A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates generally to antennas for use in wireless or portable radio devices, and more particularly in one exemplary aspect to a spatially distributed multiband antenna, and methods of utilizing the same.
Internal antennas are an element found in most modern radio devices, such as mobile computers, mobile phones, Blackberry® devices, smartphones, personal digital assistants (PDAs), or other personal communication devices (PCD). Typically, these antennas comprise a planar radiating plane and a ground plane parallel thereto, which are connected to each other by a short-circuit conductor in order to achieve the matching of the antenna. The structure is configured so that it functions as a resonator at the desired operating frequency. It is also a common requirement that the antenna operate in more than one frequency band (such as dual-band, tri-band, or quad-band mobile phones), in which case two or more resonators are used.
Internal antennas are commonly constructed to comprise at least a part of a printed wired board (PWB) assembly, also commonly referred to as the printed circuit board (PCB). One antenna type that is commonly used in wireless applications is the inverted-F antenna (IFA).
Planar Inverted-F Antenna
The inverted-F antenna is a variant of the monopole, wherein the top section has been folded down so as to be parallel with the ground plane. This is typically done to reduce the size of the antenna while maintaining a resonant trace length. Planar inverted-F antenna (PIFA) is a variation of linear inverted-F antenna, wherein the wire radiator element is replaced by a plate to expand the antenna operating bandwidth. A typical planar inverted-F antenna 100 in accordance with prior art, shown in
The optimal length of an ideal inverted-F antenna radiating element is a quarter of a wavelength λ that corresponds to the operating center frequency f0. However, the size of the PIFA planar element 110 (length L 108 and width W 118) is commonly chosen such that:
L+W=λ/4 Eqn. (1)
and therefore is inversely proportional to the operating frequency fo
Here, c is the speed of light and ∈r is dielectric permittivity of the substrate material. Typically, the width of the ground plane 114 matches the PIFA length 108, and the ground plane length 112 is approximately one quarter-wavelength. When the width of the ground plane is smaller than a quarter-wavelength, the bandwidth and efficiency of the PIFA decrease. Hence, typically inverted-F antennas require printed circuit board (PCB) ground plane length is roughly one quarter (λ/4) of the operating wavelength
The height of the PIFA 101 above the ground plane is commonly a fraction of the wavelength. Therefore, PIFA operating at lower frequencies require taller antenna configuration that in turn increase the thickness of the radio device body assembly. The radiation properties and impedance of PIFA are not a strong function of the height. This parallel section introduces capacitance to the input impedance of the antenna, which is compensated by implementing a short-circuit stub. The end of the stub is connected to the ground plane through a via (not shown). The polarization of PIFA shown in
As the operating frequency decreases, the PIFA antenna size increases according to Eqn. (2) in order to maintain operating efficiency. Therefore, a multi-band (e.g., dual-band) PIFA, operating in both upper and lower bands, requires a larger volume and height in order to meet the lower-band frequency requirements typical of mobile communications (e.g., 800-900 MHz). To reduce the size of mobile devices operating at these lower frequencies, ordinary monopole antennas are commonly used instead of a PIFA.
Several methods may used to control the PIFA resonance frequency, include, inter alia, (i) the use of open slots that reduce the frequency, (ii) altering the width of the planar element, and/or (iii) altering the width of the short circuit plate of the PIFA. For instance, resonant frequency decreases with a decrease in short circuit plate width.
One method of reducing PIFA size is simply by shortening the antenna. However, this requires the use of capacitive loading to compensate for the reactive component of the impedance that arises due to the shortened antenna structure. Capacitive loading allows reduction in the resonance length from λ/4 to less than λ/8, at the expense of bandwidth and good matching (efficiency). The capacitive load can be produced for example by adding a plate (parallel to the ground) to produce a parallel plate capacitor.
One of the substantial limitations of PIFA for wireless commercial applications is its narrow bandwidth. Various techniques are typically used to increase PIFA bandwidth such as, inter alia, reducing the size of the ground plane, adjusting the location and the spacing between two shorting posts, reducing the quality factor of the resonator structure (and to increase the bandwidth), utilizing stacked elements, placing slits at the ground plane edges, and use of parasitic resonators with resonant lengths close to the main resonance frequency.
The ground plane of the PIFA plays a significant role in its operation. Excitation of currents in the PIFA causes excitation of currents in the ground plane. The resulting electromagnetic field is formed by the interaction of the PIFA and an “image” of itself below the ground plane. As a result, a PIFA has significant currents that flow on the undersurface of the planar element and the ground plane, as compared to the field on the upper surface of the element. This phenomenon makes the PIFA less susceptible to interference from external objects (e.g., a mobile device operator's hand/head) that typically affect the performance characteristics of monopole antennas.
Compliance Testing of Wireless Devices
Almost all wireless devices that are offered for sale worldwide are subject to government regulations that mandate specific absorption (SAR) tests to be performed with each radio-emitting device. For example, the CTIA3.0 specification requires SAR measurements with mobile devices to be performed in: (i) free space; and (ii) proximate to a “phantom” head and hand, so as to simulate the real-world operation.
Referring now to
Prior art antenna solutions commonly address the multiband antenna requirements for mobile phones by implementing a single PIFA, or a single monopole antenna configured to operate in multiple frequency bands. This approach inherently has drawbacks, as PIFAs require larger size (height in particular), and hence occupy a large volume to reach the desired lower frequency of multiband operation. While monopole antennas typically perform well in the free space tests, their performance beside the aforementioned phantom head and hand is degraded, particularly at higher frequencies. However, the high-band PIFA antennas usually work better beside the phantom due to a ground plane between the antenna and the phantom.
While the height of a PIFA can be reduced by means of switching circuits, this approach increases complexity and cost. Although monopole antennas are generally smaller than a PIFA, a top-mounted monopole antenna performs poorly in CTIA tests proximate to the head phantom. Similarly, bottom mounted PIFA exhibit poor performance in CTIA tests proximate to the head phantom and hand phantom.
Therefore, based on the foregoing, there is a salient need for an improved multiband wireless antenna for use in mobile phones and other mobile radio devices that have reduced size, lower cost and improved performance in CTIA tests (and methods of utilizing the same).
The present invention satisfies the foregoing needs by providing, inter alia, a space-efficient multiband antenna and methods of use.
