Thermoelectric modules typically contain densely packed elements spaced apart by 1-3 mm. Up to 256 such elements are connected in an array that is 2×2 inches (5.08×5.08 cm) in area. When these modules are deployed, large and heavy heat sinks and powerful fans are required to dissipate or absorb the heat on each side. The reasons for these dense prior art configurations are well-founded: small elements with low resistance allow larger current I to flow before the resistive heat (I2R) generated destroys the thermoelectric cooling (pI1 where p=Peltier coefficient). The use of short elements for maximum cooling capacity results in the hot and cold side circuit boards being close together. This proximity results in the high density.
To achieve a low density packing of thermoelectric elements, one could space out these elements on the boards laterally, but then the backflow of heat conducted and radiated through the air between the elements limits the overall performance. Some designs require evacuating the module interior to reduce heat backflow due to air conduction, but vacuum cavities require expensive materials and are prone to leaks. Vacuum materials (like glass and Kovar™) are also hard and easily broken when thin enough to limit their own backflow of heat. Broken glass can lead to safety issues when these modules are used in seat cushions, automobiles, and other environments.
Another problem in spreading out thermoelectric elements is that the rigid connection of elements over large distances causes them to rupture due to sheer stress upon thermal expansion of the hot side relative to the cold side. To solve this problem, other designs have been proposed that use a flexible plastic such as polyimide for the circuit boards, but these materials are too porous to maintain a vacuum.
Another disadvantage of the prior art design of thermoelectric modules is that the high density of heat moved to the hot side results in a temperature gradient through the heat sink, and this temperature delta subtracts from the overall cooling that the module can achieve. In particular, traditional thermoelectric products are not able to reach true refrigeration temperature because of this temperature gradient.
Finally, because prior art thermoelectric modules are placed in a solder reflow oven during assembly, only high-temperature materials may be used. Unfortunately, many desired uses of cooling and heating involve close or direct contact with the human body, for which soft materials, such as cushions, cloths, and flexible foam are preferred, but these materials cannot withstand the high temperatures of a solder reflow oven.
Thermoelectric devices can be as efficient, or even more efficient, than vapor compression cooling systems when the temperature delta is 10 degrees C. or less. For this reason, a strong desire exists to deploy thermoelectric technology for local heating and cooling of occupied spaces and thereby reduce the overall energy consumption needed for personal comfort. The total energy savings of the central A/C or heating system plus the local thermoelectric systems can be 30% or more for such a combination, but the unwieldy implementation of prior-art thermoelectric modules inhibits their use for this purpose.
Hence, the need exists for a variety of insulating panels to be safely and comfortably improved with thermoelectric capability, such as seat cushions, mattresses, pillows, blankets, ceiling tiles, office/residence walls or partitions, under-desk panels, electronic enclosures, building walls, solar panels, refrigerator walls, freezer walls within refrigerators, or crisper walls within refrigerators.
Devices that generate electricity from renewable sources all have limitations. The ideal power generation technology supplies power 24 hours per day, is low cost, and uses only energy from renewable sources, such as wind, tidal and wave, sunlight, or geothermal pools. The two most common forms of utility-scale renewable power generation are wind turbines and photovoltaic systems.
Photovoltaic (PV) technology has the following limitations: (1) high cost, (2) generates power only when the sun is shining brightly which is less than 33% of the time, (3) introduces transients into the electrical grid when clouds suddenly block the sun, and (4) low efficiency without concentration or dangerous temperatures and light levels with concentration.
Wind turbines have the following limitations: (1) relatively high cost, (2) generates power only when the wind is blowing which is less than 33% of the time on average, (3) introduces transients into the electrical grid when the wind suddenly stops or changes direction, (4) requires very tall and visually unacceptable structures, (5) generates noise, (6) has a random peak capacity time during the day that rarely matches the peak demand time, and (7) has very low land usage at about 4 Kwatts per acre.
Both PV and wind turbines may be supplemented with large batteries to store energy for periods of time when the renewable source is not available, but such storage is very expensive at about $1000 per Kwatt hour. When combined with battery storage to achieve 100% renewable generation, the cost for a renewable PV or wind turbine plant is around $20 per watt, vs. about $10 per watt for a fossil fuel pant including 10 years of fuel costs.
Tidal and wave energy installations require high capital startup costs, and like wind turbines, suffer from variable output and may be usually unacceptable structures if erected near shorelines.
Hence, the need exists for a low-cost electrical power generation capability that can supply power 24 hours per day, 7 days per week, and 365 days per year and only tap renewable energy sources. One preferred embodiment of the invention thermoelectric string and associated panel described herein can accomplish these goals.
