Thermoelectric modules typically contain densely packed elements spaced apart by 1-3 mm. Typically, up to 256 such elements may be connected in an array that is 2×2 inches (5.08×5.08 cm) in area. When these modules are deployed, large and heavy heat sinks and powerful fans are required to dissipate or absorb the heat on each side. The reasons for these dense prior art configurations are well-founded: small elements with low resistance allow larger current I to flow before the resistive heat (I2R) generated destroys the thermoelectric cooling (pI1 where p=Peltier coefficient). The use of short elements for maximum cooling capacity results in the hot and cold side circuit boards being close together. This proximity results in the high density.
To achieve a low density packing of thermoelectric elements, one could space out these elements on the boards laterally, but then the backflow of heat conducted and radiated through the air between the elements limits the overall performance. Some designs require evacuating the module interior to reduce heat backflow due to air conduction, but vacuum cavities require expensive materials and are prone to leaks. Vacuum materials (like glass and Kovar™) are also hard and easily broken when thin enough to limit their own backflow of heat. Broken glass can lead to safety issues when these modules are used in seat cushions, automobiles, and other environments.
Another problem in spreading out thermoelectric elements is that the rigid connection of elements over large distances causes them to rupture due to sheer stress upon thermal expansion of the hot side relative to the cold side. To solve this problem, other designs have been proposed that use a flexible plastic such as polyimide for the circuit boards, but these materials are too porous to maintain a vacuum.
Another disadvantage of the prior art design of thermoelectric modules is that the high density of heat moved to the hot side results in a temperature gradient through the heat sink, and this temperature delta subtracts from the overall cooling that the module can achieve. In particular, traditional thermoelectric products are not able to reach true refrigeration temperature because of this temperature gradient.
Finally, because prior art thermoelectric modules are placed in a solder reflow oven during assembly, only high-temperature materials may be used. Unfortunately, many desired uses of cooling and heating involve close or direct contact with the human body, for which soft materials, such as cushions, cloths, and flexible foam are preferred, but these materials cannot withstand the high temperatures of a solder reflow oven.
Thermoelectric devices can be as efficient, or even more efficient, than vapor compression cooling systems when the temperature delta is 10 degrees C. or less. For this reason, a strong desire exists to deploy thermoelectric technology for local heating and cooling of occupied spaces and thereby reduce the overall energy consumption needed for personal comfort. The total energy savings of the central A/C or heating system plus the local thermoelectric systems can be 30% or more for such a combination, but the unwieldy implementation of prior-art thermoelectric modules inhibits their use for this purpose.
Most thermoelectric and compressor-based cooling systems today are configured as forced air systems. In order to cool the room to a comfortable 75 F, the forced air needs to be 55 F as it exits the vent. The difference between the 55 F cold side temperature and the outside temperature of 80 F to 110 F means that the delta temperature across a thermoelectric module in a forced-air configuration is so large that its heat-backflow conduction makes its overall efficiency very low. However, if a distributed thermoelectric implementation is used, as disclosed here, the cold side can be in contact with the human body, or in close enough proximity such that the cold side seen by the thermoelectric elements are close to the ideal skin temperature of 86-91 F, hence reducing the temperature delta at the thermoelectric device to a level that makes its efficiency comparable to that of a compressor-based system.
Individuals who sit or lie down for long periods of time experience discomfort from trapped heat between the skin and the contact surface. This trapped body heat leads to unproductive perspiration which accumulates and causes a soggy, sticky feeling. In extreme eases, the moisture weakens the skin and the tissue causing pressure ulcers and sores. Although these skin disorders are fundamentally caused by pressure closing off blood flow to tissues, temperature is also a factor in their formation and severity (see “Skin Cooling Surfaces: Estimating the Importance of Limiting Skin Temperature”, by Charles Lachenbruch, Ostomy Wound Management February 2005). A distributed thermoelectric implementation can be very effective in eliminating the discomfort and reducing or preventing the disorders caused by trapped heat in sitting and lying down positions.
