The section headings used herein are for organizational purposes only and should not to be construed as limiting the subject matter described in the present application in any way.
Autonomous, self-driving, and semi-autonomous automobiles use a combination of different sensors and technologies such as radar, image-recognition cameras, and sonar for detection and location of surrounding objects. These sensors enable a host of improvements in driver safety including collision warning, automatic-emergency braking, lane-departure warning, lane-keeping assistance, adaptive cruise control, and piloted driving. Among these sensor technologies, light detection and ranging (LIDAR) systems take a critical role, enabling real-time, high resolution 3D mapping of the surrounding environment.
The majority of commercially available LIDAR systems used for autonomous vehicles today utilize a small number of lasers, combined with some method of mechanically scanning the environment. For example, several manufacturers provide rotating LIDAR systems with transmit/receive optics located on a spinning motor in order provide a 360° horizontal field-of-view. A one-dimensional (1D) fixed array of lasers is used for the vertical direction, and the horizontal scan is accomplished through the rotation. Currently, the largest 1D array in the commercial market contains 128 lasers. Some vendors utilize a moving mirror to scan the FOV. For example, the mirror can be actuated using MEMS or galvanometers. In these systems, often only 1 or 2 lasers are used, in combination with two mirrors, one for the horizontal direction and one for the vertical direction.
In mechanically scanned LIDAR systems, the scanning method puts physical constraints on the receiver and transmitter optics. For example, in a rotating motor scanned LIDAR system, the receiver is typically placed together with the transmitter on the same motor in order allow the transmitter and receiver to “look at the same spot” during operation. Similarly, the receiver in the scanning mirror devices is often positioned to make use of the same moving mirror as the transmitter so that the light reflected from the target travels back through the shared mirror optics to reach the receiver. These physical constraints can put limits on the size of the LIDAR system(s) and the size and location of individual components. In addition, these physical constraints impact performance features like measurement range and SNR/cross-talk.
The present teaching, in accordance with preferred and exemplary embodiments, together with further advantages thereof, is more particularly described in the following detailed description, taken in conjunction with the accompanying drawings. The skilled person in the art will understand that the drawings, described below, are for illustration purposes only. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating principles of the teaching. The drawings are not intended to limit the scope of the Applicant's teaching in any way.
The present teaching will now be described in more detail with reference to exemplary embodiments thereof as shown in the accompanying drawings. While the present teaching is described in conjunction with various embodiments and examples, it is not intended that the present teaching be limited to such embodiments. On the contrary, the present teaching encompasses various alternatives, modifications and equivalents, as will be appreciated by those of skill in the art. Those of ordinary skill in the art having access to the teaching herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the present disclosure as described herein.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the teaching. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
It should be understood that the individual steps of the methods of the present teaching can be performed in any order and/or simultaneously as long as the teaching remains operable. Furthermore, it should be understood that the apparatus and methods of the present teaching can include any number or all of the described embodiments as long as the teaching remains operable.
Known LIDAR systems with moving parts are problematic for many reasons including being prone to reliability issues. One aspect of the present teaching is the realization that a solid-state LIDAR system that requires no moving parts for scanning the field-of-view can be designed with fewer physical constraints, allowing for both performance improvement and increased flexibility in integration of the LIDAR system within an autonomous vehicle. In addition, a solid-state system with substantially more lasers makes possible operational modes that are not achievable with mechanical scanning, such as the ability to randomly scan the field-of-view without any mechanical constraint on the scanning pattern.
For many reasons, LIDAR systems generally require multiple separate units to support the measurement requirements. These reasons include, for example, size limitations, mounting restrictions, measurement requirements, integrations with other systems and many others. As such, LIDAR systems are needed that are modular and easily distributed.
The present teaching relates to solid-state LIDAR systems that contain no moving parts, with a plurality of lasers, where each laser can correspond to a single fixed projection angle. The use of solid-state lasers by itself does not mean that there are no moving parts, as MEMS devices are often referred to as solid-state. MEMS devices in LIDAR systems, however, typically incorporate physical motion, which can be a concern for reliability and device lifetime. One feature of the LIDAR system according to the present teaching is that the modular distributed system design is compatible with all solid-state systems, including those systems that use solid-state laser arrays and/or systems without MEMS devices. This includes systems with no physical motion.
The laser source and optical beam projection system that form the illuminator and the receiver may be located on the front side of a vehicle 108. The laser source and optical beam projection system may also be referred to as a transmitter. A person 106, and/or another object, such as a car or light pole, will provide light reflected from the source back to the receiver. A controller or processor then determines the range, or distance, to the object. As is known in the art, a LIDAR receiver calculates range information based on time-of-flight measurements of light pulses emitted from the light source. In addition, known information about the optical beam profile that illuminates the scene in a target plane associated with a particular range and, based on the particular design of the source and projector system, is used to determine location information about the reflecting surface, thereby generating a complete X, Y, Z or three-dimensional picture of the scene. In other words, the pointwise three-dimensional (3D) map of the surrounding environment represents a collection of measurement data that indicates position information from all the surfaces that reflect the illumination from the source to the receiver within the field-of-view of the LIDAR system. In this way, a 3D representation of objects in the field-of-view of the LIDAR system is obtained. The pointwise 3D data map may also be referred to as a measurement point cloud.
Although the present teaching describes LIDAR systems in the context of automotive vehicles, where LIDAR is widely used for autonomous, or self-driving, or driver-assisted vehicles, it should be understood that the embodiments may be applicable to any type of vehicle. Other types of vehicles might include robots, tractors, trucks, airplanes, drones, boats, ships, and others. The present teachings are also applicable to various stationary applications. For example, in high density, metropolitan areas, LIDAR can be employed to monitor traffic, both vehicular and pedestrian. It is anticipated that LIDAR systems will be deployed in many different applications, especially as the cost of the LIDAR systems becomes reduced in the near future. One skilled in the art will appreciate that the present teaching is not limited by the types of target objects described herein as being detected and ranged, but is more broadly applicable to any type of target.
In concept, a single rotating LIDAR system can provide a full 360° view, enabling the use of a single LIDAR system. However, in practice, multiple rotating LIDAR systems are used in order to split the field-of-view around the vehicle.
The LIDAR system 700 illustrated in
In
One feature of the present teaching is that the LIDAR modules are solid-state with no moving parts. The LIDAR modules incorporate a plurality of lasers with each laser generating an optical beam with a fixed projection angle. The resulting composite field-of-view and the angular resolution of the LIDAR system, which includes one or more modules, are determined by the arrangement of optics and lasers and modules. The lasers in each module are grouped into 2D arrays, that when combined with corresponding optics, are positioned to both provide the desired module composite field-of-view, as well as the desired module angular resolution. Each individual laser generates an optical beam that corresponds to a single pointing angle. The angular resolution can be achieved by interleaving the field-of-view of two or more 2D laser arrays. When two fields-of-view generated by two separate 2D laser arrays are overlapped in space, a resulting composite field-of-view is generated with finer angular resolution.
The physical size of a LIDAR system is important for integration into the autonomous vehicle. Although current state-of-the-art systems are generally bulky, and often mounted on roof racks, the goal is to eventually integrate LIDAR systems into the chassis such that they can be visually seamless with the exterior, and cosmetically attractive. There are certain components, such as the headlights, where synergies can be gained by co-packaging with part or all of the LIDAR system. One aspect of the LIDAR system described herein is that it can be separated into small, modular components to support the desire to make LIDAR unobtrusive visually in the future.
