Embodiments of the present invention relate generally to network security. More particularly, embodiments of the invention relate to distributed service processing of network gateways using virtual machines.
A network gateway handles all network traffic that comes in and goes out of a network it protects. As the attacks get more sophisticated, there are more and more security and network services running on the network gateway to support the additional security functions. However, these additional services consume memory and central processing unit (CPU) resources of the gateway and limit the network throughput that the network gateway can support. Besides, if a network service must run on a particular operating system, e.g., Microsoft Server 2008, but the underlying operating system of the network gateway is different, then the gateway cannot support this network service. This limitation hinders what services the network gateway can support.
Some of the network services may need to parse the packet payload or search for patterns through the entire payload. These processes take time and memory to operate and consume valuable CPU resources otherwise could be used to process other packets. When there is a large amount of traffic and the packets go through computation-intensive services, the network gateway may slow down and cannot keep up with the traffic.
A method and apparatus is disclosed herein for distributed service processing using virtual machines. In one embodiment, the method comprises receiving a packet at an ingress interface of a gateway device interfacing a local area network (LAN) and an external network; determining a set of a plurality of processes corresponding a connections session associated with the packet based on a policy; for each of the identified processes, identifying a service processing module executed by a virtual machine that is capable of handling the identified process, and sending the packet to the identified service processing module to perform the identified process on the packet; and transmitting the packet to an egress interface of the gateway device to be forwarded to a destination.
Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
According to some embodiments, a new design is provided to create distributed service processing in a network gateway to support the increasing system load and to support third party services on different operating systems. An embodiment of the present invention moves at least some of these computation intensive network services into virtual machines. The virtual machines may host one or more of the network services, where the virtual machines may be hosted within the gateway or external to the gateway. Packets are forwarded to the virtual machines then forwarded back to the network gateway after the processing. The network gateway can use a load balancing mechanism to forward the packets to multiple virtual machines. Each virtual machine supports one or more network services of different connections. The load balancing to virtual machines provides a great flexibility and scalability to support a large scale of networks.
According to one embodiment, gateway device 204 is associated with various service processing modules 208-209, each being executed within a virtual machine (VM). Each service processing module is responsible for handling one or more services. Examples of the services to be performed for gateway device 204 include, but are not limited to, network address translation (NAT), virtual private network (VPN), deep packet inspection (DPI), and/or anti-virus, etc. Some of the service processing modules are located within gateway device 204 (e.g., service processing modules 208) and some are located external to gateway device 204 (e.g., service processing modules 209 maintained by service processing node(s) 211). All of the service processing modules 208-209 are managed by load balancing module 210, which may be located within gateway device 204, in a public cloud associated with network 203, or in a private cloud associated with network 205. In one embodiment, load balancing module 210 and service processing modules 208-209 collectively may represent a distributed firewall of gateway device 204. Further detailed information concerning a distributed firewall can be found in a co-pending U.S. patent application Ser. No. 13/363,088, entitled “Distributed Firewall Architecture using Virtual Machines,” filed Jan. 31, 2012, now U.S. Pat. No. 8,612,744, which is incorporated by reference herein in its entirety.
A virtual machine represents a completely isolated operating environment with a dedicated set of resources associated therewith. A virtual machine may be installed or launched as a guest operating system (OS) hosted by a host OS. Typically, a host OS represents a virtual machine monitor (VMM) (also referred to as a hypervisor in one embodiment) for managing the hosted virtual machines. A guest OS may be of the same or different types with respect to the host OS. For example, a guest OS may be a Windows™ operating system and a host OS may be a LINUX operating system. In addition, the guest OSes running on a host can be of the same or different types. A virtual machine can be any type of virtual machine, such as, for example, hardware emulation, full virtualization, para-virtualization, and an operating system-level virtualization virtual machine. Different virtual machines hosted by a server may have the same or different privilege levels for accessing different resources.