In a first aspect of the invention, a multiband antenna assembly is disclosed. In one embodiment, the assembly has lower and an upper operating frequency bands, and is for use in a mobile radio device. The assembly in this embodiment comprises: a ground plane having a first and a second substantially opposing edges; a monopole antenna configured to operate in a first frequency band and being disposed proximate to the first edge; a planar inverted-F antenna (PIFA) configured to operate in a second frequency band and being disposed proximate to the second edge; and a feed apparatus configured to feed the monopole antenna and the PIFA elements. In one variant, the monopole antenna further comprises: a radiator element formed in a plane substantially perpendicular to the ground plane; a non-conductive slot formed within the radiator element; and a matching circuit. The matching circuit comprises: a feed point; a ground; a stripline coupled from the ground to the feed point; a tuning capacitor coupled to the ground and the stripline; and a feed pad coupled to the stripline via an inductor. The feed pad is further coupled to the radiator element; and the PIFA further comprises: a first planar radiator formed substantially parallel to the ground plane; a parasitic planar radiator formed substantially coplanar to the first planar radiator; a non-conductive slot formed inside within the first planar element; a first feed point coupled from the first planar radiator element to the feed apparatus; a ground point coupled from first planar radiator element to the ground plane; and a parasitic feed point coupled from the parasitic feed point to the ground plane.
In another embodiment, the antenna assembly comprises: a ground plane; a matching circuit comprising: a feed; a ground; a stripline coupled from the ground to the feed point; a feed pad coupled to the stripline via a coupling element; and a radiator element formed in a plane substantially perpendicular to the ground plane. The feed pad is further coupled to the radiator element.
In a second aspect of the invention, antenna apparatus is disclosed. In one embodiment, the apparatus comprises: a ground plane having a first and a second substantially opposing ends; a first antenna element operable in a first frequency band and disposed proximate to the first end; a matching circuit coupled to the first antenna element; a second antenna element configured to operate in an second frequency band and disposed proximate to the second end; and feed apparatus operably coupled to the first and the second antenna elements.
In a third aspect of the invention, a mobile communications device is disclosed. In one embodiment, the device has a multiband antenna apparatus contained substantially therein, and comprises: an exterior housing; a substrate disposed substantially within the housing; a ground plane having a first and a second substantially opposing ends, at least a portion of the ground plane disposed on the substrate; a first antenna element operable in a first frequency band and disposed proximate to the first end; a matching circuit coupled to the first antenna element; a second antenna element configured to operate in an second frequency band and disposed proximate to the second end; feed apparatus operably coupled to the first and the second antenna elements; and at least one radio frequency transceiver in operative communication with the feed apparatus.
In another embodiment, the mobile device comprises a reduced-size mobile radio device operable in a lower and an upper frequency bands. The device comprises an exterior housing and a multiband antenna assembly, the antenna assembly comprising a rectangular ground plane having first and second substantially opposing regions. The mobile radio device being configured according to the method comprising: placing a first antenna element configured to resonate in the upper frequency band proximate to a the first region; and placing a second antenna element configured to resonate in the lower frequency band proximate to the second region. The first antenna element comprises a planar inverted-F antenna (PIFA); and the act of placing the first antenna element effects reduction of the exterior housing size in at least one dimension.
In a fourth aspect of the invention, a method of operating multi-band antenna assembly is disclosed. In one embodiment, the antenna comprises first, second, and third antenna radiating elements, and at least first, second, and third feed points, the method comprising: selectively electrically coupling the first feed point to the first radiating element via a first circuit; or selectively electrically coupling the second feed point to the second radiating element via a second circuit; and the third feed point to the third radiating element via a third circuit. The first and second circuits effect the antenna assembly to operate in a first frequency band; and the third circuit effect the antenna assembly to operate in a second frequency band.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention.
The features, objectives, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
All Figures disclosed herein are © Copyright 2010 Pulse Finland Oy. All rights reserved.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
The terms “antenna,” “antenna system,” and “multi-band antenna” refer without limitation to any system that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like. The energy may be transmitted from location to another location, using, or more repeater links, and one or more locations may be mobile, stationary, or fixed to a location on earth such as a base station.
As used herein, the terms “board” and “substrate” refer generally and without limitation to any substantially planar or curved surface or component upon which other components can be disposed. For example, a substrate may comprise a single or multi-layered printed circuit board (e.g., FR4), a semi-conductive die or wafer, or even a surface of a housing or other device component, and may be substantially rigid or alternatively at least somewhat flexible.
The terms “frequency range”, “frequency band”, and “frequency domain” refer to without limitation any frequency range for communicating signals. Such signals may be communicated pursuant to one or more standards or wireless air interfaces.
As used herein, the terms “mobile device”, “client device”, and “end user device” include, but are not limited to, personal computers (PCs) and minicomputers, whether desktop, laptop, or otherwise, set-top boxes, personal digital assistants (PDAs), handheld computers, personal communicators, J2ME equipped devices, cellular telephones, smartphones, personal integrated communication or entertainment devices, or literally any other device capable of interchanging data with a network or another device.
Furthermore, as used herein, the terms “radiator,” “radiating plane,” and “radiating element” refer without limitation to an element that can function as part of a system that receives and/or transmits radio-frequency electromagnetic radiation; e.g., an antenna.
The terms “feed,” “RF feed,” “feed conductor,” and “feed network” refer without limitation to any energy conductor and coupling element(s) that can transfer energy, transform impedance, enhance performance characteristics, and conform impedance properties between an incoming/outgoing RF energy signals to that of one or more connective elements, such as for example a radiator.
As used herein, the terms “top”, “bottom”, “side”, “up”, “down” and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, CDPD, satellite systems, millimeter wave or microwave systems, optical, acoustic, and infrared (i.e., IrDA).
Overview
The present invention provides, in one salient aspect, an antenna apparatus and mobile radio device with improved CTIA compliance, and methods for tuning and utilizing the same. In one embodiment, the mobile radio device comprises two separate antennas placed towards the opposing edges of the mobile device: (i) a top-mounted PIFA antenna operating in an upper-frequency band; and (ii) a bottom-mounted monopole antenna with matching circuit, for operating in a lower-frequency band.
The two individual antennas are designed to have best available performance in their specific operating band. By utilizing a distributed (i.e., substantially separated) antenna structure, the volume needed for the low-band antenna is reduced, while better performance (e.g., compliance with CTIA 3.0 specifications) is achieved at higher frequencies.
In one implementation, each antenna utilizes a separate feed. In an alternate embodiment, a single multi-feed transceiver is configured to provide feed to both antennas. The phone chassis acts as a common ground plane for both antennas.
A method for tuning one or more antennas in a mobile radio device is also disclosed. The method in one embodiment comprises forming one or more slots within the antenna radiator element so as to increase the effective electric length of the radiator, and thus facilitate antenna tuning to the desired frequency of operation.
A method for matching a monopole antenna for operation in a lower frequency band is also disclosed. In one embodiment, the method comprises using a low-frequency matching circuit to improve antenna impedance matching and radiation efficiency.