A LIDAR system of the present teaching can utilize substantially more lasers than a prior art mechanically scanning LIDAR system since each laser corresponds to a specific projection angle. For example, if an autonomous vehicle requires the full 360° horizontal field-of-view, with a uniform vertical field-of-view of 20°, and the average angular resolution in both direction is 0.5°, then the number of lasers required equals 28,800. Not all types of lasers can be implemented in a practical manner for a LIDAR system that requires thousands of individual lasers. In practice, various embodiments of the LIDAR system of the present teaching that require large numbers of lasers will likely use 2D arrays of vertical cavity surface emitting lasers (VCSEL) due to their current size, cost, and performance capabilities. However, other kinds of transmitter arrays can also be used. One skilled in the will appreciate that numerous types of lasers can be used in the LIDAR systems according to the present teaching.
One feature of the present teaching is that it can use a variety of known VCSEL devices, including top-emitting VCSELs, bottom-emitting VCSELS, and various types of high-power VCSELs.
In some embodiments, the VCSEL array is monolithic and the lasers all share a common substrate. A variety of common substrate types can be used. For example, the common substrate can be a semiconductor material. The common substrate can also include a ceramic material. In some embodiments, the 2D VCSEL array is assembled from a group of 1D laser bars.
In some embodiments, the VCSELs are top-emitting VCSELS. In other embodiments, the VCSELs are bottom-emitting VCSELS. The individual VCSELS can have either a single large emission aperture, or the individual VCSELS can be formed from two or more sub-apertures within a larger effective emission diameter. A group of sub-apertures forming a larger effective emission region is sometimes referred to as a cluster. The contacts on the VCSELS can connect a drive signal to one or more individual elements, or all the elements, or subsets of elements to provide various different illumination patterns when one or more electrical drive signals are supplied to the contacts.
Some embodiments of the present teaching utilize bottom-emitting high-power arrays of VCSELs with a single large aperture per laser, such as the configuration shown in
The use of 2D VCSEL arrays as a building block of the LIDAR systems described herein, establishes a platform that allows a small physical size for the transmitter. A typical 2D array with 256 high-power individual lasers, would be possible on with a monolithic chip of ˜4 mm×4 mm. The laser 2D array is then used together with optics that are chosen to keep the physical dimension as small as possible, for example through the use of micro-lens arrays, shared lenses of dimension <20 mm, or diffractive optics of maximum dimension of 20 mm as examples.
The total composite field-of-view of the two transmitters is made up of 1,024 laser fields-of-view. In some embodiments, the emission wavelengths of laser arrays in the first transmit module 1102 and the second transmit module 1104 are not the same. Also, in some embodiments, the laser wavelengths within a single transmitter module 1102, 1104 is not the same. For example, each laser array may emit at a different wavelength. In this configuration, the laser fields-of-view represented by circles 1206 could be different in wavelength from the laser fields-of-view represented by squares 1208. In general, there is no limitation on the number and distribution of wavelengths within either arrays or modules. The number and positions of the different laser wavelengths is chosen based on a desired effect on the field-of-view at the measurement target range. For composite field-of-view 1200 a field-of-view of the single receiver module is shown by the dashed box 1210, which is slightly larger than the field-of-view of the combined transmitter fields-of-view 1202, 1204. In some embodiments, the receiver field-of-view 1210 comprises multiple detector fields-of-view from multiple detectors that are configured as an array. It is typically desired to have the receiver field-of-view 1210 slightly larger than the transmitter fields-of-view 1202, 1204 to simplify alignment of the receiver and transmitter fields-of-view.
The controller module 1108 manages the operation of the two transmitter modules 1102, 1104 to minimize optical cross-talk, as well as optical power levels for eye safe operation. The controller module 1108 also manages the receiver module 1106 which, in some embodiments uses at least one 2D array of detectors, and in other embodiments, uses a plurality of 2D arrays of detectors. The number and position of the various detector arrays are chosen to achieve a particular receive field-of-view at the target range. For example, if two wavelengths are used, then the receiver can have two separate 2D arrays of detector, one for each wavelength.
In general, the transmitter modules of the present teaching include a plurality of laser emitters. Each laser emitter is positioned to illuminate a particular emitter field-of-view at a target range. In various embodiments, the plurality of emitters is positioned in various patterns. For example, the plurality of emitters can be a one- and/or two-dimensional array with a particular spacing between emitters in the vertical and/or horizontal direction. Central to the invention is the fact that individual and/or groups of emitters are positioned to illuminate a particular emitter field-of-view at the target range. This information is typically known by the controller, and is used to produce illumination in particular fields-of-view at the target range by controlling the energizing of individual and/or groups of emitters. The field-of-view of the one or more emitter fields-of-view contained in a particular transmitter that are illuminated based on a signal from the controller at any particular time is referred to as the transmitter field-of-view.
In general, the receiver modules of the present teaching include a plurality of detector elements. Each detector element is positioned to detect light from a particular detector field-of-view at a target range. In various embodiments, the plurality of detectors is positioned in various patterns. For example, the plurality of detectors may be a one- and/or two-dimensional array with a particular spacing between detectors in the vertical and/or horizontal direction. One aspect of the present teaching is the fact that individual and/or groups of detectors can be positioned to detect light from a particular detection field-of-view at the target range. This information on field-of-view can be known by the controller, and is used to detect illumination from particular fields-of-view at the target range by controlling the detectors/receiver such that select detectors are activated to detect light reflected from the target range in the field-of-view of the activated detector or detectors. The field-of-view of the one or more detector fields-of-view contained in a particular receiver that are activated to detect based on a signal from the controller at any particular time is referred to as the receiver field-of-view.
The controller may control the activation of particular detectors by any of a number of known control mechanisms. For example, a controllable aperture may be used to control the activation of one or more detector fields-of-view in a receiver field-of-view. Individual detector biases can also be controlled to control the activation of individual detector fields-of-view within a receive field-of-view.
Overlap regions between different transmitters and/or different receivers are often designed into the system to provide continuous tracking of objects across particular composite fields-of-view. For example, a continuous composite field-of-view is provided by two transmitters when at least some of the fields-of-view of the emitters of each transmitter overlap to some degree. Furthermore, a continuous transmit receive composite field-of-view is provided when at least one detector field-of-view is overlapped with the overlapped emitter fields-of-view. Overlap of at least some individual detector fields-of-view from two receivers is also used to provide a continuous composite receive field-of-view across two different receivers.
In the overlap regions, a controller is used to achieve performance objectives from the system. For example, the controller can control energizing select emitters that generate optical beams with the fields-of-view that overlap at the target range so that only one emitter from each of two overlapped transmitters generate an optical beam that when reflected off the object at the target range is detected by one of the optical detectors during a particular light detection and ranging measurement. This eliminates or substantially reduces cross talk, especially of those transmitters operating at the same wavelength.
One feature of the present teaching is that the controlling of the emitters and detectors can be used to support performance of a modular LIDAR system. The controller has the information about various FOV positions as well as ability to control energizing of individual and groups of laser emitters and to control activation of individual detectors. The knowledge can extend beyond an individual transmitter and/or receiver to include all the connected modules. As such, the controller is able to provide a particular transmitter field-of-view and a particular receiver field-of-view at any particular time and/or for any desired measurement sequence at the target range from all connected transmit, receive, and/or transmit/receive modules. If different wavelengths are used within single transmitters or across multiple transmitters, the details of the transmission and detection for the multiple wavelengths is typically known and also actively managed by the controller.
In some embodiments of the LIDAR system of the present teaching, the receiver can detect different wavelengths separately. In these embodiments, the laser emitters can be simultaneously energized in an overlapping field-of-view, thereby allowing simultaneous measurements and improved angular resolution, as described in connection with
The controller can also be configured to control the transmitter emitters and the receiver detectors such that a one-to-one correspondence is maintained between an energized emitter and a detector configured to detect. The controller can control the transmitter emitters and the receiver detectors such that a one-to-one correspondence is maintained between an energized transmitter field-of-view from a group of emitters and a receiver field-of-view from a group of detectors configured to detect. The controller can also be configured to control the energizing of emitters and/or the detecting of detectors to improve various performance metrics, such as reducing measurement cross talk. For example, measurement cross talk can arise when a field-of-view of more than one emitter overlaps with a detector and/or receiver field-of-view. These overlap regions are often designed into the system to provide continuous tracking of objects across a composite field-of-view. That is, a continuous composite field-of-view is provided by two transmitters when at least some of the fields-of-view of the emitters of each transmitter overlap to some degree. Further, at least one detector field-of-view is overlapped with the emitter fields-of-view. In general, overlap of at least some individual detector fields-of-view from two receivers is also used to provide a continuous composite field-of-view across two different receivers.
