS versions (e.g., Microsoft® Words® applications supported by one or more Windows®-based OSes or MAC®-based OSes), or even single application and multiple OS deployment.
Additionally, the VMs 7251-725R for each computing node may be provided for dedicated processing of a certain object type such as emails, network traffic including webpages/URLs, or the like. For this configuration, it is contemplated that queue 1751 may be segmented in which one or more portions of the queue 1751 are reserved for metadata associated with the certain object type while other object types are maintained in another portion of the queue 1751. In lieu of segmenting queue 1751, it is further contemplated that a different queue may be assigned for objects of the certain object type.
Furthermore, it is contemplated that the VMs within the object analysis systems (e.g., VMs 7251-725R of object analysis system 2401) may be provisioned so that different object analysis systems (computing nodes) support different types or levels of malware analysis. For instance, computing node 1601 of
Monitoring logic 730 within the dynamic analysis logic subsystem 584 may observe one or more behaviors with respect to the suspicious object 204 that are attributable to the object 204 or attributable to the execution of the object 204 within one or more VMs 720,. These monitored behaviors may be used in a determination by the correlation/classification logic 588 as to whether the suspicious object 204 is associated with malware (i.e., the likelihood of the suspicious object 204 including malware and deemed malicious exceeds the second prescribed threshold). During processing of certain types of objects, such as the URL for example, the one or more VMs 720 (e.g., VM 7251) may initiate a request message or successive request messages 567 to data store management logic 396 via the content retrieval logic 564 for additional information prompted through the processing of the URL. This information may involve web pages that would have been accessed during activation of the URL as well as objects within the web pages themselves. If the requested information is available, the data store management logic 396 returns the requested information via the content retrieval logic 564, operating as a proxy, to the VM 7251. If the requested information is not available, however, the control logic 580 operating alone or in combination with other logic (e.g. the emulation analysis logic 586) may serve the request to enable the VM 7251 to continue processing the URL (suspicious object 204).
As further shown in
It should be understood that the static analysis logic subsystem 582, the dynamic analysis logic subsystem 584, the emulation analysis logic subsystem 586, the correlation/classification logic 588, and/or the reporting logic 590 may be implemented as one or more software modules executed by one or more processors as shown in
As further shown in
Herein, as a non-limiting illustration, the attributes and/or combinations of attributes constitute contextual information associated with the suspicious object 204, which is provided to the threat index generation logic 750 to determine one or more threat indices. The operability of the threat index generation logic 750 is controlled by a threat index data set (not shown), which may be stored locally or within the data store 700. The one or more threat indices are used by the object classification logic 760 to determine whether or not the suspicious object 204 is malicious, where such analysis is described in U.S. patent application Ser. No. 14/986,416 entitled “Malware Detection System With Context Analysis,” filed Dec. 31, 2015, the entire contents of which are incorporated by reference.
The analytic results 780 from the correlation/classification logic 588 along with certain portions of the metadata associated with the object (e.g., UUID) are provided to the reporting logic 590. The reporting logic 590 may generate alerts directed to the client administrators or management system as shown in
As an alternative embodiment to the asynchronous load balancing architecture described above, a synchronous load balancing architecture may be utilized as depicted in
Differing from the asynchronous load balancing architecture illustrated in
Herein, the load balancing for each of the object analysis system 8201-8204 avoids bottlenecks or long latencies. However, it is contemplated that more complex considerations may be used besides load. For instance, where the loads are equivalent but the object analysis system 8201 begins to operate in a degraded mode, one or more of the other object analysis systems 8202, . . . , or 8204 will need to increase performance.
As shown, for a communication session, sensors 1101-110M are communicatively coupled directly to the first cluster 1501 via a broker computing node, where each sensor 1101-110M is assigned to a particular broker computing node during registration process and this assignment is assessed periodically or aperiodically in case an adjustment is needed due to workload. Herein, each sensor 1101, . . . , or 110M is configured to transmit a first message 830 (e.g., a Hypertext Transfer Protocol “HTTP” transmission) as a data submission to its assigned analysis coordination system 8001 or 8002. As shown, sensor 1101 transmits the data submission 830 to analysis coordination system 8001.
