The invention relates to a system and a method for collecting data from and sending commands to an array of sensors and functional devices in a building.
A Distributed Antenna System (“DAS”) is a network of spatially separated antenna nodes connected to a head-end unit via a transport medium that enables bi-directional communication with wireless devices (such as mobile phones or emergency services radios) within a structure. The DAS system enables communication networks (e.g., mobile phone networks and emergency radio networks) outside the structure to communicate wirelessly within the structure.
When transmitting data from a wireless device to the head-unit using the DAS, at least one antenna node wirelessly receives an electromagnetic signal transmitted from a wireless device using any wireless communication standard known in the art (e.g., 802.11, 3G, UHF, etc.). The received signal is then transmitted to a Remote Unit as an analog/RF signal that includes the data transmitted from the wireless device. The Remote Unit then processes the received signal and transmits the data to a head-unit via a backhaul cabling to the head-unit. The head-unit then relays the information to an external communication network or internally within the same facility to communicate the data to other persons or equipment.
When transmitting data from the external network to the wireless device using the DAS, the head-unit receives the data from external network. The head-unit then relays the information to the Remote Units via the backhaul cabling. The Remote Units receive the data from the head-unit and transmit the data as an analog signal to the antenna nodes. The antenna nodes then propagate the analog signal as electromagnetic wave that is received by the wireless device.
Embodiments of the present invention utilize the distributed equipment and the cabling infrastructure of the DAS to enable a plurality of sensors to control functional devices within the sensors (such as relays or alarms) and communicate information collected about the conditions within a building to and from a head-unit without the need for additional cabling or infrastructure.
The head-unit 110 is further connected to Remote Units 130 by backhaul cabling 125. The backhaul cabling 125 may be Ethernet, Fiber optic, coaxial or any other cable known in the art. The Remote Unit 130 bi-directionally communicates with the head-unit 110. For example, the Remote Unit 130 receives data from the head-unit and transmits the data to one or more antennas 140 via DAS cable 135. The DAS cable 135 may be either RF Coaxial, Ethernet or similar communication cabling known in the art. The Remote Unit 130 may be connected to a plurality of antennas 140a, 140b and 140c, etc. using a splitter 160. The splitter 160 may have 2 or more splits with multiple antenna connected such as antenna 140 and 140d shown. The plurality of antennas 140 transmit data to one or more wireless clients 150 using a wireless communication channel 145. The one or more wireless clients 150 may be mobile phones, laptop computers, emergency radios or any similar device. The wireless communication channel 145 may utilize a mobile phone communication protocol (e.g., 4G, 3G, CMDA, etc.) and/or may utilize an emergency radio protocol (e.g., APCO25) or other wireless protocols like LoRaWAN™. Therefore, the wireless clients 150 can both transmit and receive information with the external communication network 120.
Additionally, in some embodiments, the remote sensor 210 can receive a signal over DAS cable 135 and control output devices such as relays, alarms, lights, or various control signals for electronic or mechanical devices. For example, the remote sensor 210 may accept commands from the head-unit 110 or an offsite device connected to the sensor network, and turn on a battery backup system, or open all the doors in the case of an evacuation, or alternatively, turn on a fire alarm to indicate a fire and notify personnel of an emergency situation.
The remote sensor 210 includes a Connection to DAS (“CtD”) module 310 and a Remote Sensor & Control (“RSC”) module 320 as shown in
The interface circuit 550 may further receive data from the RSC 320 that corresponds to measurement data collected by the probe 450. The interface circuit 550 may then convert the received data to a transmittable signal that is suitable for transmission over the DAS cable 135 to the head-unit 110. The transmittable signal may be a frequency modulated signal (FM) (such as FSK, or On-Off keyed frequency signal), a digital signal (1's and 0's), an audio signal, a pulsed signal, an analog optical signal, or any other type of signal that can be communicated over the DAS cable 135. In some embodiments, the frequency of the transmittable signal is fixed to an “out of band” frequency that is determined to not interfere with the RF signals or other type signals of the DAS 100. In other embodiments, the “out of band” frequency is set using switches or buttons (not pictured) on the CtD 310. In another embodiment, the “out of band” frequency is set based on a command received from the head-unit 110 or the RSC 320.