Broadly speaking, this invention makes possible thermoelectric capability for a variety of panel materials and enables local/personal heating and cooling that reduces overall energy consumption. In one aspect this invention provides a thermoelectric string that can be woven or inserted into a variety of such panels, including soft and low-temperature panels. In another aspect, this invention also eliminates the need for a large, bulky, heavy, and expensive heat sinks and fans to dissipate heating and cooling. In one aspect this invention combines hardware that moves electrical current with hardware that dissipates thermal energy, thereby saving cost over embodiments such as U.S. Pat. No. 3,196,524. In another aspect this invention provides a common set of hardware to provide low thermal back flow near the thermoelectric elements and simultaneously provide high thermal conduction to ambient air away from the elements. In one embodiment this invention provides a thermoelectric string that can be routed through small holes in the panel to minimize thermal leakage. In another embodiment this invention eliminates the need for vacuum enclosures such as U.S. Pat. No. 3,225,549 of highly-distributed thermoelectric elements and also eliminate the need for wicking fluids such as U.S. 2010/0107657. In a particularly preferred embodiment this invention provides cooling capability and electricity generation for pennies per watt in manufacturing cost.
Features and advantages of the present invention will be seen from the following detailed description taken into conjunction with the accompanying drawings wherein like numerals depict like parts, and wherein:
A preferred embodiment of this invention includes a string containing alternating P-type 102 and N-Type 103 thermoelectric elements connected by lengths of braided or stranded wire 101 as shown in
The lower portion of
The thermoelectric elements of
Another embodiment is when the compacted portions 303 of the string within the panel holes of
Yet another embodiment is to weave or assemble the string into a mold instead of the panel of
In the embodiment of
Once woven or placed, the exterior metal 101 in
A key element of this invention over the prior art is re-optimizing the heat sinks for natural convection vs. the forced-air convection. With the prior art forced-air convection systems, usually based on a fan, the forced air is moving in one direction only. Hence, the optimal heat sink is a metal plate for spreading the heat and linear metal “fins” for distributing the heat along the direction of the forced air. So, in prior-art forced air systems, the optimal heat sink maximizes the area touching air along the airflow, as represented by the parallel fins commonly used.
For a natural convection environment, the air flow velocity is much less than with a fan, but the air has the ability to move in all directions. Hence, the optimal heat sink for a natural convection environment is one that maximizes the area touching air in any direction.
In this preferred embodiment, re-optimizing the heat sink for natural convection brings about the following advantages: (1) better uniformity of the absorption of heat on the cold side and of the dissipation of heat on the hot side, (2) silent operation by eliminating the need for a fan, (3) much less total metal required, (4) more reliable because fans are prone to failure, (5) more efficient because the temperature change across the heat sink can be recovered to provide better additional cooling.
A typical prior-art thermoelectric module deployment has a heat sink with fins that are typically 2 mm thick. Because two surfaces of the fin are exposed to air, the total cross section perimeter of exposure is 4 mm for each thermoelectric element. In the preferred embodiment of this invention, the aggregate diameter d of the compacted wire is 1 mm. However, when the strands are spaced apart on the hot or cold side as shown in
Furthermore, the number of strands in
Without limitation, the panel 301 in
In some cases, it is desirable to have multi-stage thermoelectric cooling and heating. Higher temperature deltas are achievable. Prior art modules often are stacked with 2 to 4 stages to achieve the very low temperatures needed for sensitive imaging cameras. The same multi-staging is possible with this invention and provides similar benefits, as illustrated in
The thermoelectric panels described can also be deployed for generating electricity from heat. When heat is applied to one side, a Seebeck voltage is generated that can be used for electrical power. The heat source can be a selective surface receiving sunlight, a road or highway surface, geothermal heat, engine heat, smokestack heat, body heat, waste heat, and many other possibilities.
The invention prototype of
The experiment revealed that the cooling-down rate for the cup of water, indicated by the slope of the line 709 and 711 for the invention, was comparable to the cooling-down rate of the prior art commercial cooler, indicated by the slope of 710. In addition, the minimum temperature of the air inside the box reached 5.5 degrees C. for both the invention cooler as indicated by line 713 and for the prior art cooler 712.
The data in
The thermoelectric panels of the invention illustrated in
In order to save overall energy or achieve greater individual comfort in cooling or heating the human body, one advantageous technique is to allow for local heating or cooling relative, the environment. For example, the thermoelectric panel of the present invention may be placed around the cavity under a desk 805 as illustrated in
For individuals that must wear helmets, the body heat confined inside the helmet can be uncomfortable. Or, the helmet may not provide sufficient warmth when worn in cold environments that require head protection. The thermoelectric panel of the present invention may be molded into the proper shape to add cooling and heating capability to helmets of all types, including motorcycle or bicycle 808, military 810, or hard hats 809 for construction sites.
Similarly, the invention panel may be shaped and used to make clothing like vests 816 or, without limitation, other types of clothing such as coats, pants, pant legs, and shirts.