In the event that this transmission is associated with a new communication session, the analysis coordination system 8001 conducts a load balance analysis and selects one of the object analysis systems 8201-8204 to handle malware analysis for an object 835 that has been detected by the sensor 1101 as suspicious. An identifier 840 of the selected object analysis system, sometimes referred to as a “cookie”, is returned to the sensor 1101 from the analysis coordination system 8001.
In response to receiving the cookie 840 and without terminating the communication session, the sensor 1101 transmits a second message 850 to the selected object analysis system (e.g., object analysis system 8203). The second message 850 includes the object 835 for analysis, metadata 836 associated with the object 835, the identifier 840 of the selected object analysis system 8203 as a targeted destination, and an identifier 860 of the sensor 1101 as a source. The analysis coordination system 8001 translates the identifier 840 to appropriate address information of the selected object analysis system 8203 and redirects the second message 850 to the selected object analysis system 8203 for conducting malware analysis on the object 835.
Similar to the operations described in
Upon failing to determine that the object 835 is suspicious, the sensor 1101 avoids transmission of the first message 830 that initiates an in-depth malware analysis of the object 835. However, in response to the sensor 1101 detecting that the object 835 is suspicious, the sensor 1101 transmits the first message 830 to initiate the communication session and commence routing of the object 835 to a selected object analysis system.
Referring to
As shown, the analysis coordination system 8001 features a proxy server 900 communicatively coupled to the load balancer 910. The proxy server 900 is responsible for determining whether the data submission 830 from the sensor 1101 includes a cookie, which denotes an object analysis system targeted to receive the data submission. The load balancer 910 is responsible for the handling of load balancing for the object analysis systems 8201-8204 within the cluster 1501. As shown, load balancer 910 receives load information 825 from load monitors 9201-9203 that are configured to monitor workload of the object analysis systems 8201-8203, respectively.
Herein, in response to receipt of the first message 830 from the sensor 1101, the proxy server 900 determines whether the first message 830 includes a cookie 840 that identifies one of the object analysis systems within the cluster 1501. If no cookie is found, the proxy server 900 forwards the first message 830 to the load balancer 910, which returns a message 930 with the assigned cookie 840 identifying the selected object analysis system (e.g., object analysis system 8203) to the proxy server 900. Thereafter, the proxy server 900 returns at least the cookie 840 from the message 930 to the server 1101, which causes the sensor 1101 to transmit the second message 850, including the object 835 for analysis, back to the proxy server 900.
Upon receipt of the second message 850, the proxy server 900 redirects the second message 850 to a web server 940, which effectively provides an address (e.g., IP address) for the object analysis system 8203 within the computing node 1601. Thereafter, the web server 940 may parse the second message 850 to extract the object 835 for processing and the metadata 836 for use in VM configuration of the object processing logic 570, as described above.
Referring to
Upon receipt of the second message, the proxy server 900 redirects the second message to the web (API) server 940 (operation “6”), which parse the second message to extract the object 835 for processing and the metadata 836 for use in VM configuration of the object processing logic 570 (operation “7”). Within the object processing logic 570, the object 835 undergoes static analysis, behavioral (dynamic) analysis and/or emulation analysis to produce attributes that are analyzed by correlation/classification logic to determine whether the object 835 is associated with malware. The results of the analysis by the object processing logic 570 may be returned to the proxy server 900 (operation “8”), and subsequently made available to the sensor 1101 through a push or pull data delivery scheme (operation “9”). Although not shown, it is contemplated that object analysis system 8203 includes content retrieval logic (e.g., content retrieval logic 564 of
Referring to
As an illustrative example, during the handshaking scheme, the first computing node 1601 issues a request message 1100 to the management system 185. The request message 1100 includes authentication credentials 1105 associated with the first computing node 1601. The authentication credentials 1105 may include, but is not limited or restricted to a public key (PUKCN1) 1110 associated with the first computing node 1601. Additionally, or in the alternative, the authentication credentials 1105 may include an identifier for the computing node (e.g., source media access control “MAC” address, assigned device name, etc.), an Internet Protocol (IP) address of the computing node, and/or an administrator password (in the event that requisite permission is needed from a network administrator for creating a cluster).
In response to receipt of the request message 1100, the management system 185 may provide its authentication credentials 1120 (e.g., at least its public key “PUKMS” 1125) to the first computing node 1601. As a result, both the first computing node 1601 and the management system 185 possess keying material for use in establishing secure communications for transmission of a message requesting to join a cluster of the malware detection system. One type of secure communications includes a secure channel 1130 formed in accordance with a cryptographic, public-private key exchange protocol referred to as “Secure Shell” (SSH-2). The secure channel 1130 is now used in the transmission of information between the management system 185 and the first computing node 1601.