In one embodiment, virtual machines 301-302 can be on the same device as the network gateway, or they can reside on different devices which connect to the network gateway through network connections. There are multiple possible communication protocols between the network gateway and virtual machines 301-302 that may be used. If the network gateway and virtual machines 301-302 are in the same layer-2 network, the packet can be forwarded through a layer-2 protocol, such as, for example, the Ethernet protocol. In this case, the original IP packets are encapsulated with an Ethernet header of media access control (MAC) address of both sides. The recipient then de-encapsulates the Ethernet header and retrieves the original IP packets. The communication protocol can also be a layer-3 protocol, such as the IP protocol. The original packets are encapsulated with another IP header with the IP address of both sides. The encapsulation of the outer IP header would ensure the packets are sent and received between the virtual machine and the network gateway.
In another embodiment, the network services can be running on virtual machines or physical hosts. Running on virtual machines provides an additional benefit that additional virtual machines can be added dynamically in case of heavy traffic. Initially the network gateway may have only one virtual machine for a particular network service. When network traffic increases and the virtual machine reaches its capacity, the network gateway can utilize more virtual machines to add more system capacity. New connections are forwarded to different virtual machines for load balancing. This increases system availability and scalability.
The virtual machines 301-302 running the network services can be distributed on different networks, or at different locations, as long as the virtual machines can communicate with the network gateway. One of the examples is to put the virtual machines in a public cloud, and keep the network gateway in a data center. This provides the flexibility to add more computing resources at a lower cost, while maintaining the control of the network gateway in enterprise's premises.
The second function of virtual network adapter 501 is to separate the IP address of VM Ethernet interface 505 from the IP address “seen” by the applications 502-504 of virtual machine 500. As any IP address can be assigned to virtual network adapter 501, applications 502-504 on virtual machine 500 can use this IP address for application process, regardless the real IP address of VM Ethernet interface 505. The use of the separate IP address will ensure that the user-space application inserts the correct IP address in the packet payload of the application.
In further detail, according to one embodiment, virtual network adapter 501 logically creates an overlay network for virtual machine 500. The applications 502-504 of virtual machine 500 assume the virtual IP address is the interface IP address, while the real IP address of virtual machine Ethernet interface 505 is used to transmit the data between virtual machine 500 and the network gateway. One can create as many as virtual network adapters on virtual machine 500 to simulate the target network environment, and to support a wide variety of the network topologies. The virtual machines can use any operating system, as long as the VM Ethernet driver 506 (also referred to as a virtual network adapter driver) supports the operating system. Thus, the services can be supported on any operating system which may be different from the operating system the network gateway runs.
As a result, the network gateway can employ a significantly large amount of CPU and memory resources for service processing as long as it utilizes more virtual machines to support the service processing. This makes it possible that network gateway can support line rate processing, even with most computation-intensive network services. An embodiment of the invention also allows different operating systems of the virtual machines from the one running on network gateway, which enables users to run network services on any operating systems.
In summary, an embodiment of the invention is to enable running many network services on the gateway without performance degradation. These network services may be running on an overlay network, with the freedom to have their own forwarding scenarios. Embodiments of the invention can tap the cheap resources of public cloud to run virtual machines to support a large amount of traffic without much IT investment, and provide a great scalability and system availability.
Bus 412 allows data communication between central processor 414 and system memory 417. System memory 417 (e.g., RAM) may be generally the main memory into which the operating system and application programs are loaded. The ROM or flash memory can contain, among other code, the Basic Input-Output system (BIOS) which controls basic hardware operation such as the interaction with peripheral components. Applications resident with data processing system 410 are generally stored on and accessed via a computer readable medium, such as a hard disk drive (e.g., fixed disk 444), an optical drive (e.g., optical disk drive 440), a floppy disk unit 437, or other storage medium.
Storage interface 434, as with the other storage interfaces of data processing system 410, can connect to a standard computer readable medium for storage and/or retrieval of information, such as a fixed disk 444. Fixed disk 444 may be a part of data processing system 410 or may be separate and accessed through other interface systems.
Modem 447 may provide a direct connection to a remote server via a telephone link or to the Internet via an internet service provider (ISP). Network interface 448 may provide a direct connection to a remote server. Network interface 448 may provide a direct connection to a remote server via a direct network link to the Internet via a POP (point of presence). Network interface 448 may provide such connection using wireless techniques, including digital cellular telephone connection, a packet connection, digital satellite data connection or the like.