In one example, we show how a string of thermoelectric elements connected by conductors in accordance with the present invention can be used to produce a heated or cooled mattress surface. The resulting mattress uses contact between the expanded conductor and the skin or clothing to remove trapped heat, which is not only more efficient as mentioned earlier, but also is responds much faster than prior art thermoelectric systems that employ a working fluid like water or air. In these prior art systems, the entire volume of the water or air must have its temperature increased or decreased before the user feels a change. For the present invention, the user feels a change as soon as the expanded conductor changes temperature, which can occur in seconds.
Hence, the need exists for a variety of insulating panels to be safely and comfortably improved with thermoelectric capability, such as seat cushions, mattresses, pillows, blankets, ceiling tiles, office/residence walls or partitions, under-desk panels, electronic enclosures, building walls, solar panels, refrigerator walls, freezer walls within refrigerators, or crisper walls within refrigerators.
Devices that generate electricity from renewable sources all have limitations. The ideal power generation technology supplies power 24 hours per day, is low cost, and uses only energy from renewable sources, such as wind, tidal and wave, sunlight, or geothermal pools. The two most common forms of utility-scale renewable power generation are wind turbines and photovoltaic systems.
Photovoltaic (PV) technology has the following limitations: (1) high cost, (2) generates power only when the sun is shining brightly which is less than 33% of the time, (3) introduces transients into the electrical grid when clouds suddenly block the sun, and (4) low efficiency without concentration or dangerous temperatures and light levels with concentration.
Wind turbines have the following limitations: (1) relatively high cost, (2) generates power only when the wind is blowing which is less than 33% of the time on average, (3) introduces transients into the electrical grid when the wind suddenly stops or changes direction, (4) requires very tall and visually unacceptable structures, (5) generates noise, (6) has a random peak capacity time during the day that rarely matches the peak demand time, and (7) has very low land usage at about 4 Kwatts per acre.
Both PV and wind turbines may be supplemented with large batteries to store energy for periods of time when the renewable source is not available, but such storage is very expensive at about $1000 per Kwatt hour. When combined with battery storage to achieve 100% renewable generation, the cost for a renewable PV or wind turbine plant is around $20 per watt, vs. about $10 per watt for a fossil fuel pant including 10 years of fuel costs.
Tidal and wave energy installations require high capital startup costs, and like wind turbines, suffer from variable output and may be visually unacceptable structures if erected near shorelines.
Hence, the need exists for a low-cost electrical power generation capability that can supply power 24 hours per day, 7 days per week, and 365 days per year and only tap renewable energy sources. One preferred embodiment of the invention thermoelectric string and associated panel described herein can accomplish these goals.
Broadly speaking, this invention makes possible thermoelectric capability for a variety of panel materials and enables local/personal heating and cooling that reduces overall energy consumption. In one aspect this invention provides a thermoelectric string that can be woven or inserted into a variety of such panels, including soft and low-temperature panels. In another aspect, this invention also eliminates the need for a large, bulky, heavy, and expensive heat sinks and fans to dissipate heating and cooling. In one aspect this invention combines hardware that moves electrical current with hardware that dissipates thermal energy, thereby saving cost over embodiments such as U.S. Pat. No. 3,196,524. In another aspect this invention provides a common set of hardware to provide low thermal back flow near the thermoelectric elements and simultaneously provides high thermal conduction to ambient air away from the elements. In one embodiment this invention provides a thermoelectric string that can be routed through small holes in the panel to minimize thermal leakage. In another embodiment this invention eliminates the need for vacuum enclosures such as U.S. Pat. No. 3,225,549 of highly-distributed thermoelectric elements and also eliminate the need for wicking fluids such as US 2010/0107657. In a particularly preferred embodiment this invention provides cooling capability and electricity generation for pennies per watt in manufacturing cost. In some embodiments this invention reduces the delta temperature required across the thermoelectric elements to a level that the overall cooling efficiency can be comparable to that of a vapor compression system. In some embodiments, this invention reduces or eliminates discomfort and disorders from trapped heat between human or animal skin and surfaces.