Detailed Description Of Exemplary Embodiments
Detailed descriptions of the various embodiments and variants of the apparatus and methods of the invention are now provided. While primarily discussed in the context of mobile devices, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in any number of complex antennas, whether associated with mobile or fixed location devices, that can benefit from the distributed antenna methodologies and apparatus described herein.
Exemplary Antenna Apparatus
Referring now to
It will be appreciated that while these exemplary embodiments of the antenna apparatus of the invention are implemented using a PIFA and a monopole antenna (selected in these embodiments for their desirable attributes and performance), the invention is in no way limited to PIFA and/or monopole antenna-based configurations, and in fact can be implemented using other technologies, such as patch or microstrip.
Referring now to
The exemplary PCB 200 of
Referring now to
Using a distributed antenna configuration of the type described herein, the ground clearance area required for optimal antenna operation in lower frequency band (e.g., 900 MHz) can be in theory reduced. In an embodiment shown above in
The detailed structure of the lower-band antenna 204, configured in accordance with the principles of the present invention, is shown in
The lower-band plane radiator element 320 is in the illustrated embodiment oriented perpendicular to the mobile device PCB substrate 202, and is electrically coupled to the circuit 340 via the feed point 312. The matching circuit 340 is fabricated directly on a lower portion 310 of the PCB substrate 202. In one variant, the lower portion 310 of the PCB substrate is dimensioned so as to match the outer dimensions of the matching circuit 320, as shown in
The lower-band monopole antenna comprises a rectangular radiator end portion 320 and a plurality of stripline radiator elements 324, 326, 328. The striplines sections 324, 326 are arranged to from a non-conductive slot in the radiator plane. This slot can be used to form a higher resonance mode, to same feed point as the low band resonance, if required. The radiator elements 330, 324, 326, 328 are configured to increase the antenna effective electric length so as to permit operation in the low frequency band (here, 850 and 900 MHz), while minimizing the physical size occupied by the antenna assembly. The antenna 320 radiator is electrically coupled to the mobile radio device transceiver via the feed point 312. In order to reduce the overall volume occupied by the lower-band antenna 204, the element 328 is bent to conform to the shape of a plastic support carrier (not shown) that is placed underneath antenna radiating element, as shown in
In an alternate embodiment, the stripline 344 may comprise one or more bends configured to create segments 357, 359. Although segments 357,359 are shown to form at a right angle other mutual orientations are possible, as can be appreciated by these skilled in the art. The position of the bends and the length of elements 357, 359 are selected to alter the resonance length of the antenna as required for more precise matching to the desired frequency band of operation.
The matching circuit 340 is coupled to the low-band antenna radiator element 320 via a low-band feeding pad 350. The pad 350 is coupled from the stripline 344 via an inductive element 354. In one embodiment the inductive element 354 comprises a serial coil.
The matching circuit 340 forms a parallel LC circuit, wherein the inductance is formed by the stripline 344 connection to ground and the capacitance is determined by the stripline 344 size and capacitive element 358 (e.g., lumped). It is appreciated that while a single capacitive element 358 is shown in the embodiment of
In one embodiment, the matching circuit 340 is formed by depositing a conductive coating onto a PCB substrate, and subsequently etching the required pattern, as shown in
The matching circuit 340 inter alia, (i) enables precise tuning of the low band monopole antenna to the desired frequency band; and (ii) provides accurate impedance matching to the feed structure of the transceiver. This advantageously improves low band antenna performance in phantom tests, and enables better compliance with CTIA requirements.
Referring now to
The exemplary PIFA planar element 400, shown in detail in
In one embodiment, in order to reduce the overall volume occupied by the high-band antenna 206, the PIFA structure 400 is routed or bent along the lines 422, 424 so as to conform to the shape of the underlying substrate when installed in the mobile radio device, as shown in
In another embodiment, the PIFA structure 400 is formed by depositing a conductive coating onto the PCB substrate 402 and subsequently etching the pattern shown in
In one embodiment, the lower frequency band comprises a sub-GHz Global System for Mobile Communications (GSM) band (e.g., GSM710, GSM750, GSM850, GSM810, GSM900), while the higher band comprises a GSM1900, GSM1800, or PCS-1900 frequency band (e.g., 1.8 or 1.9 GHz).
In another embodiment, the low or high band comprises the Global Positioning System (GPS) frequency band, and the antenna is used for receiving GPS position signals for decoding by e.g., an internal receiver.
In another variant, the high-band comprises a WiFi or Bluetooth frequency band (e.g., approximately 2.4 GHz), and the lower band comprises GSM1900, GSM1800, or PCS1900 frequency band. As persons skilled in the art will appreciate, the frequency band composition given above may be modified as required by the particular application(s) desired. Moreover, the present invention contemplates yet additional antenna structures within a common device (e.g., tri-band or quad-band) where sufficient space and separation exists.
Performance
Referring now to
An efficiency of zero (0) dB corresponds to an ideal theoretical radiator, wherein all of the input power is radiated in the form of electromagnetic energy. The data in
The lower-band efficiency data presented in
Referring now to
The data shown in
Advantageously, the use of two separate antenna configurations for the upper (PIFA) and lower (matched monopole) bands as in the illustrated embodiments allows for optimization of antenna operation in each of the frequency bands independently from each other. The use high-frequency PIFA reduces the overall antenna assembly volume and height, compared to a single dual-band PIFA, and therefore enables a smaller and thinner mobile device structure. In addition, the use of a PIFA reduces signal loss and interference at higher frequencies when operating in proximity to the head and hand phantoms. Utilization of a monopole antenna, matched to operate in the lower frequency band, improves device performance when operating in the proximity to the head and hand phantoms as well. These, in turn, facilitate compliance with the CTIA regulations, with all of the foregoing attendant benefits.