Many other devices or subsystems (not shown) may be connected in a similar manner (e.g., document scanners, digital cameras and so on). Conversely, all of the devices shown in
Code to implement the gateway operations described herein can be stored in computer-readable storage media such as one or more of system memory 417, fixed disk 444, optical disk via optical disk drive 440, or floppy disk via floppy disk unit 437. The operating system provided on computer system 410 may be MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®, or another known operating system.
As described above, the servers in
Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as those set forth in the claims below, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The techniques shown in the figures can be implemented using code and data stored and executed on one or more electronic devices. Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer-readable media, such as non-transitory computer-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals).
The processes or methods depicted in the preceding figures may be performed by processing logic that comprises hardware (e.g., circuitry, dedicated logic, etc.), firmware, software (e.g., embodied on a non-transitory computer readable medium), or a combination of both. Although the processes or methods are described above in terms of some sequential operations, it should be appreciated that some of the operations described may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.
In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
The present application is a continuation that claims the benefit of U.S. Non-Provisional patent application Ser. No. 13/363,082, filed Jan. 31, 2012, now U.S. Pat. No. 9,191,327, which claims the benefit of U.S. Provisional Patent Application No. 61/462,980, filed Feb. 10, 2011, which are all hereby incorporated by reference in their entirety including all references cited therein.
Number | Name | Date | Kind |
---|---|---|---|
6253321 | Nikander et al. | Jun 2001 | B1 |
6578076 | Putzolu | Jun 2003 | B1 |
6765864 | Natarajan et al. | Jul 2004 | B1 |
6970459 | Meier | Nov 2005 | B1 |
7058712 | Vasko et al. | Jun 2006 | B1 |
7062566 | Amara et al. | Jun 2006 | B2 |
7373524 | Motsinger et al. | May 2008 | B2 |
7397794 | Lacroute et al. | Jul 2008 | B1 |
7519062 | Kloth et al. | Apr 2009 | B1 |
7694181 | Noller et al. | Apr 2010 | B2 |
7742414 | Iannaccone et al. | Jun 2010 | B1 |
7774837 | McAlister | Aug 2010 | B2 |
7849495 | Huang et al. | Dec 2010 | B1 |
7900240 | Terzis et al. | Mar 2011 | B2 |
7904454 | Raab | Mar 2011 | B2 |
7996255 | Shenoy et al. | Aug 2011 | B1 |
8051460 | Lum et al. | Nov 2011 | B2 |
8259571 | Raphel et al. | Sep 2012 | B1 |
8296459 | Brandwine et al. | Oct 2012 | B1 |
8307422 | Varadhan et al. | Nov 2012 | B2 |
8321862 | Swamy et al. | Nov 2012 | B2 |
8353021 | Satish et al. | Jan 2013 | B1 |
8369333 | Hao et al. | Feb 2013 | B2 |
8396986 | Kanada et al. | Mar 2013 | B2 |
8490153 | Bassett et al. | Jul 2013 | B2 |
8494000 | Nadkarni et al. | Jul 2013 | B1 |
8565118 | Shukla et al. | Oct 2013 | B2 |
