Distributed power system using direct current power sources

Abstract
A distributed power system including multiple (DC) batteries each DC battery with positive and negative poles. Multiple power converters are coupled respectively to the DC batteries. Each power converter includes a first terminal, a second terminal, a third terminal and a fourth terminal. The first terminal is adapted for coupling to the positive pole. The second terminal is adapted for coupling to the negative pole. The power converter includes: (i) a control loop adapted for setting the voltage between or current through the first and second terminals, and (ii) a power conversion portion adapted to selectively either: convert power from said first and second terminals to said third and fourth terminals to discharge the battery connected thereto, or to convert power from the third and fourth terminals to the first and second terminals to charge the battery connected thereto. Each of the power converters is adapted for serial connection to at least one other power converter by connecting respectively the third and fourth terminals, thereby forming a serial string. A power controller is adapted for coupling to the serial string. The power controller includes a control part adapted to maintain current through or voltage across the serial string at a predetermined value.
Description
BACKGROUND

1. Technical Field


The field of the invention relates generally to power production from distributed DC power sources, and more particularly to management of distributed DC power sources in series installations.


2. Description of Related Art


The recent increased interest in renewable energy has led to increased research in systems for distributed generation of energy, such as photovoltaic cells (PV), fuel cells, batteries (e.g., for hybrid cars), etc. Various topologies have been proposed for connecting these power sources to the load, taking into consideration various parameters, such as voltage/current requirements, operating conditions, reliability, safety, costs, etc. For example, most of these sources provide low voltage output (normally a few volts for one cell, or a few tens of volts for serially connected cells), so that many of them need to be connected serially to achieve the required operating voltage. Conversely, a serial connection may fail to provide the required current, so that several strings of serial connections may need to be connected in parallel to provide the required current.


It is also known that power generation from each of these sources depends on manufacturing, operating, and environmental conditions. For example, various inconsistencies in manufacturing may cause two identical sources to provide different output characteristics. Similarly, two identical sources may react differently to operating and/or environmental conditions, such as load, temperature, etc. In practical installations, different source may also experience different environmental conditions, e.g., in solar power installations some panels may be exposed to full sun, while others be shaded, thereby delivering different power output. In a multiple-battery installation, some of the batteries may age differently, thereby delivering different power output. While these problems and the solutions provided by the subject invention are applicable to any distributed power system, the following discussion turns to solar energy so as to provide better understanding by way of a concrete example.


A conventional installation of solar power system 10 is illustrated in FIG. 1. Since the voltage provided by each individual solar panel 101 is low, several panels are connected in series to form a string of panels 103. For a large installation, when higher current is required, several strings 103 may be connected in parallel to form the overall system 10. The solar panels are mounted outdoors, and their leads are connected to a maximum power point tracking (MPPT) module 107 and then to an inverter 104. The MPPT 107 is typically implemented as part of the inverter 104. The harvested power from the DC sources is delivered to the inverter 104, which converts the fluctuating direct-current (DC) into alternating-current (AC) having a desired voltage and frequency, which is usually 110V or 220V at 60 Hz, or 220V at 50 Hz (It is interesting to note the even in the US many inverters produce 220V, which is then split into two 110V feeds in the electric box). The AC current from the inverter 104 may then be used for operating electric appliances or fed to the power grid. Alternatively, if the installation is not tied to the grid, the power extracted from the inverter may be directed to a conversion and charge/discharge circuit to store the excess power created as charge in batteries. In case of a battery-tied application, the inversion stage might be skipped altogether, and the DC output of the MPPT stage 107 may be fed into the charge/discharge circuit.


As noted above, each solar panel 101 supplies relatively very low voltage and current. The problem facing the solar array designer is to produce a standard AC current at 120V or 220V root-mean-square (RMS) from a combination of the low voltages of the solar panels. The delivery of high power from a low voltage requires very high currents, which cause large conduction losses on the order of the second power of the current (I2). Furthermore, a power inverter, such as the inverter 104, which is used to convert DC current to AC current, is most efficient when its input voltage is slightly higher than its output RMS voltage multiplied by the square root of 2. Hence, in many applications, the power sources, such as the solar panels 101, are combined in order to reach the correct voltage or current. The most common method connects the power sources in series in order to reach the desirable voltage and in parallel in order to reach the desirable current, as shown in FIG. 1. A large number of the panels 101 are connected into a string 103 and the strings 103 are connected in parallel to the power inverter 104. The panels 101 are connected in series in order to reach the minimal voltage required for the inverter. Multiple strings 103 are connected in parallel into an array to supply higher current, so as to enable higher power output.


While this configuration is advantageous in terms of cost and architecture simplicity, several drawbacks have been identified in the literature for such architecture. One recognized drawback is inefficiencies cause by non-optimal power draw from each individual panel, as explained below. As explained above, the output of the DC power sources is influenced by many conditions. Therefore, to maximize the power draw from each source, one needs to draw the combination of voltage and current that provides the peak power for the currently prevailing conditions. As conditions change, the combination of voltage and current draw may need to be changed as well.



FIG. 2 illustrates one serial string of DC sources, e.g., solar panels 201a-201d, connected to MPPT circuit 207 and inverter 204. The current versus voltage (IV) characteristics plotted (210a-210d) to the left of each DC source 201. For each DC source 201, the current decreases as the output voltage increases. At some voltage value the current goes to zero, and in some applications may assume a negative value, meaning that the source becomes a sink. Bypass diodes are used to prevent the source from becoming a sink. The power output of each source 201, which is equal to the product of current and voltage (P=I*V), varies depending on the voltage drawn from the source. At a certain current and voltage, close to the falling off point of the current, the power reaches its maximum. It is desirable to operate a power generating cell at this maximum power point. The purpose of the MPPT is to find this point and operate the system at this point so as to draw the maximum power from the sources.


In a typical, conventional solar panel array, different algorithms and techniques are used to optimize the integrated power output of the system 10 using the MPPT module 107. The MPPT module 107 receives the current extracted from all of the solar panels together and tracks the maximum power point for this current to provide the maximum average power such that if more current is extracted, the average voltage from the panels starts to drop, thus lowering the harvested power. The MPPT module 107 maintains a current that yields the maximum average power from the overall system 10.


However, since the sources 201a-201d are connected in series to a single MPPT 207, the MPPT must select a single point, which would be somewhat of an average of the MPP of the serially connected sources. In practice, it is very likely that the MPPT would operate at an I-V point that is optimum to only a few or none of the sources. In the example of FIG. 2, the selected point is the maximum power point for source 201b, but is off the maximum power point for sources 201a, 201c and 201d. Consequently, the arrangement is not operated at best achievable efficiency.


Turning back to the example of a solar system 10 of FIG. 1, fixing a predetermined constant output voltage from the strings 103 may cause the solar panels to supply lower output power than otherwise possible. Further, each string carries a single current that is passed through all of the solar panels along the string. If the solar panels are mismatched due to manufacturing differences, aging or if they malfunction or are placed under different shading conditions, the current, voltage and power output of each panel will be different. Forcing a single current through all of the panels of the string causes the individual panels to work at a non-optimal power point and can also cause panels which are highly mismatched to generate “hot spots” due to the high current flowing through them. Due to these and other drawbacks of conventional centralized methods, the solar panels have to be matched properly. In some cases external diodes are used to bypass the panels that are highly mismatched. In conventional multiple string configurations all strings have to be composed of exactly the same number of solar panels and the panels are selected of the same model and must be install at exactly the same spatial orientation, being exposed to the same sunlight conditions at all times. This is difficult to achieve and can be very costly.