It will be recognized that while certain aspects of the invention are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the invention, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the invention disclosed and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Number | Name | Date | Kind |
---|---|---|---|
2745102 | Norgorden | May 1956 | A |
3938161 | Sanford | Feb 1976 | A |
4004228 | Mullett | Jan 1977 | A |
4028652 | Wakino et al. | Jun 1977 | A |
4031468 | Ziebell et al. | Jun 1977 | A |
4054874 | Oltman | Oct 1977 | A |
4069483 | Kaloi | Jan 1978 | A |
4123756 | Nagata et al. | Oct 1978 | A |
4123758 | Shibano et al. | Oct 1978 | A |
4131893 | Munson et al. | Dec 1978 | A |
4201960 | Skutta et al. | May 1980 | A |
4255729 | Fukasawa et al. | Mar 1981 | A |
4313121 | Campbell et al. | Jan 1982 | A |
4356492 | Kaloi | Oct 1982 | A |
4370657 | Kaloi | Jan 1983 | A |
4423396 | Makimoto et al. | Dec 1983 | A |
4431977 | Sokola et al. | Feb 1984 | A |
4546357 | Laughon et al. | Oct 1985 | A |
4559508 | Nishikawa et al. | Dec 1985 | A |
4625212 | Oda et al. | Nov 1986 | A |
4652889 | Bizouard et al. | Mar 1987 | A |
4661992 | Garay et al. | Apr 1987 | A |
4692726 | Green et al. | Sep 1987 | A |
4703291 | Nishikawa et al. | Oct 1987 | A |
4706050 | Andrews | Nov 1987 | A |
4716391 | Moutrie et al. | Dec 1987 | A |
4740765 | Ishikawa et al. | Apr 1988 | A |
4742562 | Kommrusch | May 1988 | A |
4761624 | Igarashi et al. | Aug 1988 | A |
4800348 | Rosar et al. | Jan 1989 | A |
4800392 | Garay et al. | Jan 1989 | A |
4821006 | Ishikawa et al. | Apr 1989 | A |
4823098 | DeMuro et al. | Apr 1989 | A |
4827266 | Sato et al. | May 1989 | A |
4829274 | Green et al. | May 1989 | A |
4862181 | PonceDeLeon et al. | Aug 1989 | A |
4879533 | De Muro et al. | Nov 1989 | A |
4896124 | Schwent | Jan 1990 | A |
4954796 | Green et al. | Sep 1990 | A |
4965537 | Kommrusch | Oct 1990 | A |
4977383 | Niiranen | Dec 1990 | A |
4980694 | Hines | Dec 1990 | A |
5017932 | Ushiyama et al. | May 1991 | A |
5047739 | Kuokkanen | Sep 1991 | A |
5053786 | Silverman et al. | Oct 1991 | A |
5097236 | Wakino et al. | Mar 1992 | A |
5103197 | Turunen | Apr 1992 | A |
5109536 | Kommrusch | Apr 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5157363 | Puurunen | Oct 1992 | A |
5159303 | Flink | Oct 1992 | A |
5166697 | Viladevall et al. | Nov 1992 | A |
5170173 | Krenz et al. | Dec 1992 | A |
5203021 | Repplinger et al. | Apr 1993 | A |
5210510 | Karsikas | May 1993 | A |
5210542 | Pett et al. | May 1993 | A |
5220335 | Huang | Jun 1993 | A |
5229777 | Doyle | Jul 1993 | A |
5239279 | Turunen | Aug 1993 | A |
5278528 | Turunen | Jan 1994 | A |
5281326 | Galla | Jan 1994 | A |
5298873 | Ala-Kojola | Mar 1994 | A |
5302924 | Jantunen | Apr 1994 | A |
5304968 | Ohtonen | Apr 1994 | A |
5307036 | Turunen | Apr 1994 | A |
5319328 | Turunen | Jun 1994 | A |
5349315 | Ala-Kojola | Sep 1994 | A |
5349700 | Parker | Sep 1994 | A |
5351023 | Niiranen | Sep 1994 | A |
5354463 | Turunen | Oct 1994 | A |
5355142 | Marshall et al. | Oct 1994 | A |
5357262 | Blaese | Oct 1994 | A |
5363114 | Shoemaker | Nov 1994 | A |
5369782 | Kawano et al. | Nov 1994 | A |
5382959 | Pett et al. | Jan 1995 | A |
5386214 | Sugawara | Jan 1995 | A |
5387886 | Takalo | Feb 1995 | A |
5394162 | Korovesis et al. | Feb 1995 | A |
RE34898 | Turunen | Apr 1995 | E |
5408206 | Turunen | Apr 1995 | A |
5418508 | Puurunen | May 1995 | A |
5432489 | Yrjola | Jul 1995 | A |
5438697 | Fowler et al. | Aug 1995 | A |
5440315 | Wright et al. | Aug 1995 | A |
5442366 | Sanford | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5467065 | Turunen | Nov 1995 | A |
5473295 | Turunen | Dec 1995 | A |
5506554 | Ala-Kojola | Apr 1996 | A |
5508668 | Prokkola | Apr 1996 | A |
5517683 | Collett et al. | May 1996 | A |
5521561 | Yrjola | May 1996 | A |
5532703 | Stephens et al. | Jul 1996 | A |
5541560 | Turunen | Jul 1996 | A |
5541617 | Connolly et al. | Jul 1996 | A |
5543764 | Turunen | Aug 1996 | A |
5550519 | Korpela | Aug 1996 | A |
5557287 | Pottala et al. | Sep 1996 | A |
5557292 | Nygren et al. | Sep 1996 | A |
5570071 | Ervasti | Oct 1996 | A |
5585771 | Ervasti | Dec 1996 | A |
5585810 | Tsuru et al. | Dec 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5594395 | Niiranen | Jan 1997 | A |
5604471 | Rattila | Feb 1997 | A |
5627502 | Ervasti | May 1997 | A |
5649316 | Prudhomme et al. | Jul 1997 | A |
5668561 | Perrotta et al. | Sep 1997 | A |
5675301 | Nappa | Oct 1997 | A |
5689221 | Niiranen | Nov 1997 | A |
5694135 | Dikun et al. | Dec 1997 | A |
5703600 | Burrell et al. | Dec 1997 | A |
5709832 | Hayes | Jan 1998 | A |
5711014 | Crowley et al. | Jan 1998 | A |
5717368 | Niiranen | Feb 1998 | A |
5731749 | Yrjola | Mar 1998 | A |
5734305 | Ervasti | Mar 1998 | A |
5734350 | Deming et al. | Mar 1998 | A |
5734351 | Ojantakanen | Mar 1998 | A |
5739735 | Pyykko | Apr 1998 | A |
5742259 | Annamaa | Apr 1998 | A |
5757327 | Yajima et al. | May 1998 | A |
5764190 | Murch et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5768217 | Sonoda et al. | Jun 1998 | A |
5777581 | Lilly et al. | Jul 1998 | A |
