The present invention relates, in general, to communications systems and relates, more specifically, to the provision of services on such systems within a network.
In a communications system, a multinode messaging system may appear as a single system to the network while internally, it must distribute calls between its internal nodes. Such a system may employ a property called redirect. The redirect property is available in such protocols as the Session Initiation Protocol (SIP). Using redirect, a call is sent to a common externally known address of the messaging system. Those calls are then redirected to the node that will actually terminate the call. Since the redirection is a central-type function, it is normally placed on a centralized element of back-end hardware.
There are two main drawbacks with a system such as that illustrated in
Therefore, it would be desirable to have a method and system that would address the above shortcomings of the centralized redirect server.
It is an object of the present invention to provide a system that removes the potential limitation of a bottleneck inherent with a central redirect server plus provides an inherent redundancy strategy.
The above object is achieved by eliminating the central redirect server. The redirection functionality is instead distributed across all telephony access nodes (TANs). This configuration resolves the problem of scalability since, as TANs are added for increased capacity, the redirect server capacity is augmented as well.
According to a first aspect of the invention, there is provided a communications system comprising: a switch for accepting incoming calls; a plurality of telephony access nodes for terminating said incoming calls; a distributed redirect server hosted on each of said plurality of telephony access nodes; and a load balancing unit for directing said incoming calls from said switch to one of the plurality of telephony access nodes, said plurality of telephony access nodes being connected to a back end cluster.
According to another aspect of the invention, there is provided a method of terminating a call in a communications system, said communications system comprising a switch, a plurality of telephony access nodes, a distributed redirect server, and a load balancing unit the method comprising the steps of generating an incoming call at said switch; directing said incoming call from said switch via said load balancing unit to said distributed redirect server for termination at one of said telephony access nodes; verifying, at said distributed redirect server, whether said one telephony access node has sufficient resources to answer said incoming call; and terminating said incoming call at said one telephony access node.
According to a further aspect of the invention, there is provided a method of terminating a call in a communications system, said communications system comprising a switch, a plurality of telephony access nodes, a distributed redirect server, and a load balancing unit, the method, comprising the steps of: accepting an incoming call at said switch; directing said incoming call from said load balancing unit to said distributed redirect server for termination at a first one of said telephony access nodes; verifying, at said distributed redirect server, whether said first telephony access node has sufficient resources to answer said incoming call; determining whether a second one of said telephony access nodes has sufficient resources to answer said incoming call when said step of verifying has concluded that said first telephony access node does not have sufficient resources to answer said incoming call, wherein any of said redirect servers would have knowledge of available resources of any other TAN, and that said TAN could send a redirect message back to the switch and would direct it to send the Invite message to a specific TAN with available resources; and terminating said incoming call at said second telephony access node.
Embodiments of the present invention will be further described with respect to the accompanying drawings in which:
With reference to
As can be seen in
As mentioned previously, the distributed redirect server 240 is configured to present the messaging system as a single entity to switch 120 by means of a single external address. However, incoming message calls must still be terminated at the appropriate TAN 260. Therefore, the distributed redirect server 240 requires that each of the TANs 260 broadcast their resource availability status to every other TAN in the system. If a particular TAN does not have the resources to answer an incoming call, it needs to understand that another TAN in the system does have the necessary resources available.
The communication of resource availability status will be accomplished via an Internet Protocol (IP) multicast. Each TAN will report via IP multicast to every TAN in the system whether it has a status of Free or Busy. A TAN may transition from Free to Busy when its number of free channels drops to a value of i. This value of i may be equal to 2 so as to avoid conditions where a TAN showing a status of Free is actually busy as other calls are terminating on it while updating its status. A TAN may transition from Busy to Free as the number of free channels increases to a value j. This value j may be 4, in order to provide some hysterisis and prevent a TAN from oscillating from Free to Busy on a single call, causing excessive status multicast traffic. The actual values of i and j may be optimized on heuristics which may be based on traffic patterns as well as on the number on TANs. Each TAN will create a “map” of the status of the other TANs in the system on the basis of the information from the received multicast messages.
An example of a call termination will now be described with respect to
Redundancy is provided in the following manner. First, there are multiple instances of the redirect server 240. Second, the load balancing unit 230 maintains a view of the ‘sanity’ of each of the redirect servers. If a redirect server was to fail, the load balancing server would note it and stop distributing calls to that node. Therefore, failure of any single redirect server will not impact the overall system.
In a case where a particular TAN discovers another TAN with idle resources, the call is usually relayed to the respective TAN via the redirect server. If none of the TANs in the system has available resources, the invited TAN may return a busy signal. Alternatively, the call may be placed in a queue employing the first-in-first-out methodology. The call will then be terminated on any subsequently available TAN by routing the call to the TAN with the first available free channel.
This application is a continuation of prior application U.S. Ser. No. 09/735,501 filed on Dec. 14, 2000 now U.S. Pat. No. 6,643,357 which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5870546 | Kirsch | Feb 1999 | A |
6314465 | Paul et al. | Nov 2001 | B1 |
6434143 | Donovan | Aug 2002 | B1 |
6466966 | Kirsch et al. | Oct 2002 | B1 |
6477150 | Maggenti et al. | Nov 2002 | B1 |
6496865 | Sumsion et al. | Dec 2002 | B1 |
6512818 | Donovan et al. | Jan 2003 | B1 |
6577622 | Schuster et al. | Jun 2003 | B1 |
6584093 | Salama et al. | Jun 2003 | B1 |
6584490 | Schuster et al. | Jun 2003 | B1 |
6711156 | Gourraud | Mar 2004 | B1 |
20020102999 | Maggenti et al. | Aug 2002 | A1 |
20040030800 | Gray et al. | Feb 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050117717 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09735501 | Dec 2000 | US |
Child | 10694566 | US |