In addition, the controller can be configured to control the energizing of emitters and/or the activation of detectors to produce a desired and/or varying angular resolution at the target range. The controller can also be configured to control the energizing of emitters and/or the activation of detectors to track an object across a composite field-of-view. The composite field-of-view can be provided by one or more transmitters, one or more receivers, and/or one or more modules that form the modular LIDAR system.
One feature of the modular approach to LIDAR system design according to the present teaching is the ability to easily integrate the various modules into an autonomous vehicle.
The use of a single controller module 1326 also allows for the smooth tracking of an object crossing in front of the vehicle, since with the solid-state system, the system can control the laser energizing pattern of elements in the laser arrays within various transmitter modules 1310, 1312, 1314, 1316, 1318, 1320, 1322, 1324 to continuously measure an object of interest. As the object crosses the boundary from one transmitter field-of-view to the next transmitter field-of-view, the controller module 1326 can coordinate the transmitter modules 1310, 1312, 1314, 1316, 1318, 1320, 1322, 1324 and the receiver modules 1302, 1304, 1306 to prevent any gap in the measurements. The modular design described herein is also easier to integrate into different types of vehicles as the physical size is relatively small. Known LIDAR systems with a larger single unit that takes up more space might have to be located external to the vehicle, such as shown in the system described in connection with
One feature of the modular LIDAR systems of the present teaching is the ability to minimize electrical cross-talk between the transmitter and the receiver elements. The lasers used for automotive LIDAR typically are relatively high-power, operating at the limit of eye safety and often require large electrical driving pulse currents to generate optical pulses. The electrical signal from the transmitter, if allowed to electromagnetically couple to the receive circuit, produces excess noise that may provide a false return signal. This is a particularly difficult problem in the case of a LIDAR system that has capability to energize more than one laser pulse, using a different wavelength. In these system configurations, the energizing time of any particular transmit laser can be completely independent of receiver timing. The modular LIDAR systems of the present teaching can separate the transmit and the receive signals to substantially mitigate any electrical cross-talk concern. This separation also can be used improve EMI emissions.
One feature of the modular LIDAR system of the present teaching is that the composite field-of-view is designed to allow continuous tracking of an object across a field-of-view. Referring to the composite field-of-view 1500 described in connection with
One feature of the present teaching is that the transmit, receive, and/or transmit/receive modules do not necessarily need to be packaged separately from the controller module. As such, the transmit, receive, and/or transmit/receive modules and controller module do not have to be located in physically different locations.
Both receivers 1902, 1904 use an array of detectors. Each detector in the array of detectors has a field-of-view that is a subset of the overall receiver field-of-view. See, for example,
A single controller 1938 can be used to control both receivers 1902, 1904 and both transmitters 1906, 1908. The operating scenario 1900 shown in
The controller 1938 sets the laser energizing pattern for lasers in the two transmitters 1906, 1908, and selects which detector or combination of detectors within all possible receivers 1902, 1904 to measure the return signal pulse. A typical criteria for selection of the optimum detector to measure each laser and range might include maximum received signal power, or highest SNR. There is a possibility of optical cross-talk resulting in a false measurement if the controller 1938 does not control the energizing pattern in the overlap region 1936 between the detectors in the two receivers 1902, 1904. For example, pedestrian #2 1912 can be measured using either transmitter 1906, 1908. If the controller 1938 energized a pulse from transmitter #1 1906 at pedestrian #2 1912, and before that pulse was measured by a receiver 1902, 1904, energized a second pulse from transmitter #2 1908, then both pulses would be observed at a single detector during a single measurement. This would result in an error in distance and/or a false object being detected. The controller 1938 controls the energizing pattern so as to maintain a strict one-to-one mapping between laser and detector during a single measurement, within the field-of-view of that chosen detector. This prevents optical cross-talk and errors in measurement within the modular LIDAR system.
The controller 2002 can utilize the TOF measurement information from the receivers as additional inputs to determine the laser selection and energizing pattern algorithm/process. The TOF computation can be performed within the same physical unit as the optical receiver or can be performed elsewhere.
The controller 2002 executes an algorithm that controls the laser selection and energizing pattern. Since this is a solid-state system, many types of energizing and scanning patterns are possible within the field-of-view. In one embodiment of a method according to the present teaching, the controller 2002 executes a first step 2020 of selecting lasers to be fired for each transmitter. In a second step 2022, the controller selects corresponding detectors. In a third step 2024, the controller checks for overlap in the field-of-view of those lasers and detectors. If there is no overlap that could result in errors and/or optical cross talk, the controller proceeds to a fourth step 2026 where the lasers are energized. The corresponding return pulses are received at receiver #1 2004 and/or receiver #2 2006. If there is overlap, then the controller 2002 proceeds back to the first step 2020 and chooses a new set of lasers to energize accordingly and adjusts the energizing pattern as required to accommodate the desired overlap conditions. After return pulses are received at receiver #1 2004 and/or receiver #2 2006, a TOF analysis 2028 is performed. The results of the analysis 2028 can be used in step one 2020 to determine which energizing pattern to proceed with next.
While the Applicant's teaching is described in conjunction with various embodiments, it is not intended that the Applicant's teaching be limited to such embodiments. On the contrary, the Applicant's teaching encompasses various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art, which may be made therein without departing from the spirit and scope of the teaching.