The thermoelectric panel of the present invention also can be used to cool food and drinks or other objects. These panels can be deployed as the wall, door, back, or top of a wine chiller 806 or a camping cooler 801 and 802. Because the panel and string can be flexible 812 in
The thermoelectric panel of the present invention also may be deployed to heat or cool buffet trays 807 shown in
The thermoelectric panel of the present invention also may be deployed in residences and buildings, A portion of a wall or window or floor 815 may be replaced by the panel of the present invention and provide heating or cooling for room. The ceiling tiles 815 in buildings also may be replaced by the panels of the present invention to provide heating and cooling for the space underneath the ceiling. The panel of the present invention also may be employed in combination with central compressor-based air conditioning systems to eliminate the need for forced air that can carry germs and smells from one room to another. In this case, the panels of the present invention would be mounted along plenums with the hot side facing into the plenum. The cool air from the compressor-based HVAC system would carry the heat away from the hot side while the cold side of the panel removes heat from the room. In this case, the room is cooled without forced air.
In another aspect, the invention, provides renewable electrical power from the sun's radiation in well-suited climates. A second purpose is to continue providing energy when the sun is not shining and all night long. A third purpose is to improve the land utilization as measured in Kwatts/acre to many times higher than a wind turbine farm. A fourth purpose is to provide peak power capacity at a time of day that better matches the typical peak demand time for electricity. A fifth purpose of this invention is to use inert and non-toxic materials to store the energy of the sun in the form of heat. A sixth purpose is to provide these capabilities at a cost per watt that is a fraction of the cost (including fuel costs) of a traditional power plant and an even smaller fraction of the cost per watt of a PV or wind turbine plant (including battery storage costs). As discussed below, the invention demonstrates better performance over prior art implementations that do not have energy storage such as U.S. Pat. No. 3,088,989, by additionally distributing the thermoelectric elements to match the heat distribution from un-concentrated sunlight and remove the need for metal heat spreaders.
An embodiment of the invention is illustrated in
Without limitation, the power generator illustrated in
Again without limitation, the power generator of
An example power generator in accordance with
The insulating material 903 dimensions are 2 m×2 m×0.05 m, and so the thermal loss through the thickness of the insulator at the ΔT of 80° C. is 147 watts if a typical thermal conductivity of air-pocket insulators of 0.023 watts/m° C. is assumed.
Thermoelectric elements are readily available with an electrical resistance r of 0.005 ohm, thermal conductance K of 0.009 watts/° C., and Seebeck coefficient S of 300 μV/° C. These values indicate a thermoelectric performance ZT=S2T/rK at the average temperature of 60° C. (333K) of 0.60, which is well within the performance claimed by most manufacturers.
The distributed thermoelectric panel 902 is 2 m×2 m×0.05 m, and it contains 1333 thermoelectric elements. The elements are spaced apart by 5.5 cm in each lateral direction. The total thermal loss through the elements is 960 watts (1333ΔTK). The total voltage V generated by the elements connected in series is 1333SΔT or 32 volts. The total resistance of the elements, all connected in series, is R 32 1333r=6.7 ohm. Assuming a matched load of 6.7 ohm, then the current flow I is V/2R or 2.4 amps. Hence, a total of 38.4 watts (0.5VI) of power is available to the load by this example embodiment.
The sun's 907 radiation is known to be about 1000 watts/m2, which indicates that 4000 watts reaches the selective surface 904. After subtracting the loss through the thermoelectric elements and through the insulating material, 2893 watts (4000-960-147) is absorbed as heat in the heat storage medium 905. Because 4000 watts are entering the medium for 8 hours of the day and 1145.4 watts (960+147+38.4) are leaving the medium for 24 hours of the day, more energy (net 4.52 Kwatt hours per day) is entering per day than is leaving, allowing for this embodiment to reach and maintain a maximum temperature. The heat builds up in the heat storage medium until it reaches its heat capacity of 112 Kwatt hours. The time required to reach the maximum temperature is about 25 days (112 Kwatt hours/4.52 Kwatt hours per day).
While this embodiment is less than 1% efficient on an instantaneous basis (38.4 watts generates/4000 watts available from the sun), which is a conservative expectation for a thermoelectric generator at these temperatures, making use of the heat storage allows the thermoelectric device to be about 3% efficient on a daily average basis.
A feature and advantage of this embodiment is that it reaches its maximum temperature in the mid-afternoon hours as heat builds up in the heat storage medium 905. Hence, the time of maximum power output of this embodiment better matches the time of peak demand for electricity. Photovoltaic panels have their maximum output at noon, which is two hours earlier than the peak demand. The daily maximum output of wind turbines is unpredictable.
With this embodiment, 38.4 watts of electrical power generated in a 2 m×2 m area corresponds to 38 Kwatts per acre, which compares very favorably to wind turbines which average about 4 Kwatts per acre.
Another feature and advantage of the present invention is that the storage medium, water, of this embodiment, is essentially free as the water does not even need to be fresh water. Storing energy as heat is much less costly than storing energy as electricity, and it may be stored without the toxic chemicals found in batteries.