BRIEF SUMMARY

According to embodiments of the present invention there is provided a distributed power system including multiple (DC) batteries each DC battery with positive and negative poles. Multiple power converters are coupled respectively to the DC batteries. Each power converter includes a first terminal, a second terminal, a third terminal and a fourth terminal. The first terminal is adapted for coupling to the positive pole. The second terminal is adapted for coupling to the negative pole. The power converter includes: (i) a control loop adapted for setting the voltage between or current through the first and second terminals, and (ii) a power conversion portion adapted to selectively either: convert power from said first and second terminals to said third and fourth terminals to discharge the battery connected thereto, or to convert power from the third and fourth terminals to the first and second terminals to charge the battery connected thereto. Each of the power converters is adapted for serial connection to at least one other power converter by connecting respectively the third and fourth terminals, thereby forming a serial string. A power controller is adapted for coupling to the serial string. The power controller includes a control part adapted to maintain current through or voltage across the serial string at a predetermined value. The control part may maintain voltage across the serial string at a predetermined value or the control part may maintain current through the serial string at a predetermined value. The power controller may include a bi-directional DC/AC inverter or bi-directional DC/DC converter. The power converters may function as a current source, voltage regulator or trickle charge source. The distributed power system may further include multiple photovoltaic panels; multiple DC-DC converters. Each of the DC-to-DC converters may include input terminals coupled to a respective DC photovoltaic panels and output terminals coupled in series to the other DC-to-DC converters, thereby forming a second serial string. A control loop sets the voltage and/or current at the input terminals of the DC-to-DC converter according to predetermined criteria. A power conversion portion converts the power received at the input terminals to an output power at the output terminals. The serial string and the second serial string are connectible in parallel to form parallel-connected strings. A power controller may be adapted for coupling in parallel to the parallel-connected strings, the power controller including a control part adapted to maintain current through or voltage across the parallel connected strings at a predetermined value. The power controller may be off-grid (not connected to the grid) or connected to the grid. The photovoltaic panels may provide electrical power for charging the batteries.


According to embodiments of the present invention there is provided a distributed power system including multiple (DC) batteries each DC battery with positive and negative poles. Multiple power converters are coupled respectively to the DC batteries. Each power converter includes a first terminal, a second terminal, a third terminal and a fourth terminal. The first terminal is adapted for coupling to the positive pole. The second terminal is adapted for coupling to the negative pole. The power converter includes a first control loop configured to set either current through or voltage between the first and second terminals, and a second control loop configured set either current through or voltage between the third and fourth terminals; and (iii) a power conversion portion adapted to selectively either: convert power from the first and second terminals to the third and fourth terminals to discharge the battery connected thereto, or to convert power from the third and fourth terminals to the first and second terminals to charge the battery connected thereto; wherein each of the power converters is adapted for serial connection to at least one other power converter by connecting respectively the third and fourth terminals, thereby forming a serial string. The distributed power system may further include multiple photovoltaic panels and multiple DC-DC converters. Each of the DC-to-DC converters may include input terminals coupled to a respective DC photovoltaic panels and output terminals coupled in series to the other DC-to-DC converters, thereby forming a second serial string. A control loop sets the voltage and/or current at the input terminals of the DC-to-DC converter according to predetermined criteria. A power conversion portion converts the power received at the input terminals to an output power at the output terminals. The serial string and the second serial string are connectible in parallel to form parallel-connected strings. The power controller is selectably either off-grid or connected to grid. The photovoltaic panels may provide electrical power for charging the batteries. A communications interface between the power controller and the power converters may be used for controlling charging and discharging of the batteries.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIG. 1 illustrates a conventional centralized power harvesting system using DC power sources.



FIG. 2 illustrates current versus voltage characteristic curves for one serial string of DC sources.



FIG. 3 illustrates a distributed power harvesting system, according to aspects of the invention, using DC power sources.



FIG. 3
a-3c shows a variations of distributed power systems using DC batteries according to a different embodiments of the present invention.



FIGS. 4A and 4B illustrate the operation of the system of FIG. 3 under different conditions, according to aspects of the invention.



FIG. 4C illustrates an embodiment of the invention wherein the inverter controls the input current.



FIG. 5 illustrates a distributed power harvesting system, according to other aspects of the invention, using DC power sources.



FIG. 6 illustrates an exemplary DC-to-DC converter according to aspects of the invention.



FIG. 6
a shows a slightly modified DC-DC converter based on the DC-DC converter shown in FIG. 6, according to an embodiment of the present invention.



FIG. 7 illustrates a power converter, according to aspects of the invention including control features of the aspects of the invention.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.


Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


The topology provided by the subject invention solves many of the problems associated with, and has many advantages over, the conventional art topologies. For example, the inventive topology enables serially connecting mismatched power sources, such as mismatched solar panels, panel of different models and power ratings, and even panels from different manufacturers and semiconductor materials. It allows serial connection of sources operating under different conditions, such as, e.g., solar panels exposed to different light or temperature conditions. It also enables installations of serially connected panels at different orientations or different sections of the roof or structure. This and other features and advantages will become apparent from the following detailed description. Aspects of the present invention provide a system and method for combining power from multiple DC power sources into a single power supply. According to aspects of the present invention, each DC power source is associated with a DC-DC power converter. Modules formed by coupling the DC power sources to their associated converters are coupled in series to provide a string of modules. The string of modules is then coupled to an inverter having its input voltage fixed. A maximum power point control loop in each converter harvests the maximum power from each DC power source and transfers this power as output from the power converter. For each converter, substantially all the input power is converted to the output power, such that the conversion efficiency may be 90% or higher in some situations. Further, the controlling is performed by fixing the input current or input voltage of the converter to the maximum power point and allowing output voltage of the converter to vary. For each power source, one or more sensors perform the monitoring of the input power level to the associated converter. In some aspects of the invention, a microcontroller may perform the maximum power point tracking and control in each converter by using pulse width modulation to adjust the duty cycle used for transferring power from the input to the output.


One aspect of the present invention provides a greater degree of fault tolerance, maintenance and serviceability by monitoring, logging and/or communicating the performance of each solar panel. In one aspect of the invention, the microcontroller that is used for maximum power point tracking, may also be used to perform the monitoring, logging and communication functions. These functions allow for quick and easy troubleshooting during installation, thereby significantly reducing installation time. These functions are also beneficial for quick detection of problems during maintenance work. Aspects of the present invention allow easy location, repair, or replacement of failed solar panels. When repair or replacement is not feasible, bypass features of the current invention provide increased reliability.


In one aspect, the present invention relates to arrays of solar cells where the power from the cells is combined. Each converter may be attached to a single solar cell, or a plurality of cell connected in series, in parallel, or both, e.g., parallel connection of strings of serially connected cells. In one embodiment each converter is attached to one panel of photovoltaic strings. However, while applicable in the context of solar power technology, the aspects of the present invention may be used in any distributed power network using DC power sources. For example, they may be used in batteries with numerous cells or hybrid vehicles with multiple fuel cells on board. The DC power sources may be solar cells, solar panels, electrical fuel cells, electrical batteries, and the like. Further, although the discussion below relates to combining power from an array of DC power sources into a source of AC voltage, the aspects of the present invention may also apply to combining power from DC sources into another DC voltage.



FIG. 3 illustrates a distributed power harvesting configuration 30, according to an embodiment of the present invention. Configuration 30 enables connection of multiple power sources, for example solar panels 301a-301d, to a single power supply. In one aspect of the invention, the series string of all of the solar panels may be coupled to an inverter 304. In another aspect of the invention, several serially connected strings of solar panels may be connected to a single inverter 304. The inverter 304 may be replaced by other elements, such as, e.g., a charging regulator for charging a battery bank.


In configuration 30, each solar panel 301a-301d is connected to a separate power converter circuit 305a-305d. One solar panel together with its associated power converter circuit forms a module, e.g., module 320. Each converter 305a-305d adapts optimally to the power characteristics of the connected solar panel 301a-301d and transfers the power efficiently from converter input to converter output. The converters 305a-305d can be buck converters, boost converters, buck/boost converters, flyback or forward converters, etc. The converters 305a-305d may also contain a number of component converters, for example a serial connection of a buck and a boost converter. Each converter 305a-305d includes a control loop 323i that receives a feedback signal, not from the converter's output current or voltage, but rather from the converter's input coming from the solar panel 301. An example of such a control loop is a maximum power point tracking (MPPT) loop. The MPPT loop in the converter locks the input voltage and current from each solar panel 301a-301d to its optimal power point.


Conventional DC-to-DC converters may have a wide input voltage range at their input and an output voltage that is predetermined and fixed. In these conventional DC-to-DC voltage converters, a controller within the converter monitors the current or voltage at the input, and the voltage at the output. The controller determines the appropriate pulse width modulation (PWM) duty cycle to fix the output voltage to the predetermined value by increasing the duty cycle if the output voltage drops. Accordingly, the conventional converter includes a feedback loop that closes on the output voltage and uses the output voltage to further adjust and fine tune the output voltage from the converter. As a result of changing the output voltage, the current extracted from the input is also varied.


In the converters 305a-305d, according to aspects of the present invention, a controller within the converter 405 monitors the voltage and current at the converter input and determines the PWM in such a way that maximum power is extracted from the attached panel 301a-301d. The controller of the converter 405 dynamically tracks the maximum power point at the converter input. In the aspects of the present invention, the feedback loop is closed on the input power in order to track maximum input power rather than closing the feedback loop on the output voltage as performed by conventional DC-to-DC voltage converters.