In general, to establish secure communications, the same operations may be conducted for other newly added computing nodes, such as a second computing node 1602 and a third computing node 1603, where the management system 185 may utilize authentication credentials provided from the second computing node 1602 and the third computing node 1603 (e.g., PUKCN2 1115 and PUKCN3 1117) to establish secure communications 1135 and 1137 therewith.
Expanding an existing cluster with an additional computing node to account for increased malware analysis needs by the customer will now be explained. More specifically, as shown in
Formation of a new cluster will now be described. Where the malware detection system 100 has no active clusters, the management system 185 may assign the second computing node 1602 to a newly formed cluster (e.g., cluster 1501) and add the public key of the second computing node 1602 (PUKCN2) 1115 to a stored listing of public keys 1150 (hereinafter “public key listing 1150”) associated with the cluster 1501. The management system 185 maintains the public key listing 1150 (e.g., an organized collection of public keys), which is used to identify all of the computing nodes that are part of the cluster 1501. Thereafter, the management system 185 provides the public key listing 1150 to the second computing node 1602. It is contemplated that, upon creation of the cluster 1501, the management system 185 assigns an identifier 1160 (e.g., string of alphanumeric characters that represent a name of the cluster 1501) for the cluster 1501. The cluster identifier 1160 may be provided with the public key listing 1150 as well.
Alternatively, where the second computing node 1602 is seeking to join one of a plurality of active clusters (i.e. where secure channels 1130 and 1137 have already been established prior to establishing secure channel 1135), the management system 185 analyzes the workload for each active cluster, as described above. Based on the analyzed workload, the management system 185 assigns the second computing node 1602 to a selected cluster (e.g., cluster 1501) and adds the PUKCN2 1115 of the second computing node 1602 to the public key listing 1150 associated with the selected cluster 1501.
Additionally, the management system 185 provides one or more notification messages 1170 to all computing nodes of the selected cluster 1501 (e.g., computing nodes 1601-1603) of a change in the public key listing 1150, which denotes expansion or contraction of the cluster 1501. The notification messages 1170 include the public key listing 1150 (i.e., as a link or the listing itself) to each of the computing nodes (e.g., computing nodes 1601-1603) that are part of the cluster 1501. The notification messages 1170 may be sent concurrently or sequentially. Alternatively, the notification messages 1170 may merely notify the computing nodes 1601-1603 of an updated publication of the public key listing 1150, where the public key listing 1150 is published and available for retrieval by the computing nodes (computing nodes 1601-1603 as shown).
As a result, each of the computing nodes (e.g., computing nodes 1601-1603 as shown) that collectively form the cluster 1501 has access to public key information associated with all other computing nodes within that cluster. Hence, depending on the assigned roles of the computing nodes as described below, a “broker” computing node (e.g., computing node 1601) is capable of establishing secured communications 1180 and 1185 with other computing nodes (e.g., computing nodes 1602 and 1603).
Hence, the assignment of role responsibility for the computing nodes is one of the operations performed when forming or adjusting the configuration of a cluster. Herein, the management system 185 may configure each computing node as either a “broker” computing node or an “analytic” computing node. A number of factors may be used by the management system 185 in determining what role to assign the computing node. Some of these factors used in the assignment of a broker computing node from an analytic computing node may include, but are not limited or restricted to (i) public network (Internet) connectivity i.e. sensors enrolled with a cluster can be deployed in different geographical locations and these geographically distributed sensors must be able to access broker computing nodes over the Internet or WAN (however, ‘analytic’ computing nodes may not be exposed to the Internet or WAN); (ii) geographical location (e.g., computing node in same geographic region as the sensor such as continent, country, region, district, county, state, etc.; (iii) compatibility with different types of sensors (e.g., by model, by original equipment manufacturer, by storage capacity, by capability such as handling web traffic, email traffic, etc.); (iv) type of objects analyzed by the particular broker computing node (where certain nodes are dedicated to analysis certain object types (e.g., webpage/URL, emails). Similarly, factors used in the assignment of a broker computing node from an analytic computing node may include (i) anticipated or current workload (e.g., queue utilization, processor utilization, number of analyses being conducted, ratio between number of analyses and timeout events, etc.); (ii) capability to replicate shared job queue across multiple broker computing nodes; (iii) capacity in terms of number of guest image instances or types of guest image instances supported; (iv) types of guest-images supported (e.g., type/version of application program, type/version of operating system, etc.) especially where different computing nodes are dedicated to analysis of a certain object type in a certain operating environment (e.g., a single application/OS version, multiple application versions and single OS version, multiple application/OS versions, single application and multiple OS versions). Some of these factors may be shared in consideration of the role of the computer node.