Features and advantages of the present invention will be seen from the following detailed description taken into conjunction with the accompanying drawings wherein like numerals depict like parts, and wherein:
a shows a string of thermoelectric elements connected by lengths of braided wire with a flat (pellet) strain reliefs;
b shows a string of thermoelectric elements connected by lengths of braided wire with tubular strain reliefs
a and 2b illustrate a method of assembling the thermoelectric elements on strain reliefs using a standard circuit board manufacturing process;
b illustrates how the braid of
c illustrates how the braid of
d illustrates how the braid of
a illustrates how multiple layers of panels shown in
b illustrates how multiple channels of the panels of
a-6i illustrate various expandable metals which advantageously may be employed in the present invention including un-oriented copper mesh (
a-c illustrated a thermoelectric cooler made in accordance with the present invention, and
a and 11b show the same panel providing heating and cooling for the surface of air mattresses;
a and 12b show the same panel providing heating and cooling for thick foam mattresses;
a is a perspective view, from the side showing a foam mattress made with thermoelectric panels of
b is a perspective view from the end of the mattress of
c shows the mattress of
a and 15b show integration of a thermoelectric panel of the present invention into a mesh-style office chair,
a-16c illustrate incorporation of a thermoelectric panel as shown in
a shows the thermoelectric panel mounted behind the chair mesh;
b shows the thermoelectric string with portion of the string in front of the mesh;
c shows the thermoelectric string mounted on the back of the chair;
d shows a thermoelectric panel; and
A preferred embodiment of this invention includes a string containing alternating P-type 102 and N-Type 103 thermoelectric elements connected by lengths of braided or stranded wire 101 as shown in
a and 2b show how subassemblies of this thermoelectric string might be fabricated using standard circuit board assembly techniques and machinery. A large FR4 circuit board 202 is patterned with the copper pads 107 of the strain reliefs 106 of
The lower portion of
The thermoelectric elements of
Another embodiment is when the compacted portions 303 of the string within the panel holes of
Yet another embodiment is to weave or assemble the string into a mold instead of the panel of
In the embodiment of
Once woven or placed, the exterior metal 101 in
A key element of this invention over the prior art is re-optimizing the heat sinks for natural convection vs. the forced-air convection. With prior art forced-air convection systems, usually based on a fan, the forced air is moving in one direction only. Hence, the optimal heat sink is a metal plate for spreading the heat and linear metal “fins” for distributing the heat along the direction of the forced air. So, in prior-art forced air systems, the optimal heat sink maximizes the area touching air along the airflow, as represented by the parallel fins commonly used.
For a natural convection environment, the air flow velocity is much less than with a fan, but the air has the ability to move in all directions. Hence, the optimal heat sink for a natural convection environment is one that maximizes the area touching air in any direction.
In this preferred embodiment, re-optimizing the heat sink for natural convection brings about the following advantages: (1) better uniformity of the absorption of heat on the cold side and of the dissipation of heat on the hot side, (2) silent operation by eliminating the need for a fan, (3) much less total metal required, (4) more reliable because fans are prone to failure, (5) more efficient because the temperature change across the heat sink can be recovered to provide better additional cooling.
A typical prior-art thermoelectric module deployment has a heat sink with fins that are typically 2 mm thick. Because two surfaces of the fin are exposed to air, the total cross section perimeter of exposure is 4 mm for each thermoelectric element. In the preferred embodiment of this invention, the aggregate diameter d of the compacted wire is 1 mm. However, when the strands are spaced apart on the hot or cold side as shown in
Furthermore, the number of stranded wires in
Without limitation, the panel 301 in
In some cases, it is desirable to have multi-stage thermoelectric cooling and heating. Higher temperature deltas are achievable. Prior art modules often are stacked together in a cascade configuration with 2 to 4 stages typically to achieve the very low temperatures needed for sensitive imaging cameras. The same multi-staging is possible with this invention and provides similar benefits, as illustrated in
a-6i show even more possibilities for expanded or expandable metals, including another type of un-oriented copper mesh 601, copper strands weaved like rope 603, coaxially grouped strands 604, copper foam 605, or loose copper strands 606. For the metal screen or mesh, the metal may be compacted by rolling tightly or folding tightly in an accordion shape near the thermoelectric elements, and loosening the roll or the folds away from the thermoelectric elements.