As a result of having a separate MPPT circuit in each converter 305a-305d, and consequently for each solar panel 301a-301d, each string 303 in the embodiment shown in FIG. 3 may have a different number or different brand of panels 301a-301d connected in series. The circuit of FIG. 3 continuously performs MPPT on the output of each solar panel 301a-301d to react to changes in temperature, solar radiance, shading or other performance factors that impact that particular solar panel 301a-301d. As a result, the MPPT circuit within the converters 305a-305d harvests the maximum possible power from each panel 301a-301d and transfers this power as output regardless of the parameters impacting the other solar panels.


As such, the aspects of the invention shown in FIG. 3 continuously track and maintain the input current and the input voltage to each converter at the maximum power point of the DC power source providing the input current and the input voltage to the converter. The maximum power of the DC power source that is input to the converter is also output from the converter. The converter output power may be at a current and voltage different from the converter input current and voltage. The output current and voltage from the converter are responsive to requirements of the series connected portion of the circuit.


In one aspect of the invention, the outputs of converters 305a-305d are series connected into a single DC output that forms the input to the load or power supplier, in this example, inverter 304. The inverter 304 converts the series connected DC output of the converters into an AC power supply. The load, in this case inverter 304, regulates the voltage at the load's input. That is, in this example, an independent control loop 321 holds the input voltage at a set value, say 400 volts. Consequently, the inverter's input current is dictated by the available power, and this is the current that flows through all serially connected DC sources. On the other hand, while the output of the DC-DC converters must be at the inverter's current input, the current and voltage input to the converter is independently controlled using the MPPT.


In the conventional art, the input voltage to the load was allowed to vary according to the available power. For example, when a lot of sunshine is available in a solar installation, the voltage input to the inverter can vary even up to 1000 volts. Consequently, as sunshine illumination varies, the voltage varies with it, and the electrical components in the inverter (or other power supplier or load) are exposed to varying voltage. This tends to degrade the performance of the components and ultimately causes them to fail. On the other hand, by fixing the voltage or current to the input of the load or power supplier, here the inverter, the electrical components are always exposed to the same voltage or current and therefore would have extended service life. For example, the components of the load (e.g., capacitors, switches and coil of the inverter) may be selected so that at the fixed input voltage or current they operate at, say, 60% of their rating. This would improve the reliability and prolong the service life of the component, which is critical for avoiding loss of service in applications such as solar power systems.



FIGS. 4A and 4B illustrate the operation of the system of FIG. 3 under different conditions, according to aspects of the invention. The exemplary configuration 40 is similar to configuration 30 of FIG. 3. In the example shown, ten DC power sources 401/1 through 401/10 are connected to ten power converters 405/1 through 405/10, respectively. The modules formed by the DC power sources and their corresponding converters are coupled together in series to form a string 403. In one aspect of the invention, the series-connected converters 405 are coupled to a DC-to-AC inverter 404.


The DC power sources may be solar panels and the example is discussed with respect to solar panels as one illustrative case. Each solar panel 401 may have a different power output due to manufacturing tolerances, shading, or other factors. For the purpose of the present example, an ideal case is illustrated in FIG. 4A, where efficiency of the DC-to-DC conversion is assumed to be 100% and the panels 501 are assumed to be identical. In some aspects of the invention, efficiencies of the converters may be quite high and range at about 95%-99%. So, the assumption of 100% efficiency is not unreasonable for illustration purposes. Moreover, according to embodiments of the subject invention, each of the DC-DC converters are constructed as a power converter, i.e., it transfers to its output the entire power it receives in its input with very low losses.


Power output of each solar panel 401 is maintained at the maximum power point for the panel by a control loop within the corresponding power converter 405. In the example shown in FIG. 4A, all of the panels are exposed to full sun illumination and each solar panel 401 provides 200 W of power. Consequently, the MPPT loop will draw current and voltage level that will transfer the entire 200 W from the panel to its associated converter. That is, the current and voltage dictated by the MPPT form the input current Iin and input voltage Vin to the converter. The output voltage is dictated by the constant voltage set at the inverter 404, as will be explained below. The output current Iout would then be the total power, i.e., 200 W, divided by the output voltage Vout.


As noted above, according to a feature of the invention, the input voltage to inverter 404 is controlled by the inverter (in this example, kept constant), by way of control loop 421. For the purpose of this example, assume the input voltage is kept as 400V (ideal value for inverting to 220VAC). Since we assume that there are ten serially connected power converters, each providing 200 W, we can see that the input current to the inverter 404 is 2000 W/400V=5 A. Thus, the current flowing through each of the converters 401/1-401/10 must be 5 A. This means that in this idealized example each of the converters provides an output voltage of 200 W/5 A=40V. Now, assume that the MPPT for each panel (assuming perfect matching panels) dictates VMPP=32V. This means that the input voltage to the inverter would be 32V, and the input current would be 200 W/32V=6.25 A. We now turn to another example, wherein the system is still maintained at an ideal mode (i.e., perfectly matching DC sources and entire power is transferred to the inverter), but the environmental conditions are not ideal. For example, one DC source is overheating, is malfunctioning, or, as in the example of FIG. 4B, the ninth solar panel 401/9 is shaded and consequently produces only 40 W of power. Since we keep all other conditions as in the example of FIG. 4A, the other nine solar panels 401 are unshaded and still produce 200 W of power. The power converter 405/9 includes MPPT to maintain the solar panel 501/9 operating at the maximum power point, which is now lowered due to the shading. The total power available from the string is now 9×200 W+40 W=1840 W. Since the input to the inverter is still maintained at 400V, the input current to the inverter will now be 1840 W/40V=4.6 A. This means that the output of all of the power converters 405/1-405/10 in the string must be at 4.6 A. Therefore, for the nine unshaded panels, the converters will output 200 W/4.6 A=43.5V. On the other hand, the converter 405/9 attached to the shaded panel 401/9 will output 40 W/4.6 A=8.7V. Checking the math, the input to the inverter can be obtained by adding nine converters providing 43.5V and one converter providing 8.7V, i.e., (9×43.5V)+8.7V=400V.


The output of the nine non-shaded panels would still be controlled by the MPPT as in FIG. 4A, thereby standing at 32V and 6.25 A. On the other hand, since the nines panel 401/9 is shaded, lets assume its MPPT dropped to 28V. Consequently, the output current of the ninth panel is 40 W/28V=1.43 A. As can be seen by this example, all of the panels are operated at their maximum power point, regardless of operating conditions. As shown by the example of FIG. 4B, even if the output of one DC source drops dramatically, the system still maintains relatively high power output by fixing the voltage input to the inverter, and controlling the input to the converters independently so as to draw power from the DC source at the MPP.


As can be appreciated, the benefit of the topology illustrated in FIGS. 4A and 4B are numerous. For example, the output characteristics of the serially connected DC sources, such as solar panels, need not match. Consequently, the serial string may utilize panels from different manufacturers or panels installed on different parts of the roofs (i.e., at different spatial orientation). Moreover, if several strings are connected in parallel, it is not necessary that the strings match; rather each string may have different panels or different number of panels. This topology also enhances reliability by alleviating the hot spot problem. That is, as shown in FIG. 4A the output of the shaded panel 401/9 is 1.43 A, while the current at the output of the unshaded panels is 6.25 A. This discrepancy in current when the components are series connected causes a large current being forced through the shaded panel that may cause overheating and malfunction at this component. However, by the inventive topology wherein the input voltage is set independently, and the power draw from each panel to its converter is set independently according to the panels MPP at each point in time, the current at each panel is independent on the current draw from the serially connected converters.


It is easily realized that since the power is optimized independently for each panel, panels could be installed in different facets and directions in BIPV installations. Thus, the problem of low power utilization in building-integrated installations is solved, and more installations may now be profitable.


The described system could also easily solve the problem of energy harvesting in low light conditions. Even small amounts of light are enough to make the converters 405 operational, and they then start transferring power to the inverter. If small amounts of power are available, there will be a low current flow—but the voltage will be high enough for the inverter to function, and the power will indeed be harvested.


According to aspects of the invention, the inverter 404 includes a control loop 421 to maintain an optimal voltage at the input of inverter 404. In the example of FIG. 4B, the input voltage to inverter 404 is maintained at 400V by the control loop 421. The converters 405 are transferring substantially all of the available power from the solar panels to the input of the inverter 404. As a result, the input current to the inverter 404 is dependent only on the power provided by the solar panels and the regulated set, i.e., constant, voltage at the inverter input.