As shown in
Although not shown, an exemplary embodiment of a logical representation of the computing node 1601 is described. Herein, the computing node 1601 comprises one or more processors, one or more network interfaces, and logic associated with the analysis coordination system 2901 and the object analysis system 2951. The logic may be hardware, software stored in non-transitory storage medium, or firmware. These components may be virtualized software or components at least partially encased in a housing, which may be made entirely or partially of a rigid material. According to one embodiment of the disclosure, when the analysis coordination system 2901 is activated, the processor(s) supports communications between the analysis coordination system 2901 and any enrolled sensors (e.g., sensor 1101).
More specifically, when analysis coordination system 2901 is activated, the computing node 1601 is configured to operate as a “broker” computing node, namely a network device that is selected to directly communicate with any or all of the sensors that are assigned to use the cluster that conducts an in-depth malware analysis of a received suspicious object. As a “broker” computing node, the analysis coordination system 2901 of the computing node 1601 may be responsible for, inter alia, (i) assigning an identifier (e.g., an identifier unique to the domain) to incoming metadata that is associated with a suspicious object received from a sensor, and (ii) distributing the metadata to a distributed data store, where at least a portion of the metadata may be used by an object analysis system (within the broker computing node or another computing node) to obtain the suspicious object for analysis, as described above.
Independent of its role (“broker” or “analytic”), each computing node 1601-1603 includes an active, object analysis system 2951-2953. An object analysis system is configured to conduct in-depth malware analysis on the object. Hence, although the analysis coordination systems 2952-2953 of the computing nodes 1602-1603 are inactive, the computing nodes 1602-1603 are still able to analyze an incoming object to determine whether that object is associated with malware.
Of course, it is contemplated, as an alternative embodiment, that a “broker” computing node may have a logical architecture different than an “analytic” computing node. For example, a broker computing node may be configured with only an analysis coordination system. An analytic computing node may be configured with only an object analysis system.
Referring now to
The enrollment service 1300 may be highly available in a variety of deployments. For instance, if the enrollment service 1300 operates on the management system 185, it is contemplated that a redundant management system deployment may be utilized, where one management system works as a primary system while a second management system operates as a secondary/standby system. In the case of a failover (or takeover), the enrollment service 1300 becomes available automatically on the secondary management system that now operates as the primary management system. Alternatively, the enrollment service 1300 in the cloud is horizontally scalable against a single DNS name.
According to one embodiment of the disclosure, the sensor 1101 may automatically transmit the request message 1210 upon activation or may transmit the request message 1210 based on a manual setting by an administrator when configuring (or re-configuring) one or more clusters of the malware detection system. Besides providing addressing information (e.g., source IP address) that enables the credential web server 1220 to return a response message 1240, the request message 1210 may include information 1230 that uniquely identifies the sensor 1101, such as a device serial number, a source MAC address, or other unique identifier assigned by the particular original equipment manufacturer or software provider (e.g., hash value derived from information that uniquely identifies the sensor 1101). Herein, the request message 1210 may be part of a handshaking protocol to establish secure communications (e.g., HTTPS, HTTP, etc.), and if so, keying material may accompany the request message 1210 or may be provided prior to transmission of the request message 1210. It is contemplated that the request message 1210 may include or accompany information that identifies a customer associated with the sensor 1101, information that identifies a subscription level of the customer that may affect the features and capabilities returned to the sensor 1101, or the like.