The interface circuit 550 then uses the bidirectional RF coupler 520 to transmit the transmittable signal at the “out of band” frequency to the head-unit 110 via the DAS cable 135. The bidirectional RF coupler 520 may be of any form known in the art for use in RF applications. In some embodiments, it may be desirable for the bidirectional RF coupler 520 to have a known coupling ration (such as 10 dB, 30 dB, 50 dB, etc.) so as to provide a consistent signal coupling onto and off of the DAS cable 135. This may be particularly useful when the DAS cable 135 is coaxial cable. In some embodiments, the bidirectional RF coupler 520 may introduce the transmittable signal into the DAS cable 135 or backhaul cable 125 without severing the cable.
In some embodiments, the remote sensor 210 sends the collected sensor data via an RF subcarrier onto the DAS cable 135. This subcarrier is combined with the uplink signal of the radio system that the DAS supports. The sensor data radio subcarrier is selected such that it does not interfere with the radio system frequencies. Therefore, the RF sensor data will arrive at the Remote Unit 130 as an RF (radio frequency) form and the Remote Unit 130 will process the received sensor data in the same fashion as the radio system signal from the wireless clients 150. For example, the Remote Unit 130 may convert the sensor data signal along with the radio system signal into an optical signal and forward the combined information to the Head-Unit 110 over the backhaul cable 125. Therefore, no additional electronics are required at the Remote Unit 130 to process the sensor data. In some embodiments, the Remote Unit 130 is not required to interpret and act upon the sensor data as the processing of the sensor data is performed by the Head-Unit 110. In some embodiments, a Remote Unit 130 may bi-directionally communicate the sensor and control data with other Remote Units 130.
In other embodiments, the Remote Unit 130 can detect and interpret the sensor data transmitted by the remote sensor 210 and thereby act upon the sensor data received. For example, the Remote Unit 130 may be able to determine that an alarm condition was detected by the remote sensor 210 and respond by enabling the appropriate response, e.g., enabling an alarm, switching to backup batteries, or sending a signal to the remote sensor 210 to close doors or other type responses.
In embodiments where the communication between the Remote Unit 130 and the Head-Unit 110 over the backhaul cable 125 utilizes digital optical transport, the Remote Unit 130 may convert the radio system signals into digital signals using analog to digital convertors. This digital signal would then be transmitted over the backhaul cable 125 to the Head-Unit 110. The Remote Unit 130, similarly processes the sensor signal received from the remote sensor 210 using analog to digital convertors and transmits the converted digital signal over the backhaul cable 125 to the Head-Unit 110. In many cases, the sensor data will be digital. Therefore, the sensor data would simply need to be digitally multiplexed along with the digital radio system signal. In embodiments where the sensor data is analog, the RSC 320 and the CtD 310 may convert the signal into digital format for transport. In other embodiments, the analog to digital conversion of the sensor data may occur at the Remote Unit 130. In all cases, the process is bidirectional so similar circuitry is required in both uplink and downlink directions to process and transport the radio system signal and sensor and control data.