The conventional inverter 104, shown in FIG. 1 and FIG. 3, is required to have a very wide input voltage to accommodate for changing conditions, for example a change in luminance, temperature and aging of the solar array. This is in contrast to the inverter 404 that is designed according to aspects of the present invention. The inverter 404 does not require a wide input voltage and is therefore simpler to design and more reliable. This higher reliability is achieved, among other factors, by the fact that there are no voltage spikes at the input to the inverter and thus the components of the inverter experience lower electrical stress and may last longer.


When the inverter 404 is a part of the circuit, the power from the panels is transferred to a load that may be connected to the inverter. To enable the inverter 404 to work at its optimal input voltage, any excess power produced by the solar array, and not used by the load, is dissipated. Excess power may be handled by selling the excess power to the utility company if such an option is available. For off-grid solar arrays, the excess power may be stored in batteries. Yet another option is to connect a number of adjacent houses together to form a micro-grid and to allow load-balancing of power between the houses. If the excess power available from the solar array is not stored or sold, then another mechanism may be provided to dissipate excess power.


The features and benefits explained with respect to FIGS. 4A and 4B stem, at least partially, from having the inverter dictates the voltage provided at its input. Conversely, a design can be implemented wherein the inverter dictates the current at its input. Such an arrangement is illustrated in FIG. 4C. FIG. 4C illustrates an embodiment of the invention wherein the inverter controls the input current. Power output of each solar panel 401 is maintained at the maximum power point for the panel by a control loop within the corresponding power converter 405. In the example shown in FIG. 4C, all of the panels are exposed to full sun illumination and each solar panel 401 provides 200 W of power. Consequently, the MPPT loop will draw current and voltage level that will transfer the entire 200 W from the panel to its associated converter. That is, the current and voltage dictated by the MPPT form the input current Iin and input voltage Vin to the converter. The output voltage is dictated by the constant current set at the inverter 404, as will be explained below. The output voltage Vout would then be the total power, i.e., 200 W, divided by the output current Iout.


As noted above, according to a feature of the invention, the input current to inverter 404 is dictated by the inverter by way of control loop 421. For the purpose of this example, assume the input current is kept as 5 A. Since we assume that there are ten serially connected power converters, each providing 200 W, we can see that the input voltage to the inverter 404 is 2000 W/5 A=400V. Thus, the current flowing through each of the converters 401/1-401/10 must be 5 A. This means that in this idealized example each of the converters provides an output voltage of 200 W/5 A=40V. Now, assume that the MPPT for each panel (assuming perfect matching panels) dictates VMPP=32V. This means that the input voltage to the inverter would be 32V, and the input current would be 200 W/32V=6.25 A.


Consequently, similar advantages have been achieved by having the inverter control the current, rather than the voltage. However, unlike the conventional art, changes in the output of the panels will not cause in changes in the current flowing to the inverter, as that is dictated by the inverter itself. Therefore, if the inverter is designed to keep the current or the voltage constant, then regardless of the operation of the panels, the current or voltage to the inverter will remain constant.



FIG. 5 illustrates a distributed power harvesting system, according to other aspects of the invention, using DC power sources. FIG. 5 illustrates multiple strings 503 coupled together in parallel. Each of the strings is a series connection of multiple modules and each of the modules includes a DC power source 501 that is coupled to a converter 505. The DC power source may be a solar panel. The output of the parallel connection of the strings 503 is connected, again in parallel, to a shunt regulator 506 and a load controller 504. The load controller 504 may be an inverter as with the embodiments of FIGS. 4A and 4B. Shunt regulators automatically maintain a constant voltage across its terminals. The shunt regulator 506 is configured to dissipate excess power to maintain the input voltage at the input to the inverter 504 at a regulated level and prevent the inverter input voltage from increasing. The current which flows through shunt regulator 506 complements the current drawn by inverter 504 in order to ensure that the input voltage of the inverter is maintained at a constant level, for example at 400V.


By fixing the inverter input voltage, the inverter input current is varied according to the available power draw. This current is divided between the strings 503 of the series connected converters. When each converter includes a controller loop maintaining the converter input voltage at the maximum power point of the associated DC power source, the output power of the converter is determined. The converter power and the converter output current together determine the converter output voltage. The converter output voltage is used by a power conversion circuit in the converter for stepping up or stepping down the converter input voltage to obtain the converter output voltage from the input voltage as determined by the MPPT.



FIG. 6 illustrates an exemplary DC-to-DC converter 605 according to aspects of the invention. DC-to-DC converters are conventionally used to either step down or step up a varied or constant DC voltage input to a higher or a lower constant voltage output, depending on the requirements of the circuit. However, in the embodiment of FIG. 6 the DC-DC converter is used as a power converter, i.e., transferring the input power to output power, the input voltage varying according to the MPPT, while the output current being dictated by the constant input voltage to the inverter. That is, the input voltage and current may vary at any time and the output voltage and current may vary at any time, depending on the operating condition of the DC power sources.


The converter 605 is connected to a corresponding DC power source 601 at input terminals 614 and 616. The converted power of the DC power source 601 is output to the circuit through output terminals 610, 612. Between the input terminals 614, 616 and the output terminals 610, 612, the remainder of the converter circuit is located that includes input and output capacitors 620, 640, back flow prevention diodes 622, 642 and a power conversion circuit including a controller 606 and an inductor 608.


The inputs 616 and 614 are separated by a capacitor 620 which acts as an open to a DC voltage. The outputs 610 and 612 are also separated by a capacitor 640 that also acts an open to DC output voltage. These capacitors are DC-blocking or AC-coupling capacitors that short when faced with alternating current of a frequency for which they are selected. Capacitor 640 coupled between the outputs 610, 612 and also operates as a part of the power conversion circuit discussed below.


Diode 642 is coupled between the outputs 610 and 612 with a polarity such that current may not backflow into the converter 605 from the positive lead of the output 612. Diode 622 is coupled between the positive output lead 612 through inductor 608 which acts a short for DC current and the negative input lead 614 with such polarity to prevent a current from the output 612 to backflow into the solar panel 601.


The DC power sources 601 may be solar panels. A potential difference exists between the wires 614 and 616 due to the electron-hole pairs produced in the solar cells of panel 601. The converter 605 maintains maximum power output by extracting current from the solar panel 601 at its peak power point by continuously monitoring the current and voltage provided by the panel and using a maximum power point tracking algorithm. The controller 606 includes an MPPT circuit or algorithm for performing the peak power tracking. Peak power tracking and pulse width modulation, PWM, are performed together to achieve the desired input voltage and current. The MPPT in the controller 606 may be any conventional MPPT, such as, e.g., perturb and observe (P&O), incremental conductance, etc. However, notably the MPPT is performed on the panel directly, i.e., at the input to the converter, rather than at the output of the converter. The generated power is then transferred to the output terminals 610 and 612. The outputs of multiple converters 605 may be connected in series, such that the positive lead 612 of one converter 605 is connected to the negative lead 610 of the next converter 605.


In FIG. 6, the converter 605 is shown as a buck plus boost converter. The term “buck plus boost” as used herein is a buck converter directly followed by a boost converter as shown in FIG. 6, which may also appear in the literature as “cascaded buck-boost converter”. If the voltage is to be lowered, the boost portion is substantially shorted. If the voltage is to be raised, the buck portion is substantially shorted. The term “buck plus boost” differs from buck/boost topology which is a classic topology that may be used when voltage is to be raised or lowered. The efficiency of “buck/boost” topology is inherently lower then a buck or a boost. Additionally, for given requirements, a buck-boost converter will need bigger passive components then a buck plus boost converter in order to function. Therefore, the buck plus boost topology of FIG. 6 has a higher efficiency than the buck/boost topology. However, the circuit of FIG. 6 continuously decides whether it is bucking or boosting. In some situations when the desired output voltage is similar to the input voltage, then both the buck and boost portions may be operational.


The controller 606 may include a pulse width modulator, PWM, or a digital pulse width modulator, DPWM, to be used with the buck and boost converter circuits. The controller 606 controls both the buck converter and the boost converter and determines whether a buck or a boost operation is to be performed. In some circumstances both the buck and boost portions may operate together. That is, as explained with respect to the embodiments of FIGS. 4A and 4B, the input voltage and current are selected independently of the selection of output current and voltage. Moreover, the selection of either input or output values may change at any given moment depending on the operation of the DC power sources. Therefore, in the embodiment of FIG. 6 the converter is constructed so that at any given time a selected value of input voltage and current may be up converted or down converted depending on the output requirement.