Various changes may be made in the above, without degrading from the spirit and scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 13/101,015, filed May 4, 2011, which claims priority from U.S. Provisional Application Ser. No. 61/403,217, filed Sep. 13, 2010; U.S. Provisional Application Ser. No. 61/417,380, filed Nov. 26, 2010, U.S. Provisional Application Ser. No. 61/433,489, filed Jan. 17, 2011, and from U.S. Provisional Application Ser. No. 61/470,039 filed Mar. 31, 2011, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2376902 | Clark | May 1945 | A |
RE22763 | Clark | Jun 1946 | E |
2606996 | Westerberg et al. | Aug 1952 | A |
2796532 | Teague et al. | Jun 1957 | A |
2858350 | Fritts | Oct 1958 | A |
3083381 | Bailey | Apr 1963 | A |
3129345 | Hatsopoulos et al. | Apr 1964 | A |
3136577 | Richard | Jun 1964 | A |
3173032 | Maynard | Mar 1965 | A |
3196524 | Jamison | Jul 1965 | A |
3217189 | Bloss | Nov 1965 | A |
3225549 | Elfving | Dec 1965 | A |
3406753 | Habdas | Oct 1968 | A |
3549201 | Wolf | Dec 1970 | A |
3627988 | Romaniec | Dec 1971 | A |
3754703 | Saponara | Aug 1973 | A |
4343993 | Binnig et al. | Aug 1982 | A |
4423308 | Callaway et al. | Dec 1983 | A |
4523594 | Kuznetz | Jun 1985 | A |
4625394 | Kemnitz et al. | Dec 1986 | A |
4820903 | Ishida | Apr 1989 | A |
4825488 | Bedford | May 1989 | A |
4825868 | Susa et al. | May 1989 | A |
4930317 | Klein | Jun 1990 | A |
4937435 | Gross et al. | Jun 1990 | A |
4969684 | Zarotti | Nov 1990 | A |
5028835 | Fitzpatrick | Jul 1991 | A |
5138851 | Mardikian | Aug 1992 | A |
5541464 | Johnson et al. | Jul 1996 | A |
5594534 | Genovese | Jan 1997 | A |
5653741 | Grant | Aug 1997 | A |
5712448 | Vandersande et al. | Jan 1998 | A |
5837002 | Augustine et al. | Nov 1998 | A |
5851338 | Pushaw | Dec 1998 | A |
5892656 | Bass | Apr 1999 | A |
5917229 | Nathan et al. | Jun 1999 | A |
6064137 | Cox | May 2000 | A |
6129990 | Frater | Oct 2000 | A |
6220659 | McDonald | Apr 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6230501 | Bailey, Sr. et al. | May 2001 | B1 |
6323413 | Roth et al. | Nov 2001 | B1 |
6323777 | Durston et al. | Nov 2001 | B1 |
6328594 | Mullen, Jr. | Dec 2001 | B1 |
6385976 | Yamamura | May 2002 | B1 |
6410971 | Otey | Jun 2002 | B1 |
6494048 | Ghoshal et al. | Dec 2002 | B1 |
6501055 | Rock et al. | Dec 2002 | B2 |
6523354 | Tolbert | Feb 2003 | B1 |
6582456 | Hand et al. | Jun 2003 | B1 |
6639242 | Chen et al. | Oct 2003 | B1 |
6651760 | Cox et al. | Nov 2003 | B2 |
6653607 | Ellis et al. | Nov 2003 | B2 |
6720704 | Tavkhelidze et al. | Apr 2004 | B1 |
6774003 | Tavkhelidze et al. | Aug 2004 | B2 |
6823678 | Li | Nov 2004 | B1 |
6863981 | McBain | Mar 2005 | B2 |
6876123 | Martinovsky et al. | Apr 2005 | B2 |
6884732 | Najafi et al. | Apr 2005 | B2 |
6946596 | Kucherov et al. | Sep 2005 | B2 |
7005381 | Cox | Feb 2006 | B1 |
7117687 | Naaman | Oct 2006 | B2 |
7140102 | Taliashvili et al. | Nov 2006 | B2 |
7152412 | Harvie | Dec 2006 | B2 |
7253549 | Tavkhelidze et al. | Aug 2007 | B2 |
7273490 | Lachenbruch et al. | Sep 2007 | B2 |
7305839 | Weaver, Jr. | Dec 2007 | B2 |
7456543 | Makansi | Nov 2008 | B2 |
7708338 | Wolas | May 2010 | B2 |
7996936 | Marquette et al. | Aug 2011 | B2 |
8018117 | Makansi | Sep 2011 | B2 |
8066324 | Nathan et al. | Nov 2011 | B2 |
8102096 | Makansi | Jan 2012 | B2 |
8101847 | Okamura | Feb 2012 | B2 |
8327477 | Lachenbruch et al. | Dec 2012 | B2 |
8495974 | Agosta | Jul 2013 | B2 |
8969703 | Makansi et al. | Mar 2015 | B2 |
9066601 | Aminy et al. | Jun 2015 | B1 |
9272647 | Gawade et al. | Mar 2016 | B2 |
9408475 | Mikkelsen et al. | Aug 2016 | B2 |
20010011601 | Renaud | Aug 2001 | A1 |
20010046749 | Tavkhelidze et al. | Nov 2001 | A1 |
20020046762 | Rossi | Apr 2002 | A1 |
20020058975 | Bieberich | May 2002 | A1 |