As shown, the credential web server 1220 is adapted to receive the request message 1210 from the sensor 1101, and in response, extract the information 1230 that uniquely identifies the sensor 1101. Upon obtaining the information 1230, the credential web server 1220 generates a tenant credentials 1250 associated with the sensor 1101. The tenant credentials 1250 includes a unique identifier (tenant ID) 1260 that is used by the enrollment service for authentication of the sensor 1101, when the sensor 1101 seeks access to a particular cluster managed, at least in part, by the enrollment service. The unique identifier 1260 may be generated based, at least in part, on the information provided with the request message 1210, or may be generated randomly or pseudo-randomly by the credential web server 1220. It is contemplated that the tenant credentials 1250 may include information that identifies that the sensor 1101 (or entity associated with the sensor 1101) has an active subscription to the services offered by the cluster to which the sensor seeks access and the subscription level assigned to the sensor 1101.
It is contemplated that sensor 1101 may obtain the address of the enrollment service 1300 using any number of techniques to set the address of the enrollment service 1300 within the sensor 1101. For instance, as an illustrative example, the sensor 1101 may be configured (at manufacture or in the field) with a default address setting that includes a well-defined domain name server (DNS) as the public address of a public enrollment service. As another illustrative example, where the sensor 1101 is managed by the management system 185, the sensor 1101 may be configured with an address (e.g., IP address) of the management system 185, acquired from the management system 185 (described below), for use in lieu of the public address (DNS). As another illustrative example, the sensor 1101 may be configured by a network administrator who manually changes the enrollment service address to a desired address. Independent of the setting technique, the sensor 1101 is configured to support connectivity with the enrollment service 1300.
Referring to
The advertised features and capabilities 1310 (along with any other features and capabilities from other broker computing nodes) are maintained by the enrollment service 1300. The enrollment service 1300 considers one or more of the advertised features and capabilities of one or more computing nodes for selecting a particular broker computing node to support the sensor 1101 requesting access to cluster 1501. Upon selecting the particular broker computing node (e.g., broker computing node 1601), the enrollment service 1300 returns at least a portion of the features and capabilities 1310 to the requesting sensor 1101.
In particular, as shown in
In response to receipt of the CLUSTER_REQ( ) message 1320 and after analysis of the features and capabilities of the available broker computing nodes, the management system 185 returns one or more response message 1325 (e.g., represented as “CLUSTER_RSP( ) message”) to the sensor 1101. The CLUSTER_RSP( ) message 1325 provides address information 1330 for accessing the enrollment service 1300 where, according to this embodiment of the disclosure, the address information 1330 may include an address (e.g., IP address) or a Domain Name System (DNS) name of the management system 185 as the address of enrollment service 1300 that is available on the management system. Additionally, the CLUSTER_RSP( ) message 1325 may further include keying material 1332 associated with the management system 185 to establish secured communications (e.g., HTTPS secure channel) with the management system 185.
In a response to receipt of the CLUSTER_RSP( ) message 1325, the sensor 1101 issues one or more enrollment request messages 1340 (e.g., represented as “ENROLL_REQ( ) message”) to the enrollment service 1300 via the HTTPS secure channel, which may be established based on the exchange of keying material during the handshaking protocol (e.g., exchange of CLUSTER_REQ( ) message 1320 and CLUSTER_RSP( ) message 1325). The ENROLL_REQ( ) message 1340 may include the tenant credentials 1250 of
More specifically, before selecting of the particular broker computing node, using a portion of the tenant credentials 1250, the enrollment service 1300 may conduct a subscription check of the sensor 1101 to determine whether the customer associated with the sensor 1101 has an active subscription to a particular service being requested (if not already conducted by the credential web server 320 of
Herein, both the sensor 1101 and the enrollment service 1300 may check if the subscription is active and update-to-date. As soon as any of them detects that the subscription is not active anymore, the sensor 1101 disconnects itself from the broker computing node 1601 of the cluster 1501 and sends an Un-enrollment request (not shown) to the enrollment service 1300. Thereafter, the enrollment service 1300 removes the authenticated keying material for the sensor 1101 from one or more broker computing nodes in communication with the sensor 1101. Once the sensor authenticated keying material is removed from the broker computing node 1601, the broker computing node 1601 will not accept the connections from the sensor 1101 until a new enrollment process for the sensor 1101 is conducted.