A band pass filter 510 may also be connected along the DAS cable 135 between the bidirectional RF coupler 520 and the antenna 140. The band pass filter 510 may be configured so that the “out of band” potentially transmittable RF sensor signal is filtered out and not allowed to be transmitted to the antenna 140. In some embodiments, the band pass filter 510 may have fixed frequency bands that are allowed to be transmitted. For example, in an embodiment, the band pass filter 510 may only use frequencies that correspond to emergency services radios (e.g., APCO25 digital radio standard, a trunked radio network, a two way conventional FM radio or a FirstNet Network) to be transmitted to the antennae 140. In other embodiments, the band pass filter 510 may be dynamically tunable. In these embodiments, the band pass filter 510 is able to change which frequencies of a signal are allowed to be transmitted to antenna 140 based on a command received from the head-unit 110, the Remote Units 130 or the remote sensors 210. In other embodiments, the band pass filter 510 may have switches or buttons that allow for the band pass frequencies to be set. In other embodiments, band pass filter 510 may be omitted so as to allow passage of the sensor and control data to be sent to other remote devices wirelessly. In other embodiments, the band pass filter 510 may be selectively configured to allow for transmission of a portion or all of the sensor and control data along the DAS cable 135.
The optical coupler 620 extracts (or injects) a portion of the signal onto or off of the optical cabling of the backhaul cabling 125 or DAS cable 135. The optical coupler 620 may be of any form known in the art for other optical applications. In some embodiments, a known coupling ratio (such as 3 dB, 10 dB, 20 Db, etc.) may be selected for the coupler 620 as to provide a consistent signal coupling onto and off of the backhaul cabling 125. In some embodiments, digital RF signal from the head-unit 110 is transmitted on one wavelength and the sensor data is transmitted on another wavelength. In these embodiments, the optical coupler 620 may implement wavelength-division multiplexing to transmit the sensor and control data along the backhaul cabling 125.
Another embodiment of the CtD 310 is shown in
In some embodiments, the CtD 310 may use a bidirectional RF coupler 520 that can inject and extract a signal from DAS cable 135 without severing the cable. For example,
The bidirectional coupling of the remote sensor 210 with the DAS cable 135 is performed by either non-contact or contact methods. In the non-contact method, the probe 830 is close to, but does not electrically touch, the center copper core of DAS cable 135. The tip of the probe 830 is insulated to assure that it does not electrically touch the center copper core 820. Yet it can be placed very close in a consistent manner to assure reliable consistent coupling of the RF signal in and out of the DAS cable 135. In the contact method, the probe 830 is impinged onto the center copper core 820 and makes an electrical connection between the center copper core 820 and the bidirectional RF coupler 520. As a result, a signal propagating in either direction can be transferred to the remote sensor 210. Proper signal leveling methods (such as attenuators or amplifiers) may also be used to assure the correct signal level for insertion into the DAS cable 135 for receiving or transmitting by the remote sensor 210.
In an example embodiment, the CtD 310 may use an optical coupler 620 that can inject and extract a signal from backhaul cabling 125 without severing the cable when the cable is an optical cable. For example,
However, a tight bend in the backhaul cabling 125 may cause a weakness in the fiber waveguide that normally keeps the light contained inside the fiber. But the bend opens a “gateway” for light to pass thru the normal light barrier restrictions in either direction. Therefore, the bend must be less than the manufacturer's minimum bend specification. This specification indicates the smallest bend allowed in the fiber before significant optical losses occur (losses outside the manufacturer's usual limits). As a result, data from the remote sensor 210 can be transferred across the backhaul cabling 125 by capitalizing on the fact that the losses are created by light escaping from the optical waveguide due to the sharp bend. Depending on the fiber type, the light coupling amount can be controlled with the amount of bending to allow for the adequate coupling of light onto and off of the fiber while minimizing the optical losses in the system.
An example of a head-unit 110 is depicted in
In certain embodiments, the Remote Units 130 do not use DAS cable 135 and antenna 140 to further distribute the RF signal. The Remote Unit 130 in this case is the final stage of the DAS 100. In this case, a fiber cable may be the only cable utilized in the DAS system. In this case, the backhaul cabling 125 would be fiber optic cabling. In some cases, the fiber cable may be a hybrid cable which incorporates wire cable to transport DC power or Ethernet signals with power over Ethernet. To be operable with this DAS configuration, the remote sensor 210 may be embedded inside the Remote Unit 130 or attached to the backhaul cable 125.