20020170172 | Tavkhelidze et al. | Nov 2002 | A1 |
20030042819 | Martinovsky et al. | Mar 2003 | A1 |
20030084935 | Bell | May 2003 | A1 |
20030131419 | Vansteenburg | Jul 2003 | A1 |
20030141455 | Lambert | Jul 2003 | A1 |
20030154725 | McGrew | Aug 2003 | A1 |
20030184188 | Kucherov et al. | Oct 2003 | A1 |
20030230913 | Buss et al. | Dec 2003 | A1 |
20040009729 | Hill et al. | Jan 2004 | A1 |
20040050415 | Kucherov et al. | Mar 2004 | A1 |
20040100131 | Howick et al. | May 2004 | A1 |
20040141455 | Tsukuda et al. | Jul 2004 | A1 |
20040160092 | Laib | Aug 2004 | A1 |
20040195934 | Tanielian | Oct 2004 | A1 |
20050050415 | Anand et al. | Mar 2005 | A1 |
20050066505 | Iqbal et al. | Mar 2005 | A1 |
20050077618 | McCutcheon et al. | Apr 2005 | A1 |
20050140189 | Bajic et al. | Jun 2005 | A1 |
20050184565 | Weiss et al. | Aug 2005 | A1 |
20050184603 | Martsinovsky | Aug 2005 | A1 |
20050189871 | Tavkhelidze et al. | Sep 2005 | A1 |
20050253425 | Asada et al. | Nov 2005 | A1 |
20060000226 | Weaver, Jr. | Jan 2006 | A1 |
20060027552 | Krobok et al. | Feb 2006 | A1 |
20060038290 | Tavkhelidze et al. | Feb 2006 | A1 |
20060068176 | Zafiroglu et al. | Mar 2006 | A1 |
20060110657 | Stanton et al. | May 2006 | A1 |
20060138896 | Makansi | Jun 2006 | A1 |
20060162761 | Tanielian | Jul 2006 | A1 |
20060180829 | Martsinovsky | Aug 2006 | A1 |
20060191886 | Pak | Aug 2006 | A1 |
20060192196 | Tavkhelidze et al. | Aug 2006 | A1 |
20060207643 | Weaver, Jr. | Sep 2006 | A1 |
20070001507 | Brennan et al. | Jan 2007 | A1 |
20070023077 | Tanielian | Feb 2007 | A1 |
20070033782 | Taliashvili et al. | Feb 2007 | A1 |
20070056623 | Tavkhelidze et al. | Mar 2007 | A1 |
20070069357 | Weaver et al. | Mar 2007 | A1 |
20070084220 | Asada et al. | Apr 2007 | A1 |
20070112390 | Lau et al. | May 2007 | A1 |
20070137687 | Tanielian | Jun 2007 | A1 |
20070181913 | Li | Aug 2007 | A1 |
20070272673 | Keane | Nov 2007 | A1 |
20070277313 | Terech et al. | Dec 2007 | A1 |
20070289620 | Stark | Dec 2007 | A1 |
20070295973 | Jinbo et al. | Dec 2007 | A1 |
20080015665 | Lachenbruch | Jan 2008 | A1 |
20080017237 | Bray et al. | Jan 2008 | A1 |
20080029146 | Plissonier et al. | Feb 2008 | A1 |
20080042163 | Weaver, Jr. | Feb 2008 | A1 |
20080054490 | McLellan et al. | Mar 2008 | A1 |
20080155981 | Tanielian | Jul 2008 | A1 |
20080173022 | Petrovski | Jul 2008 | A1 |
20080237827 | Autry | Oct 2008 | A1 |
20090025774 | Plissonnier | Jan 2009 | A1 |
20090038317 | Otey | Feb 2009 | A1 |
20090078690 | Lee et al. | Mar 2009 | A1 |
20090121524 | Abe et al. | May 2009 | A1 |
20090199571 | Creech et al. | Aug 2009 | A1 |
20090200983 | Dyer et al. | Aug 2009 | A1 |
20090205695 | Makansi | Aug 2009 | A1 |
20090229648 | Makansi | Sep 2009 | A1 |
20090257774 | Rummler et al. | Oct 2009 | A1 |
20090283124 | Seo | Nov 2009 | A1 |
20090322221 | Makansi | Dec 2009 | A1 |
20100031448 | Hijlkema | Feb 2010 | A1 |
20100101620 | Tanaka | Apr 2010 | A1 |
20100107657 | Vistakula | May 2010 | A1 |
20100269517 | Ikeda et al. | Oct 2010 | A1 |
20100270996 | Ramadas et al. | Oct 2010 | A1 |
20100281884 | Rawski et al. | Nov 2010 | A1 |
20100288370 | Volden et al. | Nov 2010 | A1 |
20100327636 | Stoll et al. | Dec 2010 | A1 |
20110016886 | Ghoshal et al. | Jan 2011 | A1 |
20110109128 | Axakov et al. | May 2011 | A1 |
20110139203 | Yap | Jun 2011 | A1 |
20110226299 | Makansi | Sep 2011 | A1 |
20110240751 | Rauh et al. | Oct 2011 | A1 |
20120019074 | Frolov et al. | Jan 2012 | A1 |
20120032478 | Friderich et al. | Feb 2012 | A1 |
20120060882 | Makansi | Mar 2012 | A1 |
20120060885 | Makansi et al. | Mar 2012 | A1 |
20120110734 | An | May 2012 | A1 |
20120113594 | Goettert et al. | May 2012 | A1 |
20120131748 | Brykalski et al. | May 2012 | A1 |
20120146455 | Makansi | Jun 2012 | A1 |
20120148328 | Jollet | Jun 2012 | A1 |