The present application is a non-provisional of copending U.S. Provisional Patent Application Ser. No. 62/714,463, filed Aug. 3, 2018, and entitled “Distributed Modular Solid-State LIDAR System”. The entire contents of U.S. Patent Application Ser. No. 62/714,463 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5157257 | Geiger | Oct 1992 | A |
5552893 | Akasu | Sep 1996 | A |
5909296 | Tsacoyeanes | Jun 1999 | A |
6057909 | Yahav et al. | May 2000 | A |
6061001 | Sugimoto | May 2000 | A |
6246708 | Thornton et al. | Jun 2001 | B1 |
6353502 | Marchant et al. | Mar 2002 | B1 |
6680788 | Roberson et al. | Jan 2004 | B1 |
6717972 | Steinle et al. | Apr 2004 | B2 |
6775480 | Goodwill | Aug 2004 | B1 |
6788715 | Leeuwen et al. | Sep 2004 | B1 |
6829439 | Sidorovich et al. | Dec 2004 | B1 |
6860350 | Beuhler et al. | Mar 2005 | B2 |
6888871 | Zhang et al. | May 2005 | B1 |
7065112 | Ghosh et al. | Jun 2006 | B2 |
7110183 | von Freyhold et al. | Sep 2006 | B2 |
7544945 | Tan et al. | Jun 2009 | B2 |
7652752 | Fetzer et al. | Jan 2010 | B2 |
7702191 | Geron et al. | Apr 2010 | B1 |
7746450 | Willner et al. | Jun 2010 | B2 |
7773204 | Nelson | Aug 2010 | B1 |
7969558 | Hall | Jun 2011 | B2 |
8072581 | Breiholz | Dec 2011 | B1 |
8115909 | Behringer et al. | Feb 2012 | B2 |
8247252 | Gauggel et al. | Aug 2012 | B2 |
8301027 | Shaw et al. | Oct 2012 | B2 |
8576885 | Van Leeuwen et al. | Nov 2013 | B2 |
8675181 | Hall | Mar 2014 | B2 |
8675706 | Seurin et al. | Mar 2014 | B2 |
8783893 | Seurin et al. | Aug 2014 | B1 |
8824519 | Seurin et al. | Sep 2014 | B1 |
9038883 | Wang et al. | May 2015 | B2 |
9048633 | Gronenborn et al. | Jun 2015 | B2 |
9268012 | Ghosh et al. | Feb 2016 | B2 |
9285477 | Smith et al. | Mar 2016 | B1 |
9348018 | Eisele et al. | May 2016 | B2 |
9360554 | Retterath et al. | Jun 2016 | B2 |
9378640 | Mimeault et al. | Jun 2016 | B2 |
9392259 | Borowski | Jul 2016 | B2 |
9516244 | Borowski | Dec 2016 | B2 |
9520696 | Wang et al. | Dec 2016 | B2 |
9553423 | Chen et al. | Jan 2017 | B2 |
9560339 | Borowski | Jan 2017 | B2 |
9574541 | Ghosh et al. | Feb 2017 | B2 |
9575184 | Gilliland et al. | Feb 2017 | B2 |
9658322 | Lewis | May 2017 | B2 |
9674415 | Wan et al. | Jun 2017 | B2 |
9791557 | Wyrwas et al. | Oct 2017 | B1 |
9841495 | Campbell et al. | Dec 2017 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9933513 | Dussan et al. | Apr 2018 | B2 |
9946089 | Chen et al. | Apr 2018 | B2 |
9989406 | Pacala et al. | Jun 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
9992477 | Pacala et al. | Jun 2018 | B2 |
10007001 | LaChapelle et al. | Jun 2018 | B1 |
10063849 | Pacala et al. | Aug 2018 | B2 |
10191156 | Steinberg et al. | Jan 2019 | B2 |
10295660 | McMichael et al. | May 2019 | B1 |
10488492 | Hamel et al. | Nov 2019 | B2 |
10514444 | Donovan | Dec 2019 | B2 |
10761195 | Donovan | Sep 2020 | B2 |
10928486 | Donovan | Feb 2021 | B2 |
11016178 | Donovan | May 2021 | B2 |
11061234 | Zhu et al. | Jul 2021 | B1 |
11320538 | Donovan et al. | May 2022 | B2 |
20020117340 | Stettner | Aug 2002 | A1 |
20020195496 | Tsikos et al. | Dec 2002 | A1 |
20030043363 | Jamieson et al. | Mar 2003 | A1 |
20030147652 | Green et al. | Aug 2003 | A1 |
20040120717 | Clark et al. | Jun 2004 | A1 |
20040228375 | Ghosh et al. | Nov 2004 | A1 |
20050025211 | Zhang et al. | Feb 2005 | A1 |
20050180473 | Brosnan | Aug 2005 | A1 |
20050232628 | von Freyhold et al. | Oct 2005 | A1 |
20060132752 | Kane | Jun 2006 | A1 |
20060231771 | Lee et al. | Oct 2006 | A1 |
20060244978 | Yamada et al. | Nov 2006 | A1 |
20070024849 | Carrig et al. | Feb 2007 | A1 |
20070071056 | Chen | Mar 2007 | A1 |
20070091960 | Gauggel et al. | Apr 2007 | A1 |
20070131842 | Ernst | Jun 2007 | A1 |
20070177841 | Dazinger | Aug 2007 | A1 |
20070181810 | Tan et al. | Aug 2007 | A1 |
20070219720 | Trepagnier et al. | Sep 2007 | A1 |
20080074640 | Walsh et al. | Mar 2008 | A1 |
20080186470 | Hipp | Aug 2008 | A1 |
20090027651 | Pack et al. | Jan 2009 | A1 |
20090140047 | Yu et al. | Jun 2009 | A1 |
20090161710 | Hoashi et al. | Jun 2009 | A1 |
20090273770 | Bauhahn et al. | Nov 2009 | A1 |
20090295986 | Topliss et al. | Dec 2009 | A1 |
20100046953 | Shaw et al. | Feb 2010 | A1 |
20100215066 | Mordaunt et al. | Aug 2010 | A1 |
20100271614 | Albuquerque et al. | Oct 2010 | A1 |
20100302528 | Hall | Dec 2010 | A1 |
20110176567 | Joseph | Jul 2011 | A1 |
20110216304 | Hall | Sep 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20130163626 | Seurin et al. | Jun 2013 | A1 |
20130163627 | Seurin et al. | Jun 2013 | A1 |
20130206967 | Shpunt et al. | Aug 2013 | A1 |
20130208256 | Mamidipudi et al. | Aug 2013 | A1 |
20130208753 | Van Leeuwen et al. | Aug 2013 | A1 |
20140043309 | Go et al. | Feb 2014 | A1 |
20140049610 | Hudman et al. | Feb 2014 | A1 |
20140071427 | Last | Mar 2014 | A1 |
20140111812 | Baeg et al. | Apr 2014 | A1 |
20140139467 | Ghosh et al. | May 2014 | A1 |
20140160341 | Tickoo et al. | Jun 2014 | A1 |
20140218898 | Seurin et al. | Aug 2014 | A1 |
20140247841 | Seurin et al. | Sep 2014 | A1 |
20140267701 | Aviv et al. | Sep 2014 | A1 |
20140303829 | Lombrozo et al. | Oct 2014 | A1 |
20140312233 | Mark et al. | Oct 2014 | A1 |
20140333995 | Seurin et al. | Nov 2014 | A1 |
20140350836 | Stettner | Nov 2014 | A1 |
20140376092 | Mor | Dec 2014 | A1 |
20150055117 | Pennecot et al. | Feb 2015 | A1 |
20150069113 | Wang et al. | Mar 2015 | A1 |
20150097947 | Hudman et al. | Apr 2015 | A1 |
20150103358 | Flascher | Apr 2015 | A1 |
20150109603 | Kim et al. | Apr 2015 | A1 |
20150123995 | Zavodny et al. | May 2015 | A1 |
20150131080 | Retterath et al. | May 2015 | A1 |
20150160341 | Akatsu et al. | Jun 2015 | A1 |
20150219764 | Lipson | Aug 2015 | A1 |
20150255955 | Wang et al. | Sep 2015 | A1 |
20150260830 | Ghosh et al. | Sep 2015 | A1 |
20150260843 | Lewis | Sep 2015 | A1 |
20150311673 | Wang et al. | Oct 2015 | A1 |
20150316368 | Moench et al. | Nov 2015 | A1 |
20150340841 | Joseph | Nov 2015 | A1 |
20150362585 | Ghosh et al. | Dec 2015 | A1 |
20150377696 | Shpunt et al. | Dec 2015 | A1 |
20150378023 | Royo Royo et al. | Dec 2015 | A1 |
20160003946 | Gilliland | Jan 2016 | A1 |
20160006914 | Neumann | Jan 2016 | A1 |
20160025842 | Anderson et al. | Jan 2016 | A1 |
20160025993 | Mor et al. | Jan 2016 | A1 |
20160033642 | Fluckiger | Feb 2016 | A1 |
20160072258 | Seurin et al. | Mar 2016 | A1 |
20160080077 | Joseph et al. | Mar 2016 | A1 |
20160119611 | Hall et al. | Apr 2016 | A1 |
20160161600 | Eldada et al. | Jun 2016 | A1 |
20160254638 | Chen et al. | Sep 2016 | A1 |
20160259038 | Retterath | Sep 2016 | A1 |
20160266242 | Gilliland et al. | Sep 2016 | A1 |
20160274223 | Imai | Sep 2016 | A1 |
20160282468 | Gruver et al. | Sep 2016 | A1 |
20160291156 | Hjelmstad | Oct 2016 | A1 |
20160306358 | Kang et al. | Oct 2016 | A1 |
20160335778 | Smits | Nov 2016 | A1 |
20160348636 | Ghosh et al. | Dec 2016 | A1 |
20170003392 | Bartlett et al. | Jan 2017 | A1 |
20170026633 | Riza | Jan 2017 | A1 |
20170059838 | Tilleman | Mar 2017 | A1 |
20170115497 | Chen et al. | Apr 2017 | A1 |
20170131387 | Campbell et al. | May 2017 | A1 |
20170131388 | Campbell et al. | May 2017 | A1 |