In one implementation, an integrated circuit (IC) 604 may be used that incorporates some of the functionality of converter 605. IC 604 is optionally a single ASIC able to withstand harsh temperature extremes present in outdoor solar installations. ASIC 604 may be designed for a high mean time between failures (MTBF) of more than 25 years. However, a discrete solution using multiple integrated circuits may also be used in a similar manner. In the exemplary embodiment shown in FIG. 6, the buck plus boost portion of the converter 605 is implemented as the IC 604. Practical considerations may lead to other segmentations of the system. For example, in one aspect of the invention, the IC 604 may include two ICs, one analog IC which handles the high currents and voltages in the system, and one simple low-voltage digital IC which includes the control logic. The analog IC may be implemented using power FETs which may alternatively be implemented in discrete components, FET drivers, A/Ds, and the like. The digital IC may form the controller 606.


In the exemplary circuit shown, the buck converter includes the input capacitor 620, transistors 628 and 630 a diode 622 positioned in parallel to transistor 628, and an inductor 608. The transistors 628, 630 each have a parasitic body diode 624, 626. In the exemplary circuit shown, the boost converter includes the inductor 608, which is shared with the buck converter, transistors 648 and 650 a diode 642 positioned in parallel to transistor 650, and the output capacitor 640. The transistors 648, 650 each have a parasitic body diode 644, 646.


As shown in FIG. 1, adding electronic elements in the series arrangement may reduce the reliability of the system, because if one electrical component breaks it may affect the entire system. Specifically, if a failure in one of the serially connected elements causes an open circuit in the failed element, current ceases to flow through the entire series, thereby causing the entire system to stop function. Aspects of the present invention provide a converter circuit where electrical elements of the circuit have one or more bypass routes associated with them that carry the current in case of the electrical element fails. For example, each switching transistor of either the buck or the boost portion of the converter has its own bypass. Upon failure of any of the switching transistors, that element of the circuit is bypassed. Also, upon inductor failure, the current bypasses the failed inductor through the parasitic diodes of the transistor used in the boost converter.



FIG. 7 illustrates a power converter, according to aspects of the invention. FIG. 7 highlights, among others, a monitoring and control functionality of a DC-to-DC converter 705, according to embodiments of the present invention. A DC voltage source 701 is also shown in the figure. Portions of a simplified buck and boost converter circuit are shown for the converter 705. The portions shown include the switching transistors 728, 730, 748 and 750 and the common inductor 708. Each of the switching transistors is controlled by a power conversion controller 706.


The power conversion controller 706 includes the pulse-width modulation (PWM) circuit 733, and a digital control machine 730 including a protection portion 737. The power conversion controller 706 is coupled to microcontroller 790, which includes an MPPT module 719, and may also optionally include a communication module 709, a monitoring and logging module 711, and a protection module 735.


A current sensor 703 may be coupled between the DC power source 701 and the converter 705, and output of the current sensor 703 may be provided to the digital control machine 730 through an associated analog to digital converter 723. A voltage sensor 704 may be coupled between the DC power source 701 and the converter 705 and output of the voltage sensor 704 may be provided to the digital control machine 730 through an associated analog to digital converter 724. The current sensor 703 and the voltage sensor 704 are used to monitor current and voltage output from the DC power source, e.g., the solar panel 701. The measured current and voltage are provided to the digital control machine 730 and are used to maintain the converter input power at the maximum power point.


The PWM circuit 733 controls the switching transistors of the buck and boost portions of the converter circuit. The PWM circuit may be a digital pulse-width modulation (DPWM) circuit. Outputs of the converter 705 taken at the inductor 708 and at the switching transistor 750 are provided to the digital control machine 730 through analog to digital converters 741, 742, so as to control the PWM circuit 733.


A random access memory (RAM) module 715 and a non-volatile random access memory (NVRAM) module 713 may be located outside the microcontroller 790 but coupled to the microcontroller 790. A temperature sensor 779 and one or more external sensor interfaces 707 may be coupled to the microcontroller 790. The temperature sensor 779 may be used to measure the temperature of the DC power source 701. A physical interface 717 may be coupled to the microcontroller 790 and used to convert data from the microcontroller into a standard communication protocol and physical layer. An internal power supply unit 739 may be included in the converter 705.


In various aspects of the invention, the current sensor 703 may be implemented by various techniques used to measure current. In one aspect of the invention, the current measurement module 703 is implemented using a very low value resistor. The voltage across the resistor will be proportional to the current flowing through the resistor. In another aspect of the invention, the current measurement module 703 is implemented using current probes which use the Hall Effect to measure the current through a conductor without adding a series resistor. After translating the current to voltage, the data may be passed through a low pass filter and then digitized. The analog to digital converter associated with the current sensor 703 is shown as the A/D converter 723 in FIG. 7. Aliasing effect in the resulting digital data may be avoided by selecting an appropriate resolution and sample rate for the analog to digital converter. If the current sensing technique does not require a series connection, then the current sensor 703 may be connected to the DC power source 701 in parallel.


In one aspect of the invention, the voltage sensor 704 uses simple parallel voltage measurement techniques in order to measure the voltage output of the solar panel. The analog voltage is passed through a low pass filter in order to minimize aliasing. The data is then digitized using an analog to digital converter. The analog to digital converter associated with the voltage sensor 704 are shown as the A/D converter 724 in FIG. 7. The A/D converter 724 has sufficient resolution to generate an adequately sampled digital signal from the analog voltage measured at the DC power source 701 that may be a solar panel.


The current and voltage data collected for tracking the maximum power point at the converter input may be used for monitoring purposes also. An analog to digital converter with sufficient resolution may correctly evaluate the panel voltage and current. However, to evaluate the state of the panel, even low sample rates may be sufficient. A low-pass filter makes it possible for low sample rates to be sufficient for evaluating the state of the panel. The current and voltage date may be provided to the monitoring and logging module 711 for analysis.


The temperature sensor 779 enables the system to use temperature data in the analysis process. The temperature is indicative of some types of failures and problems. Furthermore, in the case that the power source is a solar panel, the panel temperature is a factor in power output production.


The one or more optional external sensor interfaces 707 enable connecting various external sensors to the converter 705. External sensors are optionally used to enhance analysis of the state of the solar panel 701, or a string or an array formed by connecting the solar panels 701. Examples of external sensors include ambient temperature sensors, solar radiance sensors, and sensors from neighboring panels. External sensors may be integrated into the converter 705 instead of being attached externally.


In one aspect of the invention, the information acquired from the current and voltage sensors 703, 704 and the optional temperature and external sensors 705, 707 may be transmitted to a central analysis station for monitoring, control, and analysis using the communications interface 709. The central analysis station is not shown in the figure. The communication interface 709 connects a microcontroller 790 to a communication bus. The communication bus can be implemented in several ways. In one aspect of the invention, the communication bus is implemented using an off-the-shelf communication bus such as Ethernet or RS422. Other methods such as wireless communications or power line communications, which could be implemented on the power line connecting the panels, may also be used. If bidirectional communication is used, the central analysis station may request the data collected by the microcontroller 790. Alternatively or in addition, the information acquired from sensors 703, 704, 705, 707 is logged locally using the monitoring and logging module 711 in local memory such as the RAM 715 or the NVRAM 713.


Analysis of the information from sensors 703, 704, 705, 707 enables detection and location of many types of failures associated with power loss in solar arrays. Smart analysis can also be used to suggest corrective measures such as cleaning or replacing a specific portion of the solar array. Analysis of sensor information can also detect power losses caused by environmental conditions or installation mistakes and prevent costly and difficult solar array testing.


Consequently, in one aspect of the invention, the microcontroller 790 simultaneously maintains the maximum power point of input power to the converter 705 from the attached DC power source or solar panel 701 based on the MPPT algorithm in the MPPT module 719 and manages the process of gathering the information from sensors 703, 704, 705, 707. The collected information may be stored in the local memory 713, 715 and transmitted to an external central analysis station. In one aspect of the invention, the microcontroller 790 uses previously defined parameters stored in the NVRAM 713 in order to operate. The information stored in the NVRAM 713 may include information about the converter 705 such as serial number, the type of communication bus used, the status update rate and the ID of the central analysis station. This information may be added to the parameters collected by the sensors before transmission.


The converters 705 may be installed during the installation of the solar array or retrofitted to existing installations. In both cases, the converters 705 may be connected to a panel junction connection box or to cables connecting the panels 701. Each converter 705 may be provided with the connectors and cabling to enable easy installation and connection to solar panels 701 and panel cables.