5777585 | Tsuda et al. | Jul 1998 | A |
5793269 | Ervasti | Aug 1998 | A |
5797084 | Tsuru | Aug 1998 | A |
5812094 | Maldonado | Sep 1998 | A |
5815048 | Ala-Kojola | Sep 1998 | A |
5822705 | Lehtola | Oct 1998 | A |
5852421 | Maldonado | Dec 1998 | A |
5861854 | Kawahata et al. | Jan 1999 | A |
5874926 | Tsuru et al. | Feb 1999 | A |
5880697 | McCarrick et al. | Mar 1999 | A |
5886668 | Pedersen et al. | Mar 1999 | A |
5892490 | Asakura et al. | Apr 1999 | A |
5903820 | Hagstrom | May 1999 | A |
5905475 | Annamaa | May 1999 | A |
5920290 | McDonough et al. | Jul 1999 | A |
5926139 | Korisch | Jul 1999 | A |
5929813 | Eggleston | Jul 1999 | A |
5936583 | Sekine et al. | Aug 1999 | A |
5943016 | Snyder, Jr. et al. | Aug 1999 | A |
5952975 | Pedersen et al. | Sep 1999 | A |
5959583 | Funk | Sep 1999 | A |
5963180 | Leisten | Oct 1999 | A |
5966097 | Fukasawa et al. | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5977710 | Kuramoto et al. | Nov 1999 | A |
5986606 | Kossiavas et al. | Nov 1999 | A |
5986608 | Korisch et al. | Nov 1999 | A |
5990848 | Annamaa | Nov 1999 | A |
5999132 | Kitchener et al. | Dec 1999 | A |
6005529 | Hutchinson | Dec 1999 | A |
6006419 | Vandendolder et al. | Dec 1999 | A |
6008764 | Ollikainen | Dec 1999 | A |
6009311 | Killion et al. | Dec 1999 | A |
6014106 | Annamaa | Jan 2000 | A |
6016130 | Annamaa | Jan 2000 | A |
6023608 | Yrjola | Feb 2000 | A |
6031496 | Kuittinen et al. | Feb 2000 | A |
6034637 | McCoy et al. | Mar 2000 | A |
6037848 | Alila | Mar 2000 | A |
6043780 | Funk et al. | Mar 2000 | A |
6072434 | Papatheodorou | Jun 2000 | A |
6078231 | Pelkonen | Jun 2000 | A |
6091363 | Komatsu et al. | Jul 2000 | A |
6097345 | Walton | Aug 2000 | A |
6100849 | Tsubaki et al. | Aug 2000 | A |
6112108 | Tsubaki et al. | Aug 2000 | A |
6133879 | Grangeat et al. | Oct 2000 | A |
6134421 | Lee et al. | Oct 2000 | A |
6140973 | Annamaa | Oct 2000 | A |
6147650 | Kawahata et al. | Nov 2000 | A |
6157819 | Vuokko | Dec 2000 | A |
6177908 | Kawahata | Jan 2001 | B1 |
6185434 | Hagstrom | Feb 2001 | B1 |
6190942 | Wilm et al. | Feb 2001 | B1 |
6195049 | Kim et al. | Feb 2001 | B1 |
6204826 | Rutkowski et al. | Mar 2001 | B1 |
6215376 | Hagstrom | Apr 2001 | B1 |
6246368 | Deming et al. | Jun 2001 | B1 |
6252552 | Tarvas et al. | Jun 2001 | B1 |
6252554 | Isohatala | Jun 2001 | B1 |
6255994 | Saito | Jul 2001 | B1 |
6268831 | Sanford | Jul 2001 | B1 |
6295029 | Chen et al. | Sep 2001 | B1 |
6297776 | Pankinaho | Oct 2001 | B1 |
6304220 | Herve et al. | Oct 2001 | B1 |
6308720 | Modi | Oct 2001 | B1 |
6316975 | O'Toole et al. | Nov 2001 | B1 |
6323811 | Tsubaki | Nov 2001 | B1 |
6326921 | Egorov et al. | Dec 2001 | B1 |
6337663 | Chi-Minh | Jan 2002 | B1 |
6340954 | Annamaa et al. | Jan 2002 | B1 |
6342859 | Kurz et al. | Jan 2002 | B1 |
6346914 | Annamaa | Feb 2002 | B1 |
6348892 | Annamaa | Feb 2002 | B1 |
6353443 | Ying | Mar 2002 | B1 |
6366243 | Isohatala | Apr 2002 | B1 |
6377827 | Rydbeck | Apr 2002 | B1 |
6380905 | Annamaa | Apr 2002 | B1 |
6396444 | Goward | May 2002 | B1 |
6404394 | Hill | Jun 2002 | B1 |
6417813 | Durham | Jul 2002 | B1 |
6423915 | Winter | Jul 2002 | B1 |
6429818 | Johnson et al. | Aug 2002 | B1 |
6452551 | Chen | Sep 2002 | B1 |
6452558 | Saitou et al. | Sep 2002 | B1 |
6456249 | Johnson et al. | Sep 2002 | B1 |
6459413 | Tseng et al. | Oct 2002 | B1 |
6462716 | Kushihi | Oct 2002 | B1 |
6469673 | Kaiponen | Oct 2002 | B2 |
6473056 | Annamaa | Oct 2002 | B2 |
6476769 | Lehtola | Nov 2002 | B1 |
6480155 | Eggleston | Nov 2002 | B1 |
6501425 | Nagumo | Dec 2002 | B1 |
6518925 | Annamaa | Feb 2003 | B1 |
6529168 | Mikkola | Mar 2003 | B2 |
6535170 | Sawamura et al. | Mar 2003 | B2 |
6538604 | Isohatala | Mar 2003 | B1 |
6549167 | Yoon | Apr 2003 | B1 |
6556812 | Pennanen et al. | Apr 2003 | B1 |
6566944 | Pehlke | May 2003 | B1 |
6580396 | Lin | Jun 2003 | B2 |
6580397 | Lindell | Jun 2003 | B2 |
6600449 | Onaka et al. | Jul 2003 | B2 |
6603430 | Hill et al. | Aug 2003 | B1 |
6606016 | Takamine et al. | Aug 2003 | B2 |
6611235 | Barna et al. | Aug 2003 | B2 |
6614400 | Egorov | Sep 2003 | B2 |
6614405 | Mikkonen | Sep 2003 | B1 |
6634564 | Kuramochi | Oct 2003 | B2 |
6636181 | Asano | Oct 2003 | B2 |
6639564 | Johnson | Oct 2003 | B2 |
6646606 | Mikkola | Nov 2003 | B2 |
6650295 | Ollikainen et al. | Nov 2003 | B2 |
6657593 | Nagumo et al. | Dec 2003 | B2 |
6657595 | Phillips et al. | Dec 2003 | B1 |
6670926 | Miyasaka | Dec 2003 | B2 |
6677903 | Wang | Jan 2004 | B2 |
6683573 | Park | Jan 2004 | B2 |
6693594 | Pankinaho et al. | Feb 2004 | B2 |
6717551 | Desclos et al. | Apr 2004 | B1 |
6727857 | Mikkola | Apr 2004 | B2 |
6734825 | Guo et al. | May 2004 | B1 |
6734826 | Dai et al. | May 2004 | B1 |
6738022 | Klaavo et al. | May 2004 | B2 |
6741214 | Kadambi et al. | May 2004 | B1 |
6753813 | Kushihi | Jun 2004 | B2 |
6759989 | Tarvas et al. | Jul 2004 | B2 |
6765536 | Phillips et al. | Jul 2004 | B2 |
6774853 | Wong et al. | Aug 2004 | B2 |
6781545 | Sung | Aug 2004 | B2 |
6801166 | Mikkola | Oct 2004 | B2 |
6801169 | Chang et al. | Oct 2004 | B1 |