8612744 | Shieh | Dec 2013 | B2 |
8661434 | Liang et al. | Feb 2014 | B1 |
8688491 | Shenoy et al. | Apr 2014 | B1 |
8726343 | Borzycki et al. | May 2014 | B1 |
8798055 | An | Aug 2014 | B1 |
8813169 | Shieh et al. | Aug 2014 | B2 |
8813236 | Saha et al. | Aug 2014 | B1 |
8935457 | Feng et al. | Jan 2015 | B2 |
8938782 | Sawhney et al. | Jan 2015 | B2 |
8990371 | Kalyanaraman et al. | Mar 2015 | B2 |
9141625 | Thornewell et al. | Sep 2015 | B1 |
9191327 | Shieh | Nov 2015 | B2 |
9258275 | Sun et al. | Feb 2016 | B2 |
9294302 | Sun et al. | Mar 2016 | B2 |
9294442 | Lian et al. | Mar 2016 | B1 |
9361089 | Bradfield et al. | Jun 2016 | B2 |
9380027 | Lian et al. | Jun 2016 | B1 |
9521115 | Woolward | Dec 2016 | B1 |
20020031103 | Wiedeman et al. | Mar 2002 | A1 |
20030055950 | Cranor et al. | Mar 2003 | A1 |
20030177389 | Albert et al. | Sep 2003 | A1 |
20040062204 | Bearden et al. | Apr 2004 | A1 |
20040095897 | Vafaei | May 2004 | A1 |
20050021943 | Ikudome et al. | Jan 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050114829 | Robin et al. | May 2005 | A1 |
20050190758 | Gai et al. | Sep 2005 | A1 |
20050201343 | Sivalingham et al. | Sep 2005 | A1 |
20050246241 | Irizarry, Jr. et al. | Nov 2005 | A1 |
20050283823 | Okajo et al. | Dec 2005 | A1 |
20060050696 | Shah et al. | Mar 2006 | A1 |
20070019621 | Perry et al. | Jan 2007 | A1 |
20070022090 | Graham | Jan 2007 | A1 |
20070064617 | Reves | Mar 2007 | A1 |
20070079308 | Chiaramonte et al. | Apr 2007 | A1 |
20070130566 | van Rietschote et al. | Jun 2007 | A1 |
20070168971 | Royzen et al. | Jul 2007 | A1 |
20070192863 | Kapoor et al. | Aug 2007 | A1 |
20070239987 | Hoole et al. | Oct 2007 | A1 |
20070271612 | Fang | Nov 2007 | A1 |
20070277222 | Pouliot | Nov 2007 | A1 |
20080083011 | McAlister et al. | Apr 2008 | A1 |
20080155239 | Chowdhury et al. | Jun 2008 | A1 |
20080163207 | Reumann et al. | Jul 2008 | A1 |
20080239961 | Hilerio et al. | Oct 2008 | A1 |
20080301770 | Kinder | Dec 2008 | A1 |
20080307110 | Wainner et al. | Dec 2008 | A1 |
20090138316 | Weller et al. | May 2009 | A1 |
20090165078 | Samudrala et al. | Jun 2009 | A1 |
20090190585 | Allen et al. | Jul 2009 | A1 |
20090249470 | Litvin et al. | Oct 2009 | A1 |
20090260051 | Igakura | Oct 2009 | A1 |
20090268667 | Gandham et al. | Oct 2009 | A1 |
20090328187 | Meisel | Dec 2009 | A1 |
20100043068 | Varadhan et al. | Feb 2010 | A1 |
20100064341 | Aldera | Mar 2010 | A1 |
20100071025 | Devine et al. | Mar 2010 | A1 |
20100095367 | Narayanaswamy | Apr 2010 | A1 |
20100192225 | Ma et al. | Jul 2010 | A1 |
20100199349 | Ellis | Aug 2010 | A1 |
20100228962 | Simon | Sep 2010 | A1 |
20100235880 | Chen et al. | Sep 2010 | A1 |
20100274970 | Treuhaft et al. | Oct 2010 | A1 |
20100281539 | Burns et al. | Nov 2010 | A1 |
20100333165 | Basak et al. | Dec 2010 | A1 |
20110003580 | Belrose et al. | Jan 2011 | A1 |
20110069710 | Naven et al. | Mar 2011 | A1 |
20110072486 | Hadar et al. | Mar 2011 | A1 |
20110113472 | Fung | May 2011 | A1 |
20110138384 | Bozek | Jun 2011 | A1 |
20110138441 | Neystadt et al. | Jun 2011 | A1 |