20170139041 | Drader et al. | May 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170168162 | Jungwirth | Jun 2017 | A1 |
20170176579 | Niclass et al. | Jun 2017 | A1 |
20170181810 | Tennican | Jun 2017 | A1 |
20170219426 | Pacala et al. | Aug 2017 | A1 |
20170256915 | Ghosh et al. | Sep 2017 | A1 |
20170269209 | Hall et al. | Sep 2017 | A1 |
20170285169 | Holz | Oct 2017 | A1 |
20170289524 | Pacala et al. | Oct 2017 | A1 |
20170299722 | Ouyang et al. | Oct 2017 | A1 |
20170307736 | Donovan | Oct 2017 | A1 |
20170307758 | Pei et al. | Oct 2017 | A1 |
20170350982 | Lipson | Dec 2017 | A1 |
20170353004 | Chen et al. | Dec 2017 | A1 |
20170356740 | Ansari et al. | Dec 2017 | A1 |
20180045816 | Jarosinski et al. | Feb 2018 | A1 |
20180058923 | Lipson et al. | Mar 2018 | A1 |
20180059222 | Pacala et al. | Mar 2018 | A1 |
20180062345 | Bills et al. | Mar 2018 | A1 |
20180068458 | Wan et al. | Mar 2018 | A1 |
20180074198 | Von Novak et al. | Mar 2018 | A1 |
20180107221 | Droz et al. | Apr 2018 | A1 |
20180113200 | Steinberg et al. | Apr 2018 | A1 |
20180113208 | Bergeron et al. | Apr 2018 | A1 |
20180120441 | Elooz et al. | May 2018 | A1 |
20180128920 | Keilaf et al. | May 2018 | A1 |
20180136335 | Kare et al. | May 2018 | A1 |
20180152691 | Pacala | May 2018 | A1 |
20180167602 | Pacala et al. | Jun 2018 | A1 |
20180180720 | Pei et al. | Jun 2018 | A1 |
20180180721 | Pei et al. | Jun 2018 | A1 |
20180180722 | Pei et al. | Jun 2018 | A1 |
20180203247 | Chen et al. | Jul 2018 | A1 |
20180209841 | Pacala et al. | Jul 2018 | A1 |
20180217236 | Pacala et al. | Aug 2018 | A1 |
20180259623 | Donovan | Sep 2018 | A1 |
20180259624 | Kiehn et al. | Sep 2018 | A1 |
20180259645 | Shu et al. | Sep 2018 | A1 |
20180269646 | Welford et al. | Sep 2018 | A1 |
20180275248 | Bailey | Sep 2018 | A1 |
20180299552 | Shu et al. | Oct 2018 | A1 |
20180301872 | Burroughs et al. | Oct 2018 | A1 |
20180301874 | Burroughs et al. | Oct 2018 | A1 |
20180301875 | Burroughs et al. | Oct 2018 | A1 |
20180364334 | Xiang et al. | Dec 2018 | A1 |
20180364356 | Eichenholz et al. | Dec 2018 | A1 |
20190003429 | Miyashita | Jan 2019 | A1 |
20190004156 | Niclass et al. | Jan 2019 | A1 |
20190011561 | Pacala et al. | Jan 2019 | A1 |
20190011567 | Pacala et al. | Jan 2019 | A1 |
20190018115 | Schmitt et al. | Jan 2019 | A1 |
20190036308 | Carson et al. | Jan 2019 | A1 |
20190049662 | Thomsen et al. | Feb 2019 | A1 |
20190056497 | Pacala et al. | Feb 2019 | A1 |
20190094346 | Dumoulin et al. | Mar 2019 | A1 |
20190098233 | Gassend et al. | Mar 2019 | A1 |
20190137607 | Kostamovaara | May 2019 | A1 |
20190146071 | Donovan | May 2019 | A1 |
20190170855 | Keller et al. | Jun 2019 | A1 |
20190178974 | Droz | Jun 2019 | A1 |
20190179018 | Gunnam et al. | Jun 2019 | A1 |
20190293954 | Lin et al. | Sep 2019 | A1 |
20190302246 | Donovan et al. | Oct 2019 | A1 |
20200018835 | Pei et al. | Jan 2020 | A1 |
20200081101 | Donovan | Mar 2020 | A1 |
20200124732 | Sutherland et al. | Apr 2020 | A1 |
20200200874 | Donovan | Jun 2020 | A1 |
20200209355 | Pacala et al. | Jul 2020 | A1 |
20200278426 | Dummer et al. | Sep 2020 | A1 |
20200326425 | Donovan et al. | Oct 2020 | A1 |
20200379088 | Donovan et al. | Dec 2020 | A1 |
20200386868 | Donovan et al. | Dec 2020 | A1 |
20200408908 | Donovan | Dec 2020 | A1 |
20210033708 | Fabiny | Feb 2021 | A1 |
20210041567 | Milgrome et al. | Feb 2021 | A1 |
20210157000 | Imaki | May 2021 | A1 |
20210181311 | Donovan | Jun 2021 | A1 |
20210231779 | Donovan | Jul 2021 | A1 |
20210231806 | Donovan et al. | Jul 2021 | A1 |
20210234342 | Donovan | Jul 2021 | A1 |
20210278540 | Maayan et al. | Sep 2021 | A1 |
20210321080 | Jeong et al. | Oct 2021 | A1 |
20220146680 | Donovan et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
1512946 | Jul 2004 | CN |
101013030 | Aug 2007 | CN |
101080733 | Nov 2007 | CN |
101545582 | Sep 2009 | CN |
101692126 | Apr 2010 | CN |
103633557 | Mar 2014 | CN |
104898125 | Sep 2015 | CN |
105705964 | Jun 2016 | CN |
106464366 | Feb 2017 | CN |
109073757 | Dec 2018 | CN |
107728156 | Nov 2019 | CN |
110402398 | Nov 2019 | CN |
110914702 | Mar 2020 | CN |
111356934 | Jun 2020 | CN |
111919137 | Nov 2020 | CN |
112543875 | Mar 2021 | CN |
113692540 | Nov 2021 | CN |
113906316 | Jan 2022 | CN |
113924506 | Jan 2022 | CN |
114096882 | Feb 2022 | CN |
114174869 | Mar 2022 | CN |
197 17 399 | Jun 1999 | DE |
10103861 | Aug 2001 | DE |
102007004609 | Aug 2007 | DE |
102014216390 | Feb 2016 | DE |
102019005059 | Feb 2020 | DE |
1160540 | Dec 2001 | EP |
1444696 | Mar 2005 | EP |
1569007 | Aug 2005 | EP |
2656099 | Dec 2011 | EP |
2656106 | Dec 2011 | EP |
2775316 | Sep 2014 | EP |
3168641 | Apr 2016 | EP |
3497477 | Aug 2016 | EP |
2656100 | Oct 2016 | EP |
3526625 | Nov 2016 | EP |
3 159 711 | Apr 2017 | EP |
3446153 | Feb 2019 | EP |
3596492 | Jan 2020 | EP |
3658949 | Jun 2020 | EP |
3710855 | Sep 2020 | EP |
3775979 | Feb 2021 | EP |
3830602 | Jun 2021 | EP |
3953727 | Feb 2022 | EP |
3977159 | Apr 2022 | EP |
3980808 | Apr 2022 | EP |
3990943 | May 2022 | EP |
4004587 | Jun 2022 | EP |
2816264 | May 2002 | FR |
5-243552 | Sep 1993 | JP |
7-253460 | Oct 1995 | JP |
8-280173 | Oct 1996 | JP |
10-126007 | May 1998 | JP |
2000-147604 | May 2000 | JP |
2002-214361 | Jul 2002 | JP |
2003258359 | Sep 2003 | JP |
2003-536061 | Dec 2003 | JP |
2004-078255 | Mar 2004 | JP |
2004-94115 | Mar 2004 | JP |
2004-361315 | Dec 2004 | JP |
2005-331273 | Dec 2005 | JP |
2006-162386 | Jun 2006 | JP |
2007-214564 | Aug 2007 | JP |
2008-015434 | Jan 2008 | JP |
4108478 | Jun 2008 | JP |
2008-180719 | Aug 2008 | JP |
2009-103529 | May 2009 | JP |
2009-170870 | Jul 2009 | JP |
2009-204691 | Sep 2009 | JP |
2010-91855 | Apr 2010 | JP |
2010-256291 | Nov 2010 | JP |
2011-003748 | Jan 2011 | JP |
2012-504771 | Feb 2012 | JP |
5096008 | Dec 2012 | JP |
2013-050310 | Mar 2013 | JP |
2013-113669 | Jun 2013 | JP |
2014-059302 | Apr 2014 | JP |
2014-077658 | May 2014 | JP |
2016-14665 | Jan 2016 | JP |
2016-146417 | Aug 2016 | JP |
2016-176721 | Oct 2016 | JP |
2016-188808 | Nov 2016 | JP |
2016-540189 | Dec 2016 | JP |
2017-053833 | Mar 2017 | JP |
2017-134814 | Aug 2017 | JP |
2018-025632 | Feb 2018 | JP |
2019-060652 | Apr 2019 | JP |
2019-68528 | Apr 2019 | JP |
2019-509474 | Apr 2019 | JP |
2019-516101 | Jun 2019 | JP |
2020-510208 | Apr 2020 | JP |
2021-503085 | Feb 2021 | JP |
2021-507260 | Feb 2021 | JP |
6839861 | Mar 2021 | JP |
6865492 | Apr 2021 | JP |
2021-073462 | May 2021 | JP |
2021-73473 | May 2021 | JP |
2021-105613 | Jul 2021 | JP |
2021-519926 | Aug 2021 | JP |
2021-139918 | Sep 2021 | JP |
2021-532368 | Nov 2021 | JP |
2022-1885 | Jan 2022 | JP |
6995413 | Jan 2022 | JP |
2022-22361 | Feb 2022 | JP |
2022-36224 | Mar 2022 | JP |
7037830 | Mar 2022 | JP |
2022-526998 | May 2022 | JP |
2022-534500 | Aug 2022 | JP |
10-2000-0053620 | Aug 2000 | KR |
10-2009-0016499 | Feb 2009 | KR |
10-2012-0053045 | May 2012 | KR |
10-2012-0061033 | Jun 2012 | KR |
10-2013-0140554 | Dec 2013 | KR |
10-2014-0138724 | Dec 2014 | KR |
10-2015-0045735 | Apr 2015 | KR |
10-2016-0101140 | Aug 2016 | KR |
10-2018-0049937 | May 2018 | KR |
10-2018-0064969 | Jun 2018 | KR |
10-2018-0128447 | Dec 2018 | KR |