6806835 | Iwai | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6819293 | De Graauw et al. | Nov 2004 | B2 |
6825818 | Toncich | Nov 2004 | B2 |
6836249 | Kenoun et al. | Dec 2004 | B2 |
6847329 | Ikegaya et al. | Jan 2005 | B2 |
6856293 | Bordi | Feb 2005 | B2 |
6862437 | McNamara | Mar 2005 | B1 |
6862441 | Ella | Mar 2005 | B2 |
6873291 | Aoyama | Mar 2005 | B2 |
6876329 | Milosavljevic | Apr 2005 | B2 |
6882317 | Koskiniemi | Apr 2005 | B2 |
6891507 | Kushihi et al. | May 2005 | B2 |
6897810 | Dai et al. | May 2005 | B2 |
6900768 | Iguchi et al. | May 2005 | B2 |
6903692 | Kivekas | Jun 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6922171 | Annamaa | Jul 2005 | B2 |
6925689 | Folkmar | Aug 2005 | B2 |
6927792 | Mimura et al. | Aug 2005 | B1 |
6937196 | Korva | Aug 2005 | B2 |
6950066 | Hendler et al. | Sep 2005 | B2 |
6950068 | Bordi | Sep 2005 | B2 |
6952144 | Javor | Oct 2005 | B2 |
6952187 | Annamaa | Oct 2005 | B2 |
6958730 | Nagumo et al. | Oct 2005 | B2 |
6961544 | Hagstrom | Nov 2005 | B1 |
6963308 | Korva | Nov 2005 | B2 |
6963310 | Horita et al. | Nov 2005 | B2 |
6967618 | Ojantakanen | Nov 2005 | B2 |
6975278 | Song et al. | Dec 2005 | B2 |
6985108 | Mikkola | Jan 2006 | B2 |
6992543 | Luetzelschwab et al. | Jan 2006 | B2 |
6995710 | Sugimoto et al. | Feb 2006 | B2 |
7023341 | Stilp | Apr 2006 | B2 |
7031744 | Kuriyama et al. | Apr 2006 | B2 |
7042403 | Colburn et al. | May 2006 | B2 |
7053841 | Ponce De Leon et al. | May 2006 | B2 |
7054671 | Kaiponen et al. | May 2006 | B2 |
7057560 | Erkocevic | Jun 2006 | B2 |
7081857 | Kinnunen et al. | Jul 2006 | B2 |
7084831 | Takagi et al. | Aug 2006 | B2 |
7099690 | Milosavljevic | Aug 2006 | B2 |
7113133 | Chen et al. | Sep 2006 | B2 |
7119749 | Miyata et al. | Oct 2006 | B2 |
7126546 | Annamaa | Oct 2006 | B2 |
7136019 | Mikkola | Nov 2006 | B2 |
7136020 | Yamaki | Nov 2006 | B2 |
7142824 | Kojima et al. | Nov 2006 | B2 |
7148847 | Yuanzhu | Dec 2006 | B2 |
7148849 | Lin | Dec 2006 | B2 |
7148851 | Takaki et al. | Dec 2006 | B2 |
7170464 | Tang et al. | Jan 2007 | B2 |
7176838 | Kinezos | Feb 2007 | B1 |
7180455 | Oh et al. | Feb 2007 | B2 |
7193574 | Chiang et al. | Mar 2007 | B2 |
7205942 | Wang et al. | Apr 2007 | B2 |
7218280 | Annamaa | May 2007 | B2 |
7218282 | Humpfer et al. | May 2007 | B2 |
7224313 | McKinzie, III et al. | May 2007 | B2 |
7230574 | Johnson | Jun 2007 | B2 |
7237318 | Annamaa | Jul 2007 | B2 |
7256743 | Korva | Aug 2007 | B2 |
7274334 | O'Riordan et al. | Sep 2007 | B2 |
7283097 | Wen et al. | Oct 2007 | B2 |
7289064 | Cheng | Oct 2007 | B2 |
7292200 | Posluszny et al. | Nov 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7330153 | Rentz | Feb 2008 | B2 |
7333067 | Hung et al. | Feb 2008 | B2 |
7339528 | Wang et al. | Mar 2008 | B2 |
7340286 | Korva et al. | Mar 2008 | B2 |
7345634 | Ozkar et al. | Mar 2008 | B2 |
7352326 | Korva | Apr 2008 | B2 |
7358902 | Erkocevic | Apr 2008 | B2 |
7382319 | Kawahata et al. | Jun 2008 | B2 |
7385556 | Chung et al. | Jun 2008 | B2 |
7388543 | Vance | Jun 2008 | B2 |
7391378 | Mikkola | Jun 2008 | B2 |
7405702 | Annamaa et al. | Jul 2008 | B2 |
7417588 | Castany et al. | Aug 2008 | B2 |
7423592 | Pros et al. | Sep 2008 | B2 |
7432860 | Huynh | Oct 2008 | B2 |
7439929 | Ozkar | Oct 2008 | B2 |
7468700 | Milosavljevic | Dec 2008 | B2 |
7468709 | Niemi | Dec 2008 | B2 |
7498990 | Park et al. | Mar 2009 | B2 |
7501983 | Mikkola | Mar 2009 | B2 |
7502598 | Kronberger | Mar 2009 | B2 |
7589678 | Perunka | Sep 2009 | B2 |
7616158 | Mark et al. | Nov 2009 | B2 |
7633449 | Oh | Dec 2009 | B2 |
7663551 | Nissinen | Feb 2010 | B2 |
7679565 | Sorvala | Mar 2010 | B2 |
7692543 | Copeland | Apr 2010 | B2 |
7710325 | Cheng | May 2010 | B2 |
7724204 | Annamaa | May 2010 | B2 |
7760146 | Ollikainen | Jul 2010 | B2 |
7764245 | Loyet | Jul 2010 | B2 |
7786938 | Sorvala | Aug 2010 | B2 |
7800544 | Thornell-Pers | Sep 2010 | B2 |
7830327 | He | Nov 2010 | B2 |
7889139 | Hobson et al. | Feb 2011 | B2 |
7889143 | Milosavljevic | Feb 2011 | B2 |
7901617 | Taylor | Mar 2011 | B2 |
7916086 | Koskiniemi et al. | Mar 2011 | B2 |
7963347 | Pabon | Jun 2011 | B2 |
7973720 | Sorvala | Jul 2011 | B2 |
8049670 | Jung et al. | Nov 2011 | B2 |
8179322 | Nissinen | May 2012 | B2 |
20010050636 | Weinberger | Dec 2001 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020196192 | Nagumo et al. | Dec 2002 | A1 |
20030146873 | Blancho | Aug 2003 | A1 |
20040090378 | Dai et al. | May 2004 | A1 |
20040145525 | Annabi et al. | Jul 2004 | A1 |
20040171403 | Mikkola | Sep 2004 | A1 |
20050057401 | Yuanzhu | Mar 2005 | A1 |
20050159131 | Shibagaki et al. | Jul 2005 | A1 |
20050176481 | Jeong | Aug 2005 | A1 |
20050226353 | Gebara | Oct 2005 | A1 |
20060017621 | Okawara et al. | Jan 2006 | A1 |
20060071857 | Pelzer | Apr 2006 | A1 |
20060071864 | Richard et al. | Apr 2006 | A1 |
20060192723 | Harada | Aug 2006 | A1 |
20070042615 | Liao | Feb 2007 | A1 |
20070082789 | Nissila | Apr 2007 | A1 |
20070152881 | Chan | Jul 2007 | A1 |
20070188388 | Feng | Aug 2007 | A1 |
20080055164 | Zhang et al. | Mar 2008 | A1 |
20080059106 | Wight | Mar 2008 | A1 |
20080088511 | Sorvala | Apr 2008 | A1 |