In one aspect of the invention, the physical interface 717 is used to convert to a standard communication protocol and physical layer so that during installation and maintenance, the converter 705 may be connected to one of various data terminals, such as a computer or PDA. Analysis may then be implemented as software which will be run on a standard computer, an embedded platform or a proprietary device.


The installation process of the converters 705 includes connecting each converter 705 to a solar panel 701. One or more of the sensors 703, 704, 705, 707 may be used to ensure that the solar panel 701 and the converter 705 are properly coupled together. During installation, parameters such as serial number, physical location and the array connection topology may be stored in the NVRAM 713. These parameters may be used by analysis software to detect future problems in solar panels 701 and arrays.


When the DC power sources 701 are solar panels, one of the problems facing installers of photovoltaic solar panel arrays is safety. The solar panels 701 are connected in series during the day when there is sunlight. Therefore, at the final stages of installation, when several solar panels 701 are connected in series, the voltage across a string of panels may reach dangerous levels. Voltages as high as 600V are common in domestic installations. Thus, the installer faces a danger of electrocution. The converters 705 that are connected to the panels 701 may use built-in functionality to prevent such a danger. For example, the converters 705 may include circuitry or hardware of software safety module that limits the output voltage to a safe level until a predetermined minimum load is detected. Only after detecting this predetermined load, the microcontroller 790 ramps up the output voltage from the converter 705.


Another method of providing a safety mechanism is to use communications between the converters 705 and the associated inverter for the string or array of panels. This communication, that may be for example a power line communication, may provide a handshake before any significant or potentially dangerous power level is made available. Thus, the converters 705 would wait for an analog or digital release signal from the inverter in the associated array before transferring power to inverter.


The above methodology for monitoring, control and analysis of the DC power sources 701 may be implemented on solar panels or on strings or arrays of solar panels or for other power sources such as batteries and fuel cells.


Use of Battery as DC Power Source/sink


A typical rechargeable battery may be made with serially connected secondary cells and in some cases, several parallel strings of serially connected cells. Serially connected secondary cells are used to build a battery voltage high enough to fit a specific application voltage. A typical generic charging application applied to a rechargeable battery, may include a bulk power source which provides raw DC power to the rechargeable battery and a regulator which regulates current and/or voltage applied to the rechargeable battery. For less-expensive chargers, the regulator is usually a power transistor or other linear-pass element that dissipates power as heat. The regulator may also be a buck switching supply that includes a standard freewheeling diode for average efficiency or a synchronous rectifier for highest efficiency. The typical generic charging application may further include a current-control loop which limits the maximum current delivered to the battery, and a voltage loop which maintains a constant voltage on the battery. (Note that Li+ cells typically require a high level of precision in the applied charging voltage.) Also the current-voltage (I-V) characteristic may be fully programmable, or may be programmable in current only, with a voltage limit (or vice versa). Cell temperature of the battery may be measured, and charge termination can be based either on the level or the slope of this measurement. Charging time may be measured, usually as a calculation in an intelligence block such as microprocessor with memory for example. The intelligence block provides intelligence for the system and typically implements a state machine. The intelligence block using the state machine knows how and when to terminate a charge. Discharge is done, usually, directly from a cell array, via current sensing (in order to keep track of actual battery charge).


A serial connection of battery cells may pose a challenge in managing the charge and discharge of battery cells. All cells typically must be matched in terms of electrical characteristics and initial charge levels. Cells also need to be matched thermally otherwise the same electrical conditions can have different (and catastrophic) results for different cells. Usually several temperature sensors are used to meet the needed safety requirements but the typical outcome is that the entire battery charge performance is limited by the weakest cell. Adding several parallel strings of cells may be an additional challenge, since impedance of all cells are low, any small impedance difference may result in a large variance in current between strings. The large variance in current between strings may be difficult to manage without some separate circuit hardware per string.


Reference is now made to FIG. 3a which show system 30a according to an embodiment of the present invention. System 30a includes converters 305a-305d with terminals connected in series to form a string 3003, the same as shown in configuration 30 (FIG. 3). The other terminals of converters 305a-305d are connected to re-chargeable cells 6001a-6001d respectively to form a module 320a. Each module 320a includes a control loop 323i that receives a feedback signal, from the connection between a converter 305 and a cell 6001. Loop 323i typically determines the voltage across the connection between converter 305 and cell 6001 and/or the current between converter 305 and cell 6001. String 3003 is connected to a terminal of power controller 3004a. Several strings 3003 may be further connected to the terminal of power controller 3004a by connecting strings 3003 in parallel. The other terminal 330 of power controller 3004 may be connected to a power supply or a load. The power supply may be an AC supply such as a grid voltage or a DC supply. The load may be an AC load or a DC load. System 30a typically operates in two modes. One mode is the discharge of cells 6001 to supply the load or the power supply connected to power controller 3004a. The other mode is to charge cells 6001 via power controller 3004a when controller 3004a is connected to the power supply. During charging of cells 6001, controller 3004a typically operates as a parallel charger. Controller 3004a acts as a voltage source that supplies any amount of power up to the total power available by the power source. The voltage source can be fixed to almost any voltage and can be optimized depending on the amount of modules 320a. Power controller 3004a may be DC to AC inverter or a DC to DC converter the same as a converter 305 for example. According to a feature of the present invention an independent control loop 321a of controller 3004a typically holds the voltage of string 3003 at a set value.


Reference is now made to FIG. 3b which shows system 30b according to an embodiment of the present invention. System 30a includes converters 305a-305d with terminals connected in series to form a string 3003, the same as show in configuration 30a (shown in FIG. 3a). The other terminals of converters 305a-305d are connected to re-chargeable cells 6001a-6001d respectively to form a module 320a. Each module 320a includes two control loops 323i and 323o. Converter 305 may independently choose which loop 323i or 323o to use for operation of converter 305. Converter 305 may also operate control loops 323i and 323o simultaneously, such that loop 323i determines the voltage and current of battery 6001 and hence the power (P) of battery 6001. Whilst at the same time, loop 323o determines the voltage and current of converter 305 and therefore power in string 3003. The voltages and currents on either side of converter 305 change respectively in order to preserve maximum power through converter 305. Converter 3004a typically may be another DC-DC converter 305 without loops 323i and 323o or may be a DC-AC inverter. Loop 323i provides a feedback signal to converter 305, from the connection between converter 305 and cell 6001. Loop 323i typically determines the voltage across the connection between converter 305 and cell 6001 and/or the direction of current (i.e. charging or discharging) between converter 305 and cell 6001. Loop 323o provides a feedback signal to converter 305 from string 3003. Loop 323o typically determines the voltage contribution of converter 305 to string 3003 and/or the direction of current to converter 305.


String 3003 is connected to converter 3004a. Several strings 3003 may be further connected to converter 3004a by connecting strings 3003 in parallel. The other side 330 of converter 3004 may be connected to a power supply or a load. The power supply may be an AC supply such as a grid voltage or a DC supply. The load may be an AC load or a DC load. System 30b typically operates in two modes. One mode is the discharge of cells 6001 to supply the load or the power supply connected to converter 3004a. The other mode is to charge cells 6001 via converter 3004a connected to the power supply. During charging of cells 6001, converter 3004a typically operates as a simplified parallel charger. Converter 3004a acts as a voltage source that supplies any amount of power up to the total power available by the power source. The voltage source can be fixed to almost any voltage and can be optimized depending on the number of modules 320a.


Reference is now made to FIG. 3c which show system 30c according to an embodiment of the present invention. System 30c includes converters 305a-305d with terminals connected in series to form a string 3003, the same as show in configuration 30a (shown in FIG. 3a). The other terminals of converters 305a-305d are connected to re-chargeable cells 6001a-6001d respectively to form a module 320a. Each module 320a includes battery 6001, converter 305, and control loop 323i. Serial string of modules 320a is connected in parallel with a second serial string 303 of modules 320 including photovoltaic panel 301, and converter 305 each with control loop 323i. The two serial strings are connected to power converter 3004a which may be a grid connected DC-AC inverter or DC-DC converter on connection 330 for instance. Power converter 3004a is shown with a control loop 321a which sets the voltage or current in the parallel-connected serial strings at a previously determined value generally dependent on the direction of current flow, i.e. charging or discharging. System 30c may be used for grid-connected or off grid applications. In particular, photovoltaic module string 303 may be used to charge batteries of battery string 3003. The energy stored in battery string 3003 may be sold to the grid at a later time for instance when the electricity price tariffs are higher.