20120198616 | Makansi et al. | Aug 2012 | A1 |
20130008181 | Makansi et al. | Jan 2013 | A1 |
20130014796 | Tajima | Jan 2013 | A1 |
20130097777 | Marquette et al. | Apr 2013 | A1 |
20130106147 | Lazanja et al. | May 2013 | A1 |
20130180563 | Makansi | Jul 2013 | A1 |
20140041396 | Makansi et al. | Feb 2014 | A1 |
20140082846 | Blazar | Mar 2014 | A1 |
20140208521 | Farnham | Jul 2014 | A1 |
20140331688 | Kossakovski et al. | Nov 2014 | A1 |
20150121901 | Makansi et al. | May 2015 | A1 |
20150266405 | Fitzpatrick et al. | Sep 2015 | A1 |
20160133817 | Makansi et al. | May 2016 | A1 |
20170273830 | Hitschmann | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
201636597 | Nov 2010 | CN |
103098249 | May 2013 | CN |
4010909 | Oct 1991 | DE |
1612492 | Jan 2006 | EP |
2065465 | Jul 1981 | GB |
S34595 | Feb 1959 | JP |
S6147907 | Mar 1986 | JP |
S62159610 | Jul 1987 | JP |
S63257513 | Oct 1988 | JP |
H02116613 | Sep 1990 | JP |
H03247315 | Nov 1991 | JP |
H09197806 | Jul 1997 | JP |
2002084005 | Mar 2002 | JP |
2002519100 | Jul 2002 | JP |
2003042590 | Feb 2003 | JP |
2003209297 | Jul 2003 | JP |
2003526484 | Sep 2003 | JP |
2006081575 | Mar 2006 | JP |
2007175476 | Jul 2007 | JP |
2008538850 | Nov 2008 | JP |
2009074746 | Apr 2009 | JP |
2009183354 | Aug 2009 | JP |
2010240258 | Oct 2010 | JP |
2011014281 | Jan 2011 | JP |
2011204824 | Oct 2011 | JP |
2011211896 | Oct 2011 | JP |
2013198730 | Oct 2013 | JP |
2015168357 | Sep 2015 | JP |
WO-9811397 | Mar 1998 | WO |
WO 9913562 | Mar 1999 | WO |
WO 2007078048 | Jul 2007 | WO |
WO 2008027928 | Mar 2008 | WO |
WO 2009102706 | Aug 2009 | WO |
WO 2010078521 | Jul 2010 | WO |
WO-2010108254 | Sep 2010 | WO |
WO 2010150162 | Dec 2010 | WO |
WO-2012037031 | Mar 2012 | WO |
WO-2014052145 | Apr 2014 | WO |
WO-2015066518 | May 2015 | WO |
Entry |
---|
The Thermoelectric Properties and Crystallography of Bi—Sb—Te—Se Thin Films Grown by Ion Beam Sputtering, By H. Noro, K. Sato, and H. Kagechika, Journal of Applied Physics, 73 (3) Feb. 1, 1993. |
Efficient Switched Thermoelectric Refrigerators for Cold Storage Applications, by Ghoshal and Guha, Journal of Electronic Materials, vol. 38, No. 7, 2009. |
Vacuum Thermionic Refrigeration with a Semiconductor Heterojunction Structure, by Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, Applied Physics Letters, vol. 81, No. 22, Nov. 25, 2002. |
Measurements of Cooling by Room Temperature Thermionic Emission Across a Nanometer Gap, by Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, and T.W. Kenny, Journal of Applied Physics, vol. 94, No. 7, Oct. 1, 2003. |
Thermionic Refrigeration, By G.D. Mahan, Journal of Applied Physics, vol. 76, No. 7, Oct. 1, 1994. |
Multilayer Thermionic Refrigerator, by G.D. Mahan, J.A. Sofao and M. Bartkoiwak, Journal of Applied Physics, vol. 83, No. 9, May 1, 1998. |
Analysis of Nanonmeter Vacuum Gap Formation in Thermo-tunneling Devices, by E T Enikov and T Makansi, Nanotechnology Journal, 2008. |
Refrigeration by Combined Tunneling and Thermionic Emission in a Vacuum: Use of Nanometer Scale Design, by Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, Applied Physics Letters, vol. 78, No. 17, Apr. 23, 2001. |
Design and Characterization of Thin Film Microcoolers, Chris LaBounty, Ali Shakouri, John E. Bowers, Journal of Applied Physics, vol. 89, No. 7, Apr. 1, 2001. |
Possible Cooling by Resonant Fowler-Nordheim Emission, A.N. Korotkov and K.K. Likharev, Applied Physics Letters, vol. 75, No. 16, Aug. 23, 1999. |
Quantum, Cyclic, and Particle-Exchange Heat Engines, Humphrey et al., Physica E29, 390-398, 2005. |
Micron-gap ThermoPhotoVoltaics (MTPV), by R. DiMatteo, P. Greiff, D. Seltzer, D. Meulenberg, E. Brown, E. Carlen, K. Kaiser, S. Finberg, H. Nguyen, J. Azarkevich, P. Baldasaro, J. Beausang, L. Danielson, M. Dashiell, D. DePoy, E. Ehsani, W. Topper, K. Rahner, R. Siergie, Thermophotovoltaic Generation of Electricity Sixth Conference, American Institute of Physics, 2004. |