20110184993 | Chawla et al. | Jul 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110249679 | Lin et al. | Oct 2011 | A1 |
20110263238 | Riley et al. | Oct 2011 | A1 |
20120017258 | Suzuki | Jan 2012 | A1 |
20120113989 | Akiyoshi | May 2012 | A1 |
20120131685 | Broch et al. | May 2012 | A1 |
20120185913 | Martinez et al. | Jul 2012 | A1 |
20120207174 | Shieh | Aug 2012 | A1 |
20120216273 | Rolette et al. | Aug 2012 | A1 |
20120311144 | Akelbein | Dec 2012 | A1 |
20120311575 | Song | Dec 2012 | A1 |
20130019277 | Chang et al. | Jan 2013 | A1 |
20130081142 | McDougal et al. | Mar 2013 | A1 |
20130086399 | Tychon et al. | Apr 2013 | A1 |
20130097692 | Cooper et al. | Apr 2013 | A1 |
20130151680 | Salinas et al. | Jun 2013 | A1 |
20130166490 | Elkins et al. | Jun 2013 | A1 |
20130166720 | Takashima et al. | Jun 2013 | A1 |
20130219384 | Srinivasan et al. | Aug 2013 | A1 |
20130223226 | Narayanan et al. | Aug 2013 | A1 |
20130250956 | Sun et al. | Sep 2013 | A1 |
20130263125 | Shamsee et al. | Oct 2013 | A1 |
20130275592 | Xu et al. | Oct 2013 | A1 |
20130276092 | Sun et al. | Oct 2013 | A1 |
20130291088 | Shieh et al. | Oct 2013 | A1 |
20130298184 | Ermagan et al. | Nov 2013 | A1 |
20130318617 | Chaturvedi et al. | Nov 2013 | A1 |
20140007181 | Sarin et al. | Jan 2014 | A1 |
20140022894 | Oikawa et al. | Jan 2014 | A1 |
20140137240 | Smith et al. | May 2014 | A1 |
20140157352 | Paek et al. | Jun 2014 | A1 |
20140282027 | Gao et al. | Sep 2014 | A1 |
20140282518 | Banerjee | Sep 2014 | A1 |
20140283030 | Moore et al. | Sep 2014 | A1 |
20140344435 | Mortimore, Jr. et al. | Nov 2014 | A1 |
20150124606 | Alvarez et al. | May 2015 | A1 |
20150163088 | Anschutz | Jun 2015 | A1 |
20150229641 | Sun et al. | Aug 2015 | A1 |
20150249676 | Koyanagi et al. | Sep 2015 | A1 |
20150269383 | Lang et al. | Sep 2015 | A1 |
20160191545 | Nanda et al. | Jun 2016 | A1 |
20160203331 | Khan et al. | Jul 2016 | A1 |
20160269442 | Shieh | Sep 2016 | A1 |
20160294774 | Woolward et al. | Oct 2016 | A1 |
20160294875 | Lian et al. | Oct 2016 | A1 |
20160323245 | Shieh et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
201642616 | Dec 2016 | TW |
201642617 | Dec 2016 | TW |
201642618 | Dec 2016 | TW |
201703483 | Jan 2017 | TW |
WO02098100 | Dec 2002 | WO |
WO2016148865 | Sep 2016 | WO |
WO2016160523 | Oct 2016 | WO |
WO2016160533 | Oct 2016 | WO |
WO2016160595 | Oct 2016 | WO |
WO2016160599 | Oct 2016 | WO |
Entry |
---|
Non-Final Office Action, Jul. 1, 2015, U.S. Appl. No. 14/673,640, filed Mar. 30, 2015. |
Final Office Action, Dec. 4, 2015, U.S. Appl. No. 14/673,640, filed Mar. 30, 2015. |
Non-Final Office Action, Jul. 7, 2015, U.S. Appl. No. 14/673,679, filed Mar. 30, 2015. |
Non-Final Office Action, Jul. 16, 2015, U.S. Appl. No. 14/677,827, filed Apr. 2, 2015. |
Final Office Action, Dec. 2, 2015, U.S. Appl. No. 14/677,827, filed Apr. 2, 2015. |
Non-Final Office Action, Nov. 19, 2014, U.S. Appl. No. 13/363,082, filed Jan. 31, 2012. |
Final Office Action, Apr. 30, 2015, U.S. Appl. No. 13/363,082, filed Jan. 31, 2012. |
Notice of Allowance, Aug. 12, 2015, U.S. Appl. No. 13/363,082, filed Jan. 31, 2012. |