10-2019-0076725 | Jul 2019 | KR |
10-2019-0117418 | Oct 2019 | KR |
10-2019-0120403 | Oct 2019 | KR |
10-2020-0011351 | Feb 2020 | KR |
10-2020-0075014 | Jun 2020 | KR |
10-2020-0096632 | Aug 2020 | KR |
10-2020-0128435 | Nov 2020 | KR |
10-2021-0021409 | Feb 2021 | KR |
10-2218679 | Feb 2021 | KR |
10-2021-0029831 | Mar 2021 | KR |
10-2021-0065207 | Jun 2021 | KR |
10-2021-0137584 | Nov 2021 | KR |
10-2021-0137586 | Nov 2021 | KR |
10-2326493 | Nov 2021 | KR |
10-2326508 | Nov 2021 | KR |
10-2022-0003600 | Jan 2022 | KR |
10-2022-0017412 | Feb 2022 | KR |
10-2364531 | Feb 2022 | KR |
10-2022-0024177 | Mar 2022 | KR |
10-2022-0025924 | Mar 2022 | KR |
10-2022-0038691 | Mar 2022 | KR |
10-2398080 | May 2022 | KR |
99-42856 | Aug 1999 | WO |
2002065153 | Aug 2002 | WO |
2006044758 | Apr 2006 | WO |
2006083349 | Aug 2006 | WO |
2013107709 | Jul 2013 | WO |
2014014838 | Jan 2014 | WO |
2015040671 | Mar 2015 | WO |
2015040671 | Mar 2015 | WO |
2015059705 | Apr 2015 | WO |
2017112416 | Jun 2017 | WO |
2017132704 | Aug 2017 | WO |
2017184336 | Oct 2017 | WO |
2018028795 | Feb 2018 | WO |
2018082762 | May 2018 | WO |
2018169758 | Sep 2018 | WO |
2018166609 | Sep 2018 | WO |
2018166610 | Sep 2018 | WO |
2018166611 | Sep 2018 | WO |
2018169758 | Sep 2018 | WO |
2018180391 | Oct 2018 | WO |
2018181250 | Oct 2018 | WO |
2018191495 | Oct 2018 | WO |
2019010320 | Jan 2019 | WO |
2019022941 | Jan 2019 | WO |
2019-064062 | Apr 2019 | WO |
2019115148 | Jun 2019 | WO |
2019195054 | Oct 2019 | WO |
2019221776 | Nov 2019 | WO |
2020028173 | Feb 2020 | WO |
2020210176 | Oct 2020 | WO |
2020242834 | Dec 2020 | WO |
2020251891 | Dec 2020 | WO |
2020263735 | Dec 2020 | WO |
2021021872 | Feb 2021 | WO |
2021150860 | Jul 2021 | WO |
2021236201 | Nov 2021 | WO |
2022103778 | May 2022 | WO |
Entry |
---|
“Notification of Transmittal of The International Search Report and The Written Opinion of the International Searching Authority, or The Declaration” for International Patent Application No. PCT/US2018/057026, Dec. 16, 2019, 11 pages, International Searching Authority, Korean Intellectual Property Office, Daejeon, Republic of Korea. |
“Written Opinion of the International Searching Authority” for International Patent Application No. PCT/EP2016/077499, Feb. 14, 2017, 7 pages, The International Searching Authority. |
“Search Report” for International Patent Application No. PCT/EP2016/077499, 2 pages, International Searching Authority/ EPO, Rijswijk, the Netherlands. |
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or The Declaration” for International Patent Application No. PCT/US2018/041021, Nov. 5, 2018, 15 Pages, Korean Intellectual Property Office, Daejeon, Republic of Korea. |
“Office Action” South Korean Patent Application No. 10-2021-7006391, May 14, 2021, 8 pages, Korean Intellectual Property Office, South Korea. |
“Supplementary European Search Report” for European Patent Application No. EP17786325, Mar. 11, 2020, 22 pages, European Patent Office, Munich, Germany. |
“Office Action” for U.S. Appl. No. 15/456,789, issued Sep. 25, 2019, 58 pages, The USPTO. |
“Notice of Allowance” for U.S. Appl. No. 16/028,774, issued Aug. 21, 2019, 56, pages, The USPTO. |
“Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter 1 of The Patent Cooperation Treaty)” for International Patent Application No. PCT/US2017/026109, Nov. 1, 2018, 13 Pages, The International Bureau of WIPO, Geneva, Switzerland. |
“Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty)” for International Patent Application No. PCT/US2018/021553, Sep. 26, 2019, 9 pages, The International Bureau of WIPO, Geneva, Switzerland. |
“Notification Concerning Transmittal of Copy of International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty)” for International Patent Application No. PCT/US2019/043674, Feb. 18, 2021, 10 pages, The International Bureau of WIPO, Geneva, Switzerland. |
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for International Patent Application No. PCT/US2018/021553, Jun. 20, 2018, 13 pages, International Searching Authority, Korean Intellectual Property Office, Daejeon, Republic of Korea. |
“European Search Report” For European Patent Application No. 17786325.5, Nov. 9, 2019, 18 pages, European Patent Office, Munich, Germany. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for International Application No. PCT/US2017/026109, Jun. 19, 2017, 17 pages, International Search Authority/Korean Intellectual Property Office, Daejeon, Republic of Korea. |
U.S. Appl. No. 15/456,789, filed Mar. 13, 2017 in the USPTO. |
U.S. Appl. No. 16/028,774, filed Jul. 6, 2018 in the USPTO. |
Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) for International Application No. PCT/US18/041021, Feb. 6, 2020, 10 pages, The International Bureau of WIPO, Geneva, Switzerland. |
Notice of Final Rejection received for Korean Patent Application Serial No. 10-2021-7006391 dated Oct. 22, 2021, pages (Including English Translation). |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for International Patent Application No. PCT/US2019/024343, Jul. 12, 2019, 17 Pages, ISA/KR, Korean Intellectual Property Office, Daejeon, Republic of Korea. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/057026, mailed on Dec. 16, 2019, 9 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2020/036634, mailed on Dec. 23, 2021, 6 pages. |
International Search Report and Written Opinion received for PCT Application Serial No. PCT/US2021/058687, mailed on Mar. 3, 2022 , 11 pages. |
Decision to Grant a Patent received for Japanese Patent Application Serial No. 2021-014376, mailed on Mar. 22, 2022, 05 pages (2 pages of English Translation and 3 pages of Official Copy). |
Non-Final Office Action received for U.S. Appl. No. 17/164,773, mailed on Apr. 21, 2022, 8 pages. |
Notice of Allowance received for Chinese Patent Application Serial No. 201880047615.6, mailed on Mar. 23, 2022, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2018-7030512, mailed on Mar. 18, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2021-7036648, mailed on May 19, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Decision to Grant a Patent received for Japanese Patent Application Serial No. 2019-549550, mailed on Feb. 25, 2022, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action for Japanese Patent Application No. 2021-020502, Apr. 13, 2022, 10 pages (7 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/227,300, mailed on Feb. 8, 2022, 11 pages. |
International Search Report and Written Opinion received for PCT Application Serial No. PCT/US2021/020749, mailed on Jan. 3, 2022, 11 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2020/038927, mailed on Jan. 6, 2022, 9 pages. |
Office Action received for Korean Application Serial No. 10-2020-7029872, mailed on Jan. 19, 2022, 32 pages (18 pages of English Translation and 14 pages of Official Copy). |
Extended European Search Report received for European Patent Application Serial No. 19843301.3, mailed on Feb. 18, 2022, 10 pages. |
International Preliminary Report on Patentability received for PCT Application Application No. PCT/US2020/043979, mailed on Feb. 10, 2022, 06 pages. |
