Medium to large capacity centralized energy generation systems based upon photovoltaic (PV) conversion are a new system for commercial and utility applications. In the 100 kW peak and larger system size, presently ranging into the hundreds of megawatts peak capacity, systems are largely based upon scaled-up versions of smaller, residential-style distributed PV generations systems, typically of 1 to 10 kW peak capacity each. The system taxonomy across this wide dynamic range of applications is largely the same. These systems are based upon individual PV modules, each comprised of multiple PV cells in a series circuit, wherein each of the modules is then placed in a larger series circuit to form a unit known as a “string”. Multiple strings are directly wired together in parallel circuits, using passive connection units known as “combiner boxes”. Ultimately, the direct-current (DC) network formed is called an “array”. The output of such an array is connected to an inverter, a power conversion unit which transforms the DC output of the insolated array into a form compatible with connection and summation to an alternating current (AC) electricity distribution grid. This architectural sub-centralization of both the DC generating elements (the PV array) leads to power losses such that the power conversion unit (the inverter) necessitates scaling each system element for higher capacity, giving rise to very large DC arrays, partitioned into sub-arrays as a function of the largest inverter capacity available. Today, such large commercial-scale inverter capacities range from 100 kW to 1 megawatt (MW) capacity. Typical inverters cannot tolerate high temperature and must also be protected from weather. Large capacity inverters are large and heavy, requiring significant structures (such as poured-concrete mounting pads and weather shelters) to make them mechanically safe and reliable. Some inverters require environmental cooling. This in turn drives the requirement to centrally locate, or locate in centralized clusters, one or more inverters, which in turn drives the requirement for extended DC feed lines from the array to the inverter, ground-mounting of the inverter (in the case of building-integrated rooftop PV generating systems), and subsequent extended AC output cabling to connect the output of such a system to the AC mains point of interconnect (“POI”).
In a typical installation, a PV array is located on the roof of a commercial structure. For reasons stated previously, an inverter(s) is located at ground level. The mains from the grid, including the power meter, are also brought to the building at ground level and connected to the ground-level inverter. The result is very long runs of wire from the roof down to ground level to connect the DC array output to the inverter. Due to a very high current of perhaps several hundred amperes and a long run of the DC wiring to the inverter (often several hundred feet), the DC wiring must be of an extremely large gauge wire bundle with low resistance. Due to the size and weight of the inverter(s) it is not practical to locate the inverter on the roof where the high power equipment (load) is located. What is needed is an arrangement wherein a system providing high voltage, high current AC may be collocated with equipment that demands high power, for example HVAC equipment, thereby diminishing the cost, size, weight, and labor-intensive installation of high-capacity wiring bundles.
In the invention disclosed in hereinbefore referenced U.S. application Ser. No. 12/061,025 (“the '025 application”), a DC to pulse amplitude modulated (“PAM”) current converter, denominated a “PAMCC”, is connected to an individual solar panel (“PV”). A solar panel typically is comprised of a plurality, commonly seventy-two, individual solar cells connected in series, wherein each cell provides approximately 0.5 volt at some current, the current being a function of the intensity of light flux impinging upon the panel. The PAMCC receives direct current (“DC”) from a PV and provides pulse amplitude modulated current at its output. The pulse amplitude modulated current pulses are typically discontinuous or close to discontinuous with each pulse going from near zero current to the modulated current and returning to near zero between each pulse. The pulses are produced at a high frequency relative to the signal modulated on a sequence of pulses. The signal modulated onto a sequence of pulses may represent portions of a lower frequency sine wave or other lower frequency waveform, including DC. When the PAMCC's output is connected in parallel with the outputs of similar PAMCCs an array of PAMCCs is formed, wherein the output pulses of the PAMCCs are out of phase with respect to each other. An array of PAMCCs constructed in accordance with the present invention form a distributed multiphase inverter whose combined output is the demodulated sum of the current pulse amplitude modulated by each PAMCC. If the signal modulated onto the series of discontinuous or near discontinuous pulses produced by each PAMCC was an AC current sine wave, then a demodulated, continuous AC current waveform is produced by the array of PAMCCs. This AC current waveform is suitable for use by both the “load”, meaning the premises that is powered or partially power by the system, and suitable for connection to a grid. For example, in some embodiments an array of a plurality of PV-plus-PAMCC modules are connected together to nominally provide three-phase, Edison system 60 Hz 480 volt AC power to a commercial building.
Notably, the system disclosed in the '025 application does not require an inverter. The PAMCC modules each contribute current out of phase with each other directly to the common system output terminals, thereby providing useable power at the output terminals without an inverter, therefore without long DC wiring.
Definition of some terms:
Looking to
In an embodiment similar to that in
The system is, as in
Operational measurement of time-correlated AC voltages, currents, and temperatures enables automated metering of energy delivered. In some embodiments the POI 214 includes means for measuring the voltage at the POI 214. The ACPVs 230 all measure their current output and communicate the value of their current through the pod 232 wiring 205 to the AC combiner box 204. The communication signals are provided to the POI 214 on lines 224, 212. Various methods for the communication are discussed more fully in the '025 application. With the total current known and the voltage measured at the POI 214, the power delivered by the system 200 may be found by the product of the RMS values of the reported current and the measured voltage.
The present invention can be seen to provide several benefits, for example:
If any disclosures are incorporated herein by reference and such incorporated disclosures conflict in part or whole with the present disclosure, then to the extent of conflict, and/or broader disclosure, and/or broader definition of terms, the present disclosure controls. If such incorporated disclosures conflict in part or whole with one another, then to the extent of conflict, the later-dated disclosure controls.
This application is related to commonly-owned U.S. Provisional Patent Application Ser. No. 61/028,985, titled ARRAY OF DISTRIBUTED INVERTERS FOR MANAGING THE POWER OF MULTIPLE SOLAR PANELS AND METHODS OF USING filed Feb. 15, 2008, by Kernahan, et al. In addition, this application is related to the commonly-owned U.S. Nonprovisional application Ser. No. 12/061,025 filed Apr. 2, 2008 by Kernahan, et al, titled DISTRIBUTED MULTIPHASE CONVERTERS. Both related applications are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61028985 | Feb 2008 | US |