20080266199 | Milosavljevic | Oct 2008 | A1 |
20090009415 | Tanska | Jan 2009 | A1 |
20090135066 | Raappana et al. | May 2009 | A1 |
20090174604 | Keskitalo | Jul 2009 | A1 |
20090196160 | Crombach | Aug 2009 | A1 |
20090197654 | Teshima | Aug 2009 | A1 |
20090231213 | Ishimiya | Sep 2009 | A1 |
20100220016 | Nissinen | Sep 2010 | A1 |
20100244978 | Milosavljevic | Sep 2010 | A1 |
20100309092 | Lambacka | Dec 2010 | A1 |
20110102290 | Milosavljevic | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20120119955 | Milosavljevic | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1316797 | Oct 2007 | CN |
10015583 | Nov 2000 | DE |
10104862 | Aug 2002 | DE |
101 50 149 | Apr 2003 | DE |
0208424 | Jan 1987 | EP |
0278069 | Aug 1988 | EP |
0279050 | Aug 1988 | EP |
0339822 | Mar 1989 | EP |
0 332 139 | Sep 1989 | EP |
0 376 643 | Apr 1990 | EP |
0383292 | Aug 1990 | EP |
0399975 | Dec 1990 | EP |
0400872 | Dec 1990 | EP |
0401839 | Sep 1991 | EP |
0447218 | Sep 1994 | EP |
0615285 | Oct 1994 | EP |
0621653 | Feb 1995 | EP |
0 749 214 | Dec 1996 | EP |
0637094 | Jan 1997 | EP |
0 759 646 | Feb 1997 | EP |
0 766 341 | Feb 1997 | EP |
0 766 340 | Apr 1997 | EP |
0751043 | Apr 1997 | EP |
0807988 | Nov 1997 | EP |
0 831 547 | Mar 1998 | EP |
0851530 | Jul 1998 | EP |
0856907 | Aug 1998 | EP |
1 294 048 | Jan 1999 | EP |
0892459 | Jan 1999 | EP |
0766339 | Feb 1999 | EP |
0 942 488 | Sep 1999 | EP |
1 003 240 | May 2000 | EP |
1006605 | Jun 2000 | EP |
1006606 | Jun 2000 | EP |
1014487 | Jun 2000 | EP |
1024553 | Aug 2000 | EP |
1026774 | Aug 2000 | EP |
0999607 | Oct 2000 | EP |
1 052 723 | Nov 2000 | EP |
1052722 | Nov 2000 | EP |
1 063 722 | Dec 2000 | EP |
1067627 | Jan 2001 | EP |
1094545 | Apr 2001 | EP |
1 102 348 | May 2001 | EP |
1098387 | May 2001 | EP |
1 113 524 | Jul 2001 | EP |
1113524 | Jul 2001 | EP |
1 128 466 | Aug 2001 | EP |
1 139 490 | Oct 2001 | EP |
1 146 589 | Oct 2001 | EP |
1 162 688 | Dec 2001 | EP |
1162688 | Dec 2001 | EP |
0993070 | Apr 2002 | EP |
1 248 316 | Sep 2002 | EP |
0923158 | Sep 2002 | EP |
1 267 441 | Dec 2002 | EP |
1271690 | Jan 2003 | EP |
1 294 049 | Mar 2003 | EP |
1306922 | May 2003 | EP |
1 329 980 | Jul 2003 | EP |
1 351 334 | Aug 2003 | EP |
1 361 623 | Nov 2003 | EP |
1248316 | Jan 2004 | EP |
1396906 | Mar 2004 | EP |
1 406 345 | Apr 2004 | EP |
1 414 108 | Apr 2004 | EP |
1 432 072 | Jun 2004 | EP |
1 437 793 | Jul 2004 | EP |
1439603 | Jul 2004 | EP |
1 445 822 | Aug 2004 | EP |
1 453 137 | Sep 2004 | EP |
1 469 549 | Oct 2004 | EP |
1220456 | Oct 2004 | EP |
1467456 | Oct 2004 | EP |
1 482 592 | Dec 2004 | EP |
1 498 984 | Jan 2005 | EP |
1 564 839 | Jan 2005 | EP |
1170822 | Apr 2005 | EP |
1 544 943 | Jun 2005 | EP |
1753079 | Feb 2007 | EP |
1 791 213 | May 2007 | EP |
1 806 907 | Jul 2007 | EP |
1843432 | Oct 2007 | EP |
2 237 129 | Oct 2010 | EP |
20020829 | Nov 2003 | FI |
2553584 | Oct 1983 | FR |
2724274 | Mar 1996 | FR |
2873247 | Jan 2006 | FR |
2266997 | Nov 1993 | GB |
2 360 422 | Sep 2001 | GB |
239246 | Dec 2003 | GB |
1984202831 | Nov 1984 | JP |
600206304 | Oct 1985 | JP |
1986245704 | Nov 1986 | JP |
06152463 | May 1994 | JP |
1995131234 | May 1995 | JP |
1995221536 | Aug 1995 | JP |
7249923 | Sep 1995 | JP |
1995307612 | Nov 1995 | JP |
08216571 | Aug 1996 | JP |
09083242 | Mar 1997 | JP |
9260934 | Oct 1997 | JP |
9307344 | Nov 1997 | JP |
10 028013 | Jan 1998 | JP |
10107671 | Apr 1998 | JP |
10173423 | Jun 1998 | JP |
10 209733 | Aug 1998 | JP |
10224142 | Aug 1998 | JP |
10 327011 | Dec 1998 | JP |
10322124 | Dec 1998 | JP |
11 004117 | Jan 1999 | JP |
1999004113 | Jan 1999 | JP |
11 068456 | Mar 1999 | JP |
11127010 | May 1999 | JP |
11136025 | May 1999 | JP |
199127014 | May 1999 | JP |
11 355033 | Dec 1999 | JP |
2000278028 | Oct 2000 | JP |
200153543 | Feb 2001 | JP |
2001267833 | Sep 2001 | JP |
2001217631 | Oct 2001 | JP |
200 326513 | Nov 2001 | JP |
2002319811 | Oct 2002 | JP |
2002329541 | Nov 2002 | JP |
2002335117 | Nov 2002 | JP |
200360417 | Feb 2003 | JP |
200324730 | Apr 2003 | JP |
2003179426 | Jun 2003 | JP |
2003318638 | Nov 2003 | JP |
2004 040596 | Feb 2004 | JP |
2004112028 | Apr 2004 | JP |
2004363859 | Dec 2004 | JP |
2005005985 | Jan 2005 | JP |
2005252661 | Sep 2005 | JP |
20010080521 | Oct 2001 | KR |
10-2006-7027462 | Dec 2002 | KR |
20020096016 | Dec 2002 | KR |
511900 | Dec 1999 | SE |
WO 9200635 | Jan 1992 | WO |
WO 9627219 | Sep 1996 | WO |
WO 9801919 | Jan 1998 | WO |
WO 9801921 | Jan 1998 | WO |
WO 9837592 | Aug 1998 | WO |
WO 9930479 | Jun 1999 | WO |
WO 0036700 | Jun 2000 | WO |
WO 0120718 | Mar 2001 | WO |
WO 0124316 | Apr 2001 | WO |
WO 0128035 | Apr 2001 | WO |
WO 0129927 | Apr 2001 | WO |
WO 0133665 | May 2001 | WO |
WO 0161781 | Aug 2001 | WO |
WO 0191236 | Nov 2001 | WO |
WO 02008672 | Jan 2002 | WO |
WO 0211236 | Feb 2002 | WO |
WO 0213307 | Feb 2002 | WO |
WO 0241443 | May 2002 | WO |
WO 02067375 | Aug 2002 | WO |
WO 02078123 | Oct 2002 | WO |
WO 02078124 | Oct 2002 | WO |
WO 03094290 | Nov 2003 | WO |
WO 2004017462 | Feb 2004 | WO |
WO 2004036778 | Apr 2004 | WO |
WO 2004057697 | Jul 2004 | WO |
WO 2004070872 | Aug 2004 | WO |