Additionally, besides whether the subscription is active for the sensor 1101, the enrollment service 1300 may determine a type of subscription assigned to the sensor 1101. More specifically, the enrollment service may further determine the subscription level assigned to the sensor 1101 (e.g., basic with entry level malware analysis, premium with more robust malware analysis such as increased analysis time per object, increased guest images supported, prescribed quality of service greater than offered with basic subscription, access to computing nodes dedicated to processing certain object types, etc.). Such information may be relied upon for selection of the broker computing node by the enrollment service 1300.
Where the sensor 1101 is not authenticated, the enrollment service 1300 does not respond to the ENROLL_REQ( ) message 1340 or returns a first type of enrollment response message 1350 (e.g., represented as “ENROLL_ERROR( )” message as shown) that identifies the sensor 1101 has not been authenticated or not authorized. However, upon authenticating the sensor 1101, the enrollment service 1300 is configured to forward (send) the keying material 1322 associated with the sensor 1101 to the broker computing node 1601. The enrollment service 1300 is also configured to return an enrollment response message 1360 (e.g., represented as “ENROLL_RSP( ) message”) to the sensor 1101. The ENROLL_RSP( ) message 1360 includes a portion of features and capabilities 1310 of the selected broker computing node (e.g., broker computing node 1601), such as the IP address 1362 for the broker computing node 1601, the name 1364 of the broker computing node 1601, and/or authentication information 1366 (e.g., passwords, keying material, etc.) associated with the broker computing node 1601 of the cluster 1501.
Upon receipt of the portion of features and capabilities 1310 for the selected broker computing node 1601, the sensor 1101 is now able to establish a secure communication path 1370 to the broker computing node 1601. Thereafter, according to one embodiment of the disclosure, the sensor 1101 may submit metadata associated with any detected suspicious objects, where the broker computing node 1601 determines from the metadata whether a suspicious object has been previously analyzed, and if not, queues the metadata for subsequent use in retrieval of the suspicious object for an in-depth malware analysis by the broker computing node 1601 or in any of the computing nodes 1602 and 1603 that is part of the cluster 1501. The in-depth malware analysis may involve static, dynamic or emulation analysis, as generally described in U.S. Pat. No. 9,223,972, the entire contents of which are incorporated by reference.
Referring now to
In the event that the workload of the broker computing node 1601 is substantially larger than another broker computing node within the cluster 1501, it is contemplated that the enrollment service 1300 may redirect communications from the sensor 1101 to another broker computing node within the cluster 1501 (or even a different cluster) in lieu of the broker computing node 1601. In this regard, in response to receipt of the Status Request message 1380, the enrollment service 1300 issues a Status Response 1385 (“STATUS_RSP( )”). The STATUS_RSP( ) message 1385 may include a portion of features and capabilities for the same computing node 1601 or for another broker computing node selected to communicate with sensor 1101 (e.g., computing node 1602 with its analysis coordination system 2902 activated and operating as a broker computing node), such as the IP address 1390 for the broker computing node 1602, (ii) the name 1392 of the broker computing node 1602, and/or authentication information 1394 (e.g., passwords, keying material, etc.) associated with the broker computing node 1602 of the cluster 1501.
Referring to
As shown in
From the features and capabilities 1440 of the selected broker computing node information contained in the WEB_ENROLL_RSP( ) message 1430, the sensor node 1101 establishes a secure (HTTPS) communication path 1450 with the selected broker computing node 1601 located in cloud 1400. Thereafter, as described above, the sensor 1101 may submit metadata associated with any detected suspicious object, where the broker computing node 1601 determines from the metadata whether the suspicious object has been previously analyzed. If not, the broker computing node 1601 coordinates the retrieval of the suspicious object and the handling of an in-depth malware analysis of the suspicious object. The malware analysis may be performed by the broker computing node 1601 or any available computing node operating in the cluster 1501.
Referring to
In accordance with this embodiment of the disclosure, the enrollment service 1300 is provided by the second management system 1510. Being configured to manage sensor operability, the first management system 1500 operates as a proxy for a request for enrollment service received from the sensors 1101-110M. More specifically, the sensor 1101 issues one or more request messages 1520 (herein, “CLUSTER_REQ( ) message”) to the first management system 1500, as described in
Thereafter, the sensor 1101 issues one or more enrollment request messages 1540 (herein, “ENROLL_REQ( ) message”) to the enrollment service 1300, perhaps via the HTTPS secure channel pre-established between the sensor 1101 and the second management system 1520. The ENROLL_REQ( ) message 1540 may include the tenant credentials 1250 of
Where the sensor 1101 is not authenticated, the enrollment service 1300 does not respond to the ENROLL_REQ( ) message 1540 or returns an enrollment response message that identifies a communication error (not shown), as described above.