Thermal and electrical properties of Czochralski grown GeSi single crystals, by I. Yonenaga et al. Journal of Physics and Chemistry of Solids 2001. |
Thermotunneling Based on Cooling Systems for High Efficiency Buildings, by Marco Aimi, Mehmet Arik, James Bray, Thomas Gorczyca, Darryl Michael, and Stan Weaver General Electric Global Research Center, DOE Report Identifier DE-FC26-04NT42324, 2007. |
Selective Epitaxial Growth of SiGe on a SOI Substrate by Using Ultra-High Vacuum Chemical Vapor Deposition, by H. Choi, J. Bae, D. Soh, and S. Hong, Journal of the Korean Physical Society, vol. 48, No. 4, Apr. 2006, pp. 648-652. |
Strain relaxation of SiGe Islands on Compliant Oxide, by H. Yin et al., Journal of Applied Physics, vol. 91, No. 12, Jun. 15, 2002. |
Complex Thermoelectric Materials, By G. J. Snyder and E. S. Tober, Nature Materials, vol. 7 Feb. 2008. |
Substrate-Mediated Photo Induced Chemical Reactions on Ultrathin Metal Films, V.P. Zhdanov, B. Kasemo, Department of Applied. Physics, Apr. 19, 1999, Surface Science 432 (1999) L599-L603. |
Bismuth Telluride (Bi2Te3)Nanowires: Synthesis by Cyclic Electrodeposition/Stripping, Thinning by Electrooxidation, and Electrical Power Generation, E. J. Menke et al, Langmuir 2006, 22, 10564-10574, Jun. 30, 2006. |
Electronic Properties of Bismuth Nanowires, By Stephen B. Cronin et al., Dept of Physics, Electrical Engineering and Computer Science, Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139. |
Electroplating of Conformal Electrodes for Vacuum Nanogap Tunnel Junction, By Jangidze et al., Tbilisi State University, Chavchavadze Ave. 13, 0179, Georgia, Nov. 2008, pp. 1-11. |
European Supplementary Search Report, dated Oct. 22, 2010, Appln No. 07781.451.1.7-2208/2057659, PCT/US2007077042 (8 pgs). |
International Preliminary Report on Patentability, PCT/US07/07042, dated Mar. 12, 2009 (4 pgs). |
International Search Report and Written Opinion issued in PCT/US07/77042, dated Sep. 5, 2008. (3 pgs). |
International Search Report and Written Opinion, PCT/US07/60871, dated Jan. 22, 2007 (7 pgs). |
International Search Report and Written Opinion, PCT/US09/69959, dated Mar. 15, 2010 (9 pgs). |
Official Action dated Apr. 7, 2011 issued in related U.S. Appl. No. 12/302,782 (16 pgs). |
European Communication, dated May 27, 2011, Appln. No. 07 756 398.9-2208 (3 pgs). |
European Communication, dated Jun. 1, 2011, Appln. No. 07 814 511.7-2208 (3 pgs). |
International Search Report issued for PCT/US2010/045443, dated Oct. 1, 2012 (9 pgs). |
McCarthy et al, “Enhancing Thermoelectric Energy Recovery via Modulation of Source Temperature for Cyclical Heat Loadings” Journal of Heat Transfer, Jun. 2007, vol. 129, pp. 749-755 (7 pgs). |
Australian Examination Report No. 1 issued in related application No. 2011302303, dated Aug. 19, 2013 (4 pgs). |
Office Action issued in related U.S. Appl. No. 13/394,288 dated Nov. 14, 2013 (26 pgs). |
International Search Report and Written Opinion issued in related application No. PCT/US2013/050378, dated Dec. 30, 2013 (8 pgs). |
International Preliminary Report on Patentability issued in related application No. PCT/US2012/045443, dated Jan. 16, 2014 (6 pgs). |
Mexican Office Action issued in related application No. MX/a/2013/009378, dated Mar. 27, 2014 (2 pgs). |
PCT International Search Report and the Written Opinion, dated Dec. 23, 2011 (11 pgs). |
Lauterbach, “Smart Clothes Self-Powered by Body Heat”, Avantex Symposium, 2002. |
PCT Interntaional Search Report and the Written Opinion issued for PCT/Us2012/071838, dated Mar. 8, 2013 (10 pgs). |
Mexican Office Action issued in corresponding Mexican Patent Application No. MX/a/2013/002569, dated Jun. 13, 2013 (3 pgs). |