WO 2004100313 | Nov 2004 | WO |
WO 2004112189 | Dec 2004 | WO |
WO 2005011055 | Feb 2005 | WO |
WO 2005018045 | Feb 2005 | WO |
WO 2005034286 | Apr 2005 | WO |
WO 2005038981 | Apr 2005 | WO |
WO 2005055364 | Jun 2005 | WO |
WO 2005062416 | Jul 2005 | WO |
WO 2006000631 | Jan 2006 | WO |
WO 2006000650 | Jan 2006 | WO |
WO 2006051160 | May 2006 | WO |
WO 2006084951 | Aug 2006 | WO |
WO 2006097567 | Sep 2006 | WO |
WO 2007000483 | Jan 2007 | WO |
WO 2007000483 | Jan 2007 | WO |
WO 2007012697 | Feb 2007 | WO |
WO 2007039667 | Apr 2007 | WO |
WO 2007039668 | Apr 2007 | WO |
WO 2007042614 | Apr 2007 | WO |
WO 2007042615 | Apr 2007 | WO |
WO 2007050600 | May 2007 | WO |
WO 2007080214 | Jul 2007 | WO |
WO 2007098810 | Sep 2007 | WO |
WO 2007138157 | Dec 2007 | WO |
WO 2008059106 | Mar 2008 | WO |
WO 2008129125 | Oct 2008 | WO |
WO 2009027579 | May 2009 | WO |
WO 2009095531 | Aug 2009 | WO |
WO 2009106682 | Sep 2009 | WO |
WO 2010122220 | Oct 2010 | WO |
Entry |
---|
“Impedance and Admittance,” Basic Engineering Circuit Analysis, 7th Edition, a Wiley First Edition, Irwin, John, Wiley and Sons, 2002. |
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343. |
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610. |
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980. |
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244. |
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com. |
Abedin, M. F. and M. Ali, “Modifying the ground plane and its erect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003. |
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998. |
Cheng- Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings. |
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000. |
European Office Action, May 30, 2005 issued during prosecution of EP 04 396 001.2-1248. |
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8. |
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002. |
Griffin, Donald W. et al, “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995. |
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004. |
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004. |
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006. |
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115-, Mar. 2006. |
Hosse, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004. |
I. Ang, Y. X, Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003. |
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, date of issuance of report May 1, 2006. |
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, 4.-7.12.2005.APMC 2005, Asia-Pacific Conference Proceedings, vol. 4. |
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004. |
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1858, 1999. |
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004. |
K-L Wong, Planar Antennas for Wireless Communications., Hoboken, NJ; Willey, 2003, ch. 2. |
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006. |
Marta Martinez- Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006. |
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004. |
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004. |
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001. |
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998. |
Product of the Month, RFDesign, “GSM/GPRS Quad Band Power Amp Includes Antenna Switch,” 1 page, reprinted 11/04 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK. |
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA. |
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004. |
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399. |
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. 2003, vol. 51, No. 1. |
X.-D. Cal and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194. |
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809. |
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress in Electromagnetics Research C, vol. 16, pp. 147-160, 2010. |
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724. |
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118. |
Joshi, Ravi Kumar, et al. “Broadband Concentric Rings Fractal Slot Antenna,” Department of Electrical Engineering, Indian Institute of Technology, Kanpur-208 016, India. |
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24. |
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,” Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76. |
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30. |
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University. |
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16. |
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8. |
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547. |
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, 2002 09 Anson Workshop, pp. 1-45. |
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6. |
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008. |
Extended European Search Report dated Jan. 30, 2013, issued by the EPO for European Patent Application No. 12177740.3. |
Number | Date | Country | |
---|---|---|---|
20110260939 A1 | Oct 2011 | US |