Although features and elements are described above in particular combinations, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in any combination with the other features and elements.
The probe 450 may measure environmental parameters such as airflow, liquid presence or level, pressure, smoke, pollen, audio, level fire, gases, heat, humidity, etc. In addition, the probe 450 may measure include sensors for personnel or materials/asset tracking, motion, occupancy. Further, the probe 450 may be of the form of a biological sensor, nuclear sensors, or chemical sensor (carbon monoxide/dioxide, methane, chlorine, etc.). In some embodiments, the probe 450 may measure AC or DC current or voltage, electrical resistance, infra-red light, visible spectrum light, acceleration, magnetic fields, rotation, pulses, etc. In addition, the relays 470 may receive an input from an electronic closure, mechanical closure, on-off keys or any similar type of input known in the art. In addition, the relays 470 may receive an input of pulse triggers or an input from a PID (proportional-integral-derivative) controller. In addition, the relays may output a contact closure, audible alarm, inaudible alarm or other output signal that can interface with other building system.
Furthermore, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and non-transitory computer-readable storage media. Examples of non-transitory computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media, such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
This application is a continuation of U.S. patent application Ser. No. 16/304,445, filed on Nov. 26, 2018, which is a 371 U.S. National Phase of International Patent Application Serial No. PCT/US2017/034650, filed on May 26, 2017, which claims the benefit of U.S. Provisional Application Ser. No. 62/342,048 filed on May 26, 2016, which are incorporated by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
4234969 | Singh | Nov 1980 | A |
5929896 | Goodman et al. | Jul 1999 | A |
3247543 | Berlin et al. | Jan 2016 | A1 |
9312941 | Soriaga et al. | Apr 2016 | B2 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020155818 | Boros | Oct 2002 | A1 |
20020155848 | Boros et al. | Oct 2002 | A1 |
20040198386 | Dupray | Oct 2004 | A1 |
20050186937 | Graham | Aug 2005 | A1 |
20060033640 | Minor | Feb 2006 | A1 |
20060251115 | Haque et al. | Nov 2006 | A1 |
20120011365 | Schmidt et al. | Jan 2012 | A1 |
20120069880 | Lemson et al. | Mar 2012 | A1 |
20120293390 | Shoemaker | Nov 2012 | A1 |
20130288592 | Ben-Tolila | Oct 2013 | A1 |
20140153674 | Stratigos | Jun 2014 | A1 |
20140376499 | Kummetz | Dec 2014 | A1 |
20160112132 | Gerszberg et al. | Apr 2016 | A1 |
20170039828 | McAllister | Feb 2017 | A1 |
20170223433 | Busslinger | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
104065404 | Sep 2015 | CN |
104981985 | Oct 2015 | CN |
106330233 | Jan 2017 | CN |
106463822 | Feb 2017 | CN |
2014519269 | Aug 2014 | JP |
Entry |
---|
Preliminary Rejection issued in corresponding Korean Patent Application No. 10-2018-7037120 dated Jan. 23, 2020, consisting of 11 pp. (English Translation Provided). |
Office Action issued in corresponding Chinese Patent Application No. 201780032573.4 dated Apr. 27, 2020 consisting of 19 pp. (English Translation Provided). |
Written Opinion issued in corresponding International Patent Application No. PCT/US2017/034650 dated Aug. 4, 2017 consisting of 9 pp. |
International Search Report issued in corresponding International Patent Application No. PCT/US2017/034650 dated Aug. 4, 2017 consisting of 2 pp. |
International Preliminary Report on Patentability issued in corresponding International Patent Application No. PCT/US2017/034650 dated Nov. 27, 2018 consisting of 10 pp. |
Number | Date | Country | |
---|---|---|---|
20200374405 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62342048 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16304445 | US | |
Child | 16895823 | US |