Office Action received for Korean Application Serial No. 10-2020-7029872, mailed on May 24, 2022, 05 pages (2 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application Serial No. 10-2021-7006391, mailed on Feb. 9, 2022, 03 pages (1 page of English Translation and 2 pages of Official Copy). |
Restriction Requirement received for U.S. Appl. No. 16/366,729, mailed on Jun. 3, 2022, 06 pages. |
Office Action received for Japanese Patent Application Serial No. 2021-100687, mailed on Jul. 1, 2022, 09 pages. (6 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/841,930, mailed on Jun. 29, 2022, 10 pages. |
Non-Final Office Action received for U.S. Patent Application Serial No. 16/878, 140, mailed on Jun. 22, 2022, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/907,732, mailed on Jul. 13, 2022, 20 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2021/014564, mailed on Aug. 4, 2022, 06 pages. |
Notice of Allowance received for U.S. Appl. No. 16/895,588, mailed on Aug. 3, 2022, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/366,729, mailed on Aug. 26, 2022, 09 pages. |
Notice of Allowance received for U.S. Appl. No. 16/805,733, mailed on Aug. 22, 2022, 13 pages. |
Office Action received for Japanese Patent Application Serial No. 2021-168642, mailed on Aug. 25, 2022, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2020-526502, mailed on Aug. 24, 2022, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2018-7030512, mailed on Dec. 23, 2021, 7 pages. (3 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2022-108166, mailed on Jul. 19, 2023, 2 pages of Official Copy only. |
Non-Final Office Action received for U.S. Appl. No. 17/227,295, mailed on Mar. 9, 2023, 10 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2021/020749, mailed on Sep. 15, 2022, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/805,733, mailed on Nov. 10, 2022, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, mailed on Oct. 3, 2022, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/168,054, mailed on Oct. 20, 2022, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 17/164,773, mailed on Nov. 2, 2022, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/805,733, mailed on Jan. 25, 2023, 5 pages. |
Office Action received for Chinese Patent Application Serial No. 201780024892.0, mailed on Sep. 2, 2022, 28 pages (11 pages of English Translation and 17 pages of Official Copy). |
Extended European Search Report received in European Application No. 20787345.6, mailed on Dec. 5, 2022, 8 pages. |
Final Office Action received for U.S. Appl. No. 16/878,140, mailed on Feb. 1, 2023, 26 pages. |
Notice of Allowance received for U.S. Appl. No. 17/164,773, mailed on Feb. 1, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, mailed on Jan. 30, 2023, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/028297, mailed on Mar. 13, 2023, 11 pages. |
Restriction Requirement received for U.S. Appl. No. 16/941,896, mailed on Jan. 24, 2023, 06 pages. |
Partial European Search Report received for European Patent Application No. 22178999.3, mailed on Oct. 10, 2022, 22 pages. |
Decision to Grant received for Korean Patent Application Serial No. 10-2022-7021139, mailed on Dec. 14, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-020502, mailed on Jan. 23, 2023, 6 pages (4 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2021-7016081, mailed on Oct. 25, 2022, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2021-199077, mailed on Dec. 23, 2022, 9 pages (6 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-7028820, mailed on Dec. 15, 2022, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 20815113.4, mailed on Jan. 31, 2023, 14 pages. |
Partial European Search Report received for European Patent Application No. 20822328.9, mailed on Feb. 6, 2023, 20 pages. |
Office Action received for Korean Patent Application No. 10-2022-7004969, mailed on Jan. 9, 2023, 11 pages (6 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2020-552870, mailed on Nov. 29, 2022, 11 pages (7 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application Serial No. 2022-002790, mailed on Dec. 26, 2022, 10 pages (7 pages of English Translation and 3 pages of Official Copy). |
Decision to Grant received for Korean Patent Application Serial No. 10-2020-7029872, mailed on Nov. 28, 2022, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-7015754, mailed on Dec. 12, 2022, 21 pages (11 pages of English Translation and 10 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/366,729, mailed on Mar. 8, 2023, 7 pages. |
Extended European Search Report received for European Patent Application No. 22178999.3, mailed on Mar. 6, 2023, 25 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/019054, mailed on Feb. 20, 2023, 13 pages. |
Office Action received for Korean Application Serial No. 10-2021-7036300, mailed on Feb. 9, 2023, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Decision to Grant received for Korean Patent Application Serial No. 10-2021-7040665, mailed on Feb. 23, 2023, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201880017776.0, mailed on Feb. 16, 2023, 22 pages (10 pages of English Translation and 12 pages of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201880074279.4, mailed on Mar. 1, 2023, 23 pages (9 pages of English Translation and 14 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/164,773, mailed on Apr. 5, 2023, 8 pages. |
Office Action received for Japanese Patent Application Serial No. 2021-100687, mailed on Mar. 14, 2023, 05 pages. (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-526502, mailed on Mar. 14, 2023, 8 pages (5 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-168642, mailed on Mar. 15, 2023, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2022-80688, mailed on Mar. 17, 2023, 11 pages (7 pages of English Translation and 4 pages of Official Copy). |
Non-Final Office Action received for U.S. Appl. No. 17/155,626, mailed on Apr. 12, 2023, 24 pages. |
Notice of Allowance received for U.S. Appl. No. 16/841,930, mailed on Apr. 17, 2023, 9 pages. |
Office Action received for Korean Patent Application No. 10-2022-7036873, mailed on Mar. 29, 2023, 22 pages (12 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2023-7007292, mailed on Apr. 17, 2023, 19 pages (10 pages of English Translation and 9 pages of Official Copy). |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2023-7009114, mailed on May 16, 2023, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action for Japanese Patent Application No. 2021-572877, May 12, 2023, 12 pages (8 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-559434, mailed on May 26, 2023, 17 pages (11 pages of English Translation and 6 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 20831915.2, Jun. 2, 2023, 9 pages. |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2021/058687, mailed on May 25, 2023 , 7 pages. |
Notice of Allowance received for Chinese Patent Application Serial No. 201780024892.0, mailed on May 30, 2023, 2 pages (Official Copy Only). |