During charging a converter 305 acts as an optimized charger for a battery 6001. Charging a battery 6001 is preferably performed by controlling the current (I)/voltage (V) characteristics of a charge profile for a converter 305, to feed into a battery 6001 the most favorable charge power needed at any given time. Converter 305 may also act as a current source, perform voltage regulation or trickle charge depending on need. One side of each converter 305 may draw a different power from controller 3004a, depending on power needed by a battery 6001 connected to the other side of converter 305. By sharing the same battery string 3003 current, the voltage of each converter 305 in battery string 3003 will typically be different for each converter 305. The total voltage provided by string 3003 will typically be the voltage set by controller 3004a. If a battery is fully charged, converter 305 will enter a bypass mode in which it is not taking power from controller 3004a. Controller 3004a may also turn ON or OFF any number of converters 305 in case controller 3004a does not have enough power to charge all batteries 6001. In an optimal way, controller 3004a can shut OFF some of converters 305 leaving only some of batteries 6001 to be charged. Once batteries 6001 are fully charged converters 305 will shut OFF and other batteries 6001 can be charged. By charging some batteries 6001 and not other batteries 6001 means batteries 6001 are always charged in the most efficient way independent of the amount of power available for charging. Controller 3004a communicates with converters 305 via power line communication so additional wires are not needed for charge control of batteries 6001.


Discharge of batteries 6001 is very similar to harvesting power from different rated photovoltaic modules (PV) modules 301 and/or PV strings 303. Controller 3004a regulates the string 3003 voltage to a fixed voltage. Each converter 305 will discharge the power in battery 6001. Controller 3004a may increase or decrease the total amount of power drawn via communication with converters 305 so that the total power supplied is equal to the load needed. Each converter 305 will supply the energy available from its battery 6001. By sharing the same string 3003 current, the voltage of each converter 305 on the side connected to controller 3004a will be different for each converter 305. The total voltage across string 3004a is typically set by controller 3004a.


Reference is now made to FIG. 6a which shows a slightly modified DC-DC converter 305 based on the DC-DC converter 605 shown in FIG. 6, according to an embodiment of the present invention. Converter 305 additionally includes high frequency transducer 62 and low frequency transducer 63 placed in negative power line 614. Transducers 62 and 63 typically include analogue to digital converters and means for power line communication or wireless communication. Transducer 62 (operatively attached to controller 606) typically senses current in the higher frequency portion of converter 305 where switches 628, 626, 648, and 646 are typically switching at a high frequency. The sensed current of transducer 62 is typically conveyed by transducer to controller 606 by wireless communication or power line communication. Transducer 63 (operatively attached to controller 606) typically includes monitoring of current, temperature of battery 6001. The sensed current, temperature of battery 6001 are also conveyed to controller 606 using wireless communication or power line communication. Controller 606 typically includes a microprocessor with memory. Converter 305 connects to battery 6001 with positive node 616 and negative node 614. The other end of converter 305 has lines 614 and 612. Multiple lines 614 and 612 of multiple converters 305 are typically joined to together in series, by connecting a line 614 of one converter with a line 612 of another converter 305 to form a battery string 3003. A typical bypass route between power lines 612 and 610 of a converter 305 may be to have switches 650 and 644 ON and switches 630 and 628 OFF. Converter 305 is a Buck-Boost topology power converter that has the ability to control its transferred I-V curve. The topology of the converter 305 is basically symmetrical thus enabling converter 305 to convert power in either direction.


The definite articles “a”, “an” is used herein, such as “a power converter”, “a control loop” have the meaning of “one or more” that is “one or more power converters” or “one or more control loops”.


Although selected embodiments of the present invention have been shown and described, it is to be understood the present invention is not limited to the described embodiments. Instead, it is to be appreciated that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.

Claims
  • 1. A distributed power system comprising: a plurality of DC power sources, each DC power source with positive and negative poles;a plurality of power converters coupled respectively to the DC power sources, each power converter including a first terminal, a second terminal, a third terminal and a fourth terminal, wherein said first terminal is adapted for coupling to said positive pole and said second terminal is adapted for coupling to said negative pole;wherein each said power converter includes: (i) a control loop adapted for setting the voltage between or current through said first and second terminals, and(ii) a power conversion portion adapted to perform at least one of: converting power from said first and second terminals to said third and fourth terminals to discharge said power source connected thereto, or converting power from said third and fourth terminals to said first and second terminals to charge said power source connected thereto;wherein each of said power converters is adapted for serial connection to at least one other power converter by connecting respectively said third and fourth terminals, thereby forming a serial string; anda power controller adapted for coupling to said serial string, the power controller including a control part adapted to maintain current through or voltage across said serial string at a predetermined value.
  • 2. The distributed power system of claim 1, wherein the control part maintains voltage across said serial string at a predetermined value.
  • 3. The distributed power system of claim 1, wherein the control part maintains current through said serial string at a predetermined value.
  • 4. The distributed power system of claim 1, wherein the power controller includes a bi-directional DC/AC inverter.
  • 5. The distributed power system of claim 1, wherein the power controller includes a bi-directional DC/DC converter.
  • 6. The distributed power system of claim 1, wherein said power converters have a function selected from the group consisting of: current source, voltage regulation or trickle charge.
  • 7. The distributed power system according to claim 1, wherein the DC power sources comprise DC batteries.
  • 8. The distributed power system according to claim 7, further comprising: a plurality of photovoltaic panels;a plurality of DC-to-DC converters, each of the DC-to-DC converters including: one or more input terminals coupled to one or more of the photovoltaic panels;one or more output terminals coupled in series to one or more of the other DC-to-DC converters, thereby forming a second serial string;a control loop adapted to set the voltage and current at the input terminals of the DC-to-DC converter according to predetermined criteria; and,a power conversion portion adapted to convert the power received at the input terminals to an output power at the output terminals;wherein said serial string and said second serial string are connectible in parallel to form parallel-connected strings.
  • 9. The distributed power system according to claim 8, wherein the power controller is further adapted for coupling in parallel to said parallel-connected strings, wherein the control part of the power controller is further adapted to maintain current through or voltage across said parallel connected strings at a predetermined value.
  • 10. The distributed power system according to claim 8, wherein said power controller is selectably either off-grid or connected to grid.
  • 11. The distributed power system according to claim 8, wherein said photovoltaic panels provide electrical power for charging said DC power sources.
  • 12. The distributed power system according to claim 1, wherein the DC power sources comprise solar panels.
  • 13. A distributed power system comprising: a plurality of DC power sources, each DC power source with positive and negative poles;a plurality of power converters coupled respectively to the DC power sources, each power converter including a first terminal, a second terminal, a third terminal and a fourth terminal, wherein said first terminal is adapted for coupling to said positive pole and said second terminal is adapted for coupling to said negative pole;wherein each said power converter includes: (i) a first control loop configured to set either current through or voltage between said first and second terminals,(ii) a second control loop configured set either current through or voltage between said third and fourth terminals; and(iii) a power conversion portion adapted to perform at least one of: converting power from said first and second terminals to said third and fourth terminals to discharge said power source connected thereto, or converting power from said third and fourth terminals to said first and second terminals to charge said power source connected thereto;wherein each of said power converters is adapted for serial connection to at least one other power converter by connecting respectively said third and fourth terminals, thereby forming a serial string.
  • 14. The distributed power system according to claim 13, wherein the DC power sources comprise DC batteries.
  • 15. The distributed power system according to claim 14, further comprising: a plurality of photovoltaic panels;a plurality of DC-to-DC converters, each of the DC-to-DC converters including: one or more input terminals coupled to one or more of the DC photovoltaic panels;one or more output terminals coupled in series to one or more of the other DC-to-DC converters, thereby forming a second serial string;a control loop adapted to set the voltage and current at the input terminals of the DC-to-DC converter according to predetermined criteria; and,a power conversion portion adapted to convert the power received at the input terminals to an output power at the output terminals;wherein said serial string and said second serial string are connectible in parallel.
  • 16. The distributed power system according to claim 15, further comprising a power controller, wherein said power controller is selectably either off-grid or connected to grid.
  • 17. The distributed power system according to claim 15, wherein said photovoltaic panels provide electrical power for charging said power sources.
  • 18. The distributed power system according to claim 15, further comprising a communications interface between said power converters and a power controller for controlling charging and discharging of said power sources.
  • 19. The distributed power system according to claim 13, wherein the DC power sources comprise solar panels.
  • 20. A method, comprising: coupling a plurality of DC power sources to a plurality of power converters, wherein each said DC power source includes a positive and a negative pole, wherein each said power converter includes a first terminal, a second terminal, a third terminal and a fourth terminal, wherein said first terminal is adapted for coupling to said positive pole and said second terminal is adapted for coupling to said negative pole, and wherein each said power converter further includes: (i) a control loop adapted for setting the voltage between or current through said first and second terminals, and(ii) a power conversion portion adapted to perform at least one of: converting power from said first and second terminals to said third and fourth terminals to discharge said power source connected thereto, or converting power from said third and fourth terminals to said first and second terminals to charge said power source connected thereto;connecting in serial each of said power converters to at least one other power converter by connecting respectively said third and fourth terminals, thereby forming a serial string; andcoupling a power controller to said serial string, the power controller including a control part adapted to maintain current through or voltage across said serial string at a predetermined value.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part application of U.S. patent application Ser. No. 11/950,271 filed Dec. 4, 2007 by the same inventors. The present application has the benefit of U.S. 61/254,681 filed on Oct. 24, 2009 by the same inventors the disclosure of which is included herein.