However, upon authenticating the sensor 1101, the enrollment service 1300 is configured to forward keying material 1522 associated with the sensor 1101 to a broker computing node selected by the enrollment service 1300 for operating in cooperation with sensor 1101 (e.g. broker computing node 1601). The enrollment service 1300 is also configured to return an enrollment response message 1560 (e.g., herein, “ENROLL_RSP( )” message) to the sensor 1101. The ENROLL_RSP( ) message 1560 includes a portion of features and capabilities 1310 of the selected broker computing node (e.g., broker computing node 1601), as described above.
Thereafter, the sensor 1101 is in secure communications with broker computing node 1601 to receive metadata and corresponding suspicious objects for malware analysis.
Referring now to
Herein, the sensor 1101 may be configured to transmit status messages 1630 to the broker computing node 1601. The transmission of the status messages 1630 may be periodic or aperiodic in response to a triggering event such as a timeout event that denotes expiration of a time period allocated for the malware analysis of a particular suspicious object. In response to receipt of the status message 1630, the broker computing node 1601 extracts information from the status message 1630, namely a unique identifier 1640 associated with the submitted suspicious object. Using the identifier 1640, the broker computing node 1601 accesses the distributed data store 170 recover analysis results 1600 performed by status analysis logic, dynamic analysis logic or emulation analysis logic within the object analysis system 2952 of the computing node 1602 to determine whether or not the suspicious object is associated with malware.
Upon determining that the results 1600 for the identified suspicious object have been produced and are stored in the distributed data store 170, the broker computing node 1601 transmits the results 1600 to the sensor 1101. Upon receipt of the results 1600, the sensor 1101 may provide an aggregate of the analysis results (referred to as “aggregation results 1650”), which includes results 1600, to the management system 185. It is contemplated that, as an alternative embodiment, the broker computing node 1601 may transmit at least a portion of the results 1600 to the management system 185 in lieu of or in addition to transmission via the sensor 1101.
Based on the content of the aggregated analysis results 1650, the management system 185 may generate an alert 1660 via a wired or wireless transmitter (not shown) to notify a network administrator (see
Referring to
In the event that the metadata 1740 indicates that the suspicious object 1750 has not been analyzed, the broker computing node 1710 obtains the metadata 1740 and utilizes the metadata 1740 to obtain the suspicious object 1750. The suspicious object 1750 may be stored in a local data store of the sensor 1720 or in a data store accessible by the sensor 1720.
Upon receipt of the suspicious object 1750, the broker computing node 1710 (object analysis system) conducts one or more analyses (e.g., static analysis, dynamic analysis, and/or emulation analysis) on the suspicious object 1750 to determine whether the suspicious object 1750 is associated with malware. If so, results 1780 from the one or more analyses are stored within the distributed data store, which is accessible by the sensor 1720 through one or more status messages 1770, as illustrated as status messages 1630 in
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/283206, filed Sep. 30, 2016, now U.S. Pat. No. 10,616,266, issued Apr. 7. 2020, which claims the benefit of priority on U.S. Provisional Patent Application No. 62/313,643, filed Mar. 25, 2016, the entire contents of which are incorporated by references.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | S.ø.rhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484203 | Porras et al. | Nov 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9154519 | Godunov | Oct 2015 | B1 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9710646 | Zhang et al. | Jul 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
10616266 | Otvagin | Apr 2020 | B1 |
10819718 | David | Oct 2020 | B2 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Proves et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160197951 | Lietz et al. | Jul 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.-mining.pdf-. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, lEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”. Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), p. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C., et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W., et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard fora NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
U.S. Appl. No. 15/283,206, filed Sep. 30, 2016 Final Office Action dated Jul. 23, 2019. |
U.S. Appl. No. 15/283,206, filed Sep. 30, 2016 Non-Final Office Action dated Dec. 31, 2018. |
U.S. Appl. No. 15/283,206, filed Sep. 30, 2016 Notice of Allowance dated Nov. 25, 2019. |
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
Number | Date | Country | |
---|---|---|---|
62313643 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15283206 | Sep 2016 | US |
Child | 16840584 | US |