Official Action issued in U.S. Appl. No. 12/276,254, dated Jun 29, 2011 (23 pgs). |
Skin Cooling Surfaces: Estimating the Importance of Limiting Skin Temperature, By Charles Lachenbruch, Ostomy Wound Management, Feb. 2005 (8 pgs). |
Official Action issued if related U.S. Appl. No. 13/101,015 dated Mar. 21, 2014 (24 pgs). |
Official Action issued if related U.S. Appl. No. 13/101,015 dated Nov. 4, 2013 (50 pgs). |
Official Action issued if related U.S. Appl. No. 13/394,288 dated Aug. 18, 2014 (8 pgs). |
Official Action issued if related U.S. Appl. No. 13/394,288 dated Jun. 12, 2014 (18 pgs). |
Official Action issued if related U.S. Appl. No. 13/394,288 dated Mar. 18, 2014 (12 pgs). |
Extended European Search Report issued in related application No. 11825739.3, dated Nov. 18, 2014 (11 pgs). |
Office Action issued in related U.S. Appl. No. 13/394,288, dated Oct. 16, 2014 (7 pgs). |
Philippines Office Action issued in related application No. 1/2013/500025, dated Nov. 6, 2014 (2 pgs). |
European Office Action issued in related application No. 13828204.1, dated Apr. 1, 2015 (3 pgs). |
European Search Report issued in related application No. 12807127.1, dated Apr. 2, 2015 (10 pgs). |
International Preliminary Report on Patentability, PCT/US13/050378, dated Feb. 19, 2015 (7 pgs). |
International Search Report and Written Opinion, PCT/US14/63511, dated Feb. 11, 2015 (9 pgs). |
Office Action issued in related U.S. Appl. No. 13/394,288, dated Mar. 23, 2015 (20 pgs). |
Office Action issued in related U.S. Appl. No. 13/541,530, dated Feb. 17, 2015 (31 pgs). |
Office Action issued in related U.S. Appl. No. 13/728,794, dated Mar. 24, 2015 (62 pgs). |
Philippines Examination Report issued in related application No. 1/2013/500025, dated Apr. 8, 2015 (2 pgs). |
Chinese Office Action (with translation) issued in application No. 201180043196.7 dated Apr. 3, 2015 (34 pgs). |
Co-pending U.S. Appl. No. 14/934,757, filed Nov. 6, 2015. |
European Search Report and Written Opinion dated Oct. 12, 2010 for EP Application No. 07556398.9. |
International Preliminary Report on Patentability dated Jul. 14, 2011 for PCT Application No. US2009/069959. |
International Search Report and Written Opinion dated Apr. 15, 2009 for PCT Application No. US2007/060871. |
International Search Report and Written Opinion dated Apr. 17, 2009 for PCT Application No. US2009/033660. |
Notice of allowance dated Jun. 29, 2011 for U.S. Appl. No. 12/302,782. |
Notice of allowance dated Sep. 7, 2012 for U.S. Appl. No. 12/367,965. |
Notice of allowance dated Sep. 15, 2008 for U.S. Appl. No. 11/344,622. |
Notice of allowance dated Nov. 21, 2011 for U.S. Appl. No. 12/376,254. |
Office action dated Mar. 15, 2012 for U.S. Appl. No. 12/367,965. |
Office action dated May 21, 2012 for U.S. Appl. No. 13/330,345. |
Office action dated Nov. 13, 2015 for U.S. Appl. No. 13/394,288. |
International search report and written opinion dated Jan. 21, 2016 for PCT/US2015/059598. |
International search report and written opinion dated Jan. 29, 2014 for PCT/US2013/060549. |
International search report and written opinion dated Apr. 22, 2016 for PCT/US2016/017603. |
Office Action dated Feb. 1, 2016 for U.S. Appl. No. 13/541,530. |
Office action dated Mar. 21, 2016 for U.S. Appl. No. 14/430,596. |
European search report and opinion dated May 19, 2016 for Application No. 13828204.1. |
International search report and written opinion dated Jun. 17, 2016 for PCT/US2016/019743. |
Office action dated Jun. 3, 2016 for U.S. Appl. No. 13/940,093. |
Office Action dated Jun. 29, 2016 for U.S. Appl. No. 13/394,288. |
Office action dated Aug. 10, 2016 for U.S. Appl. No. 14/430,596. |
Co-pending U.S. Appl. No. 15/426,733, filed Feb. 7, 2017. |
Co-pending U.S. Appl. No. 15/468,407, filed Mar. 24, 2017. |
Notice of Allowance dated Nov. 