US Referenced Citations (401)
Number Name Date Kind
3369210 Manickella Feb 1968 A
3596229 Hohorst Jul 1971 A
3958136 Schroeder May 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4171861 Hohorst Oct 1979 A
4257087 Cuk Mar 1981 A
4452867 Conforti Jun 1984 A
4460232 Sotolongo Jul 1984 A
4481654 Daniels et al. Nov 1984 A
4554515 Burson et al. Nov 1985 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4623753 Feldman et al. Nov 1986 A
4637677 Barkus Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4652770 Kumano Mar 1987 A
4706181 Mercer Nov 1987 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4783728 Hoffman Nov 1988 A
RE33057 Clegg et al. Sep 1989 E
4868379 West Sep 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4910518 Kim et al. Mar 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5045988 Gritter et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5191519 Kawakami Mar 1993 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5327071 Frederick et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5402060 Erisman Mar 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5548504 Takehara Aug 1996 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5644219 Kurokawa Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5659465 Flack et al. Aug 1997 A
5686766 Tamechika Nov 1997 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida et al. Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5905645 Cross May 1999 A
5919314 Kim Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5949668 Schweighofer Sep 1999 A
5963010 Hayashi et al. Oct 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6031736 Takehara et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kern Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6219623 Wills Apr 2001 B1
6255360 Domschke et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6301128 Jang et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6339538 Handleman Jan 2002 B1
6351130 Preiser et al. Feb 2002 B1
6369462 Siri Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6433522 Siri Aug 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6493246 Suzui et al. Dec 2002 B2
6507176 Wittenbreder, Jr. Jan 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6593521 Kobayashi Jul 2003 B2
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6628011 Droppo et al. Sep 2003 B2
6650031 Goldack Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6801442 Suzui et al. Oct 2004 B2
6850074 Adams et al. Feb 2005 B2
6882131 Takada et al. Apr 2005 B1
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7072194 Nayar et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7193872 Siri Mar 2007 B2
7218541 Price et al. May 2007 B2
7248946 Bashaw et al. Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7336056 Dening Feb 2008 B1
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keurig Jun 2008 B2
7394237 Chou et al. Jul 2008 B2
7420815 Love Sep 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7471014 Lum et al. Dec 2008 B2
7504811 Watanabe et al. Mar 2009 B2
7589437 Henne et al. Sep 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7719140 Ledenev et al. May 2010 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7804282 Bertele Sep 2010 B2
7812701 Lee et al. Oct 2010 B2
7839022 Wolfs Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7868599 Rahman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7900361 Adest et al. Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7944191 Xu May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
8003885 Richter et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018748 Leonard Sep 2011 B2
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8138914 Wong et al. Mar 2012 B2
8184460 O'Brien et al. May 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8289742 Adest et al. Oct 2012 B2
8415937 Hester Apr 2013 B2
8436592 Saitoh May 2013 B2
20010023703 Kondo et al. Sep 2001 A1
20010034982 Nagao et al. Nov 2001 A1
20020044473 Toyomura et al. Apr 2002 A1
20020056089 Houston May 2002 A1
20030058593 Bertele et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030214274 Lethellier Nov 2003 A1
20040041548 Perry Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040125618 De Rooij Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040246226 Moon Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060108979 Daniel et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060162772 Presher, Jr. et al. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060171182 Siri et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20070013349 Bassett Jan 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070147075 Bang Jun 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070290636 Beck et al. Dec 2007 A1
20080024098 Hojo Jan 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080218152 Bo Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080303503 Wolfs Dec 2008 A1
20090039852 Fishelov et al. Feb 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090121549 Leonard May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090237042 Glovinsky Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090273421 Cros et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090284998 Zhang et al. Nov 2009 A1
20090322494 Lee Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100127571 Hadar et al. May 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110114154 Lichy et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
Foreign Referenced Citations (81)
Number Date Country
1309451 Aug 2001 CN
19737286 Mar 1999 DE
102005030907 Jan 2007 DE
102008057874 May 2010 DE
0419093 Mar 1991 EP
0420295 Apr 1991 EP
0604777 Jul 1994 EP
0756178 Jan 1997 EP
0827254 Mar 1998 EP
1330009 Jul 2003 EP
1503490 Feb 2005 EP
1531545 May 2005 EP
1657557 May 2006 EP
1657797 May 2006 EP
1887675 Feb 2008 EP
2048679 Apr 2010 EP
2315328 Apr 2011 EP
2393178 Dec 2011 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2476508 Jun 2011 GB
61065320 Apr 1986 JP
6165320 May 1986 JP
6165310 Jun 1994 JP
11041832 Feb 1999 JP
11103538 Apr 1999 JP
11206038 Jul 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
2002300735 Oct 2002 JP
2003124492 Apr 2003 JP
2003134667 May 2003 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2007058845 Mar 2007 JP
9313587 Jul 1993 WO
9613093 May 1996 WO
9823021 May 1998 WO
0000839 Jan 2000 WO
0021178 Apr 2000 WO
0075947 Dec 2000 WO
0231517 Apr 2002 WO
03050938 Jun 2003 WO
03071655 Aug 2003 WO
2004023278 Mar 2004 WO
2004090993 Oct 2004 WO
2004107543 Dec 2004 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006078685 Jul 2006 WO
2007006564 Jan 2007 WO
2007048421 May 2007 WO
2007073951 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2008008528 Jan 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009007782 Jan 2009 WO
2009046533 Apr 2009 WO
2009051853 Apr 2009 WO
2009073868 Jun 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009136358 Nov 2009 WO
2010002960 Jan 2010 WO
2010065043 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010094012 Aug 2010 WO
2011011711 Jan 2011 WO
2011017721 Feb 2011 WO
2011023732 Mar 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
Non-Patent Literature Citations (124)
Entry
Extended European Search Report—EP12176089.6—Mailing date: Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, 19960513; 19960513-19960517, May 13, 1996, pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—Mailing Date: Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—Mailing date: Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—Mailing date: May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—Mailing date: May 22, 2012.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Converence, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Converence, Jun. 2001, Colorado Power Electronics Center Publications.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Walker, et al., “PhotoVoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Converence, Jun. 18-22, 2006, Jeju, Korea.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18 (3), Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible Der Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP—560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and The National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Instutte New Mexico State University Las Cruces, NM.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Coupany, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433.
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, ACHIM, WOYTE, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. OH Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7085, 1SXU301197B0201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
ISR for PCT/IL07/01064 dated Mar. 25, 2008.
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
IPRP for PCT/IB2007/004610 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/IB2010/052287 dated Nov. 22, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000.
Informal Comments to the International Search Report dated Dec. 3, 2009.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The University of Queensland, Sep. 28, 2003.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Llic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Coupany, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, José Rodriguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Infroamtion Technology & Electrical Engineering, Nov. 6, 2002.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
GB Combined Search and Examination Report—GB1203763.6—Mailing date: Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi REsonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, 1998, PESC 98.
Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4.
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007.
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System”, IEEE 1998.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE 2000.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Gridinteractive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2.
D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática/12 a 16-setembro-2010, Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, Vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—Mailing date: Mar. 26, 2013.
Related Publications (1)
Number Date Country
20110084553 A1 Apr 2011 US
Provisional Applications (1)
Number Date Country
61254681 Oct 2009 US
Continuation in Parts (1)
Number Date Country
Parent 11950271 Dec 2007 US
Child 12911153 US