The thermoelectric panels described can also be deployed for generating electricity from heat. When heat is applied to one side, a Seebeck voltage is generated that can be used for electrical power. The heat source can be a selective surface receiving sunlight, a road or highway surface, geothermal heat, engine heat, smokestack heat, body heat, waste heat, and many other possibilities.
a-7c illustrate a thermoelectric cooler 701 using the invention. Four thermoelectric panels 505 were built using a string as shown in
The cooler of
d shows the data taken during an experiment to compare the invention cooler with the prior art commercial cooler. The two key measures of performance for such a cooler are (1) the rate of cool-down for a room-temperature cup of water 703 and (2) the minimum temperature reached by the air inside each cooler. The graph 707 in
The experiment revealed that the cooling-down rate for the cup of water, indicated by the slope of the line 709 and 711 for the invention, was comparable to the cooling-down rate of the prior art commercial cooler, indicated by the slope of 710. In addition, the minimum temperature of the air inside the box reached 5.5 degrees C. for both the invention cooler as indicated by line 713 and for the prior art cooler 712.
The data in
The thermoelectric panels of the invention illustrated in
In order to save overall energy or achieve greater individual comfort in cooling or heating the human body, one advantageous technique is to allow for local heating or cooling relative the environment. For example, the thermoelectric panel of the present invention may be placed around the cavity under a desk 805 as illustrated in
For individuals that must wear helmets, the body heat confined inside the helmet can be uncomfortable. Or, the helmet may not provide sufficient warmth when worn in cold environments that require head protection. The thermoelectric panel of the present invention may be molded into the proper shape to add cooling and heating capability to helmets of all types, including motorcycle or bicycle 808, military 810, or hard hats 809 for construction sites.
Similarly, the invention panel may be shaped and used to make clothing like vests 816 or, without limitation, other types of clothing such as coats, pants, pant legs, and shirts.
The thermoelectric panel of the present invention also can be used to cool food and drinks or other objects. These panels can be deployed as the wall, door, back, or top of a wine chiller 806 or a camping cooler 801 and 802. Because the panel and string can be flexible 812 in
The thermoelectric panel of the present invention also may be deployed to heat or cool buffet trays 807 shown in
The thermoelectric panel of the present invention also may be deployed in residences and buildings, A portion of a wall or window or floor 815 may be replaced by the panel of the present invention and provide heating or cooling for room. The ceiling tiles 815 in buildings also may be replaced by the panels of the present invention to provide heating and cooling for the space underneath the ceiling. The panel of the present invention also may be employed in combination with central compressor-based air conditioning systems to eliminate the need for forced air that can carry germs and smells from one room to another. In this case, the panels of the present invention would be mounted along plenums with the hot side facing into the plenum. The cool air from the compressor-based HVAC system would carry the heat away from the hot side while the cold side of the panel removes heat from the room. In this case, the room is cooled without forced air.
In another aspect, the invention, provides renewable electrical power from the sun's radiation in well-suited climates. A second purpose is to continue providing energy when the sun is not shining and all night long. A third purpose is to improve the land utilization as measured in Kwatts/acre to many times higher than a wind turbine farm. A fourth purpose is to provide peak power capacity at a time of day that better matches the typical peak demand time for electricity. A fifth purpose of this invention is to use inert and non-toxic materials to store the energy of the sun in the form of heat. A sixth purpose is to provide these capabilities at a cost per watt that is a fraction of the cost (including fuel costs) of a traditional power plant and an even smaller fraction of the cost per watt of a PV or wind turbine plant (including battery storage costs). As discussed below, the invention demonstrates better performance over prior art implementations that do not have energy storage such as U.S. Pat. No. 3,088,989, by additionally distributing the thermoelectric elements to match the heat distribution from un-concentrated sunlight and remove the need for metal heat spreaders.
An embodiment of the invention is illustrated in
Without limitation, the power generator illustrated in
Again without limitation, the power generator of
An example power generator in accordance with
The insulating material 903 dimensions are 2 m×2 m×0.05 m, and so the thermal loss through the thickness of the insulator at the ΔT of 80° C. is 147 watts if a typical thermal conductivity of air-pocket insulators of 0.023 watts/m° C. is assumed.
Thermoelectric elements are readily available with an electrical resistance r of 0.005 ohm, thermal conductance K of 0.009 watts/° C., and Seebeck coefficient S of 300 μV/° C. These values indicate a thermoelectric performance ZT=S2T/rK at the average temperature of 60° C. (333K) of 0.60, which is well within the performance claimed by most manufacturers.