Non-Final Office Action, Jan. 23, 2015, U.S. Appl. No. 13/847,881, filed Mar. 20, 2013. |
Final Office Action, May 13, 2015, U.S. Appl. No. 13/847,881, filed Mar. 20, 2013. |
Non-Final Office Action, May 1, 2015, U.S. Appl. No. 13/860,404, filed Apr. 10, 2014. |
Non-Final Office Action, Aug. 12, 2014, U.S. Appl. No. 13/861,220, filed Apr. 11, 2013. |
Final Office Action, Jan. 23, 2015, U.S. Appl. No. 13/861,220, filed Apr. 11, 2013. |
Non-Final Office Action, May 18, 2015, U.S. Appl. No. 13/861,220, filed Apr. 11, 2013. |
Specification, U.S. Appl. No. 14/673,679, filed Mar. 30, 2015. |
Specification, U.S. Appl. No. 14/673,640, filed Mar. 30, 2015. |
Specification, U.S. Appl. No. 14/677,827, filed Apr. 2, 2015. |
Specification, U.S. Appl. No. 14/657,282, filed Mar. 13, 2015. |
Specification, U.S. Appl. No. 14/657,210, filed Mar. 13, 2015. |
Non-Final Office Action, Jul. 14, 2016, U.S. Appl. No. 13/860,404, filed Apr. 10, 2013. |
Non-Final Office Action, Oct. 13, 2016, U.S. Appl. No. 15/199,605, filed Jun. 30, 2016. |
Non-Final Office Action, Jul. 6, 2016, U.S. Appl. No. 15/151,303, filed May 10, 2016. |
Non-Final Office Action, Jul. 25, 2016, U.S. Appl. No. 15/090,523, filed Apr. 4, 2016. |
Notice of Allowance, Jul. 27, 2016, U.S. Appl. No. 15/080,519, filed Mar. 24, 2016. |
Non-Final Office Action, Aug. 2, 2016, U.S. Appl. No. 14/657,210, filed Mar. 13, 2015. |
Non-Final Office Action, Sep. 16, 2016, U.S. Appl. No. 15/209,275, filed Jul. 13, 2016. |
International Search Report mailed Jun. 20, 2016 in Patent Cooperation Treaty Application No. PCT/US2016/024310 filed Mar. 25, 2016, 9 pages. |
International Search Report mailed May 3, 2016 in Patent Cooperation Treaty Application No. PCT/US2016/024116 filed Mar. 24, 2016. |
International Search Report mailed May 3, 2016 in Patent Cooperation Treaty Application No. PCT/US2016/024300 filed Mar. 25, 2016. |
International Search Report mailed May 3, 2016 in Patent Cooperation Treaty Application No. PCT/US2016/024053 filed Mar. 24, 2016. |
International Search Report mailed May 6, 2016 in Patent Cooperation Treaty Application No. PCT/US2016/019643 filed Feb. 25, 2016. |
Dubrawsky, Ido, “Firewall Evolution—Deep Packet Inspection,” Symantec, Created Jul. 28, 2003; Updated Nov. 2, 2010, symantec.com/connect/articles/firewall-evolution-deep-packet-inspection. |
Non-Final Office Action, May 18, 2016, U.S. Appl. No. 14/964,318, filed Dec. 9, 2015. |
NetBrain Enterprise Edition 6.1 feature handbook, Feb. 25, 2016, 48 pages. |
Arendt, et al., “Ocelot: User-Centered Design of a Decision Support Visualization for Network Quarantine”, 2015 IEEE, 8 pages. |
Patent Cooperation Treaty Application No. PCT/US2016/065451, “International Search Report” and “Written Opinion of the International Searching Authority,” Jan. 12, 2017, 20 pages. |
Notice of Allowance, Feb. 1, 2017, U.S. Appl. No. 15/090,523, filed Apr. 4, 2016. |
Number | Date | Country | |
---|---|---|---|
20160028851 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61462980 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13363082 | Jan 2012 | US |
Child | 14877836 | US |