Non-Final Office Action received for U.S. Appl. No. 16/168,054, mailed on Jun. 1, 2021, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 15/456,789, mailed on Apr. 29, 2020, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/915,840, mailed on May 7, 2020, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 15/915,840, mailed on Jan. 19, 2021, 6 pages. |
Extended European Search Report received for European Patent Application No. 18767885.9, Nov. 18, 2020, 10 pages. |
Office Action received for Japanese Patent Application No. 2019-549550, mailed on Mar. 22, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2019-7029980, mailed on Mar. 26, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Plant, et al., “256-Channel Bidirectional Optical Interconnect Using VCSELs and Photodiodes on CMOS”, Journal of Lightwave Technology, vol. 19, No. 8, Aug. 2001, pp. 1093-1103. |
Knodl, et al., “Bipolar Cascade VCSEL with 130% Differential Quantum Efficiency”, Annual Report 2000, Optoelectronics Department, pp. 11-14. |
Morgan, et al., “Two-Dimensional Matrix Addressed Vertical Cavity Top-Surface Emitting Laser Array Display”, IEEE Photonics Technology Letters, vol. 6, No. 8, Aug. 1994, pp. 913-917. |
Orenstein, et al., “Matrix Addressable Vertical Cavity Surface Emitting Laser Array”, Electronics Letters, vol. 27, No. 5, Feb. 28, 1991, pp. 437-438,. |
Geib, et al., “Fabrication and Performance of Two-Dimensional Matrix Addressable Arrays of Integrated Vertical-Cavity Lasers and Resonant Cavity Photodetectors”, IEEE Journal of Selected Topics In Quantum Electronics, vol. 8, No. 4, Jul./Aug. 2002, pp. 943-947. |
Moench et al., “VCSEL Based Sensors for Distance and Velocity”, Vertical Cavity Surface-Emitting Lasers XX, Proc. of SPIE, vol. 9766, 2016, pp. 97660A-1-97660A-11. |
Notice of Allowance received for Korean Patent Application No. 10-2019-7029980, mailed on Aug. 6, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). English Translation). |
Office Action received for Japanese Patent Application No. 2019-549550, mailed on Aug. 27, 2021, 7 pages (5 pages of English Translation and 2 pages of Official Copy). |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/057026, mailed on May 28, 2020, 7 pages. |
Non-Final Rejection received for U.S. Appl. No. 16/686,163, mailed on Apr. 16, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/686,163, mailed on Oct. 16, 2020, 9 pages. |
Office Action received for Korean Patent Application No. 10-2020-7005082, mailed on May 8, 2020, 19 pages (11 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-504014, mailed on Sep. 2, 2020, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Notice of Grant received for Korean Patent Application No. 10-2020-7005082, Nov. 24, 2020, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201880047615.6, mailed on Jan. 18, 2021, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2020-504014, mailed on Feb. 15, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 18839499.3, mailed on Mar. 4, 2021, 10 pages. |
Office Action received for Korean Patent Application No. 10-2021-7004589, mailed on Mar. 10, 2021, 9 pages (5 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-056628, mailed on Jun. 14, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-7004589, mailed on Aug. 6, 2021, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201880047615.6, mailed on Aug. 25, 2021, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application Serial No. 2021-056628, mailed on Nov. 2, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 18918938.4, mailed on Jul. 6, 2021, 9 pages. |
Office Action received for Korean Patent Application No. 10-2020-7016928, mailed on Jul. 16, 2021, 13 pages (7 pages of English Translation and 6 pages of Official Copy). |
Office Action received for European Patent Application No. 17786325.5, mailed on Dec. 17, 2021, 5 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-555665, mailed on Dec. 2, 2020, 05 pages (2 pages of English Translation and 3 pages of Official Copy). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/024343, mailed on Oct. 15, 2020, 9 pages. |
Office Action received for Korean Patent Application No. 10-2020-7029872, mailed on Jul. 19, 2021, 23 pages (13 pages of English Translation and 10 pages of Official Copy). |
Extended European Search Report received for European Patent Application Serial No. 19781037.7, mailed on Oct. 25, 2021, 9 pages. |
Decision to Grant a Patent received for Korean Patent Application Serial No. 10-2020-7016928, mailed on Nov. 16, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2019/043674, mailed on Feb. 18, 2021, 10 pages. |
International Search Report and Written Opinion received for International Patent Application No. PCT/US2020/026964, mailed on Jul. 28, 2020, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/026964, mailed on Oct. 21, 2021, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/227,300, mailed on Jun. 30, 2021, 8 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/033630, mailed on Sep. 9, 2020, 9 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/036634, mailed on Sep. 21, 2020, 7 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/038927, mailed on Oct. 7, 2020, 12 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2020/043979, mailed on Nov. 10, 2020, 7 pages. |
International Search Report and the Written Opinion received for PCT Patent Application No. PCT/US2021/014564, mailed on May 17, 2021, 8 pages. |
Office Action received for Korean Patent Application Serial No. 10-2021-7036648, mailed on Dec. 17, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-014376, mailed on Sep. 27, 2021, 18 pages (12 pages of English Translation and 6 paegs of Official Copy). |
International Preliminary Report on Patentability received for PCT Application Serial No. PCT/US2020/033630, mailed on Dec. 9, 2021, 8 pages. |
Final Office Action received for U.S. Appl. No. 16/168,054, mailed on Jan. 26, 2022, 16 pages. |
Extended European Search Report received for European Patent Application No. 20822328.9, mailed on May 4, 2023, 34 pages. |
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for International Patent Application No. PCT/US2019/043674, Nov. 15, 2019, 16 pages, International Searching Authority/KR, Daejeon, Republic of Korea. |
Decision to Grant for Korean Patent Application No. 10-2022-7015754, mailed on Aug. 28, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2021-505773, mailed on Aug. 28, 2023, 10 pages (7 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application Serial No. 201980051834.6, mailed on Dec. 7, 2023, 23 pages (8 pages of English Translation and 15 pages of Official Copy). |
“Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty)” for International Patent Application No. PCT/US2019/043674, Feb. 18, 2021, 10 pages, The International Bureau of WIPO, Geneva, Switzerland. |
Notice of Final Rejection received for Korean Patent Application Serial No. 10-2021-7006391 dated Oct. 22, 2021, 5 pages (Including English Translation). |
Notice of Allowance received for U.S. Appl. No. 16/805,733, mailed on May 8, 2023, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20200041614 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62714463 | Aug 2018 | US |