The distributed thermoelectric panel 902 is 2 m×2 m×0.05 m, and it contains 1333 thermoelectric elements. The elements are spaced apart by 5.5 cm in each lateral direction. The total thermal loss through the elements is 960 watts (1333ΔTK). The total voltage V generated by the elements connected in series is 1333SΔT or 32 volts. The total resistance of the elements, all connected in series, is R=1333r=6.7 ohm. Assuming a matched load of 6.7 ohm, then the current flow I is V/2R or 2.4 amps. Hence, a total of 38.4 watts (0.5VI) of power is available to the load by this example embodiment.
The sun's 907 radiation is known to be about 1000 watts/m2, which indicates that 4000 watts reaches the selective surface 904. After subtracting the loss through the thermoelectric elements and through the insulating material, 2893 watts (4000−960−147) is absorbed as heat in the heat storage medium 905. Because 4000 watts are entering the medium for 8 hours of the day and 1145.4 watts (960+147+38.4) are leaving the medium for 24 hours of the day, more energy (net 4.52 Kwatt hours per day) is entering per day than is leaving, allowing for this embodiment to reach and maintain a maximum temperature. The heat builds up in the heat storage medium until it reaches its heat capacity of 112 Kwatt hours. The time required to reach the maximum temperature is about 25 days (112 Kwatt hours/4.52 Kwatt hours per day).
While this embodiment is less than 1% efficient on an instantaneous basis (38.4 watts generates/4000 watts available from the sun), which is a conservative expectation for a thermoelectric generator at these temperatures, making use of the heat storage allows the thermoelectric device to be about 3% efficient on a daily average basis.
A feature and advantage of this embodiment is that it reaches its maximum temperature in the mid-afternoon hours as heat builds up in the heat storage medium 905. Hence, the time of maximum power output of this embodiment better matches the time of peak demand for electricity. Photovoltaic panels have their maximum output at noon, which is two hours earlier than the peak demand. The daily maximum output of wind turbines is unpredictable.
With this embodiment, 38.4 watts of electrical power generated in a 2 m×2 m area corresponds to 38 Kwatts per acre, which compares very favorably to wind turbines which average about 4 Kwatts per acre.
Another feature and advantage of the present invention is that the storage medium, water, of this embodiment, is essentially free as the water does not even need to be fresh water. Storing energy as heat is much less costly than storing energy as electricity, and it may be stored without the toxic chemicals found in batteries.
a and 11b illustrates a similar concept for an air mattress. The air pressure in the mattress might be controllable to provide varying amounts of firmness or might be fixed. A pump 251 is run continuously to remove or insert heat again depending on whether the mattress surface is being cooled or heated. In
a and 12b illustrates a similar concept for a thick foam mattress 352. In
a-13c illustrate a similar concept for a thick foam mattress 352 in which air channels 353 are cut out of the foam.
a and 15b shows how the invention thermoelectric panel may be integrated with a mesh-style office chair. In these types of chairs, the mesh 651 supports the load and the distribution of pressure for the seated person. The intention of
a-16c shows pictures of a mesh style office chair that was built according to
The DPDT switch 853 in
Various changes may be made in the above, without degrading from the spirit and scope of the present invention.
This application claims priority from U.S. application Ser. No. 13/101,015, filed May 4, 2011, which in turn claims priority from U.S. Provisional Application Ser. No. 61/403,217, filed Sep. 13, 2010; U.S. Provisional Application Ser. No. 61/417,380, filed Nov. 26, 2010, U.S. Provisional Application Ser. No. 61/433,489, filed Jan. 17, 2011, and from; U.S. Provisional Application Ser. No. 61/470,039 filed Mar. 31, 2011. This application also claims priority from U.S. Provisional Application Ser. No. 61/504,784 filed. Jul. 6, 2011. The contents of all of the aforesaid applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/51227 | 9/12/2011 | WO | 00 | 3/5/2012 |
Number | Date | Country | |
---|---|---|---|
61403217 | Sep 2010 | US | |
61417380 | Nov 2010 | US | |
61433489 | Jan 2011 | US | |
61470039 | Mar 2011 | US | |
61504784 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13101015 | May 2011 | US |
Child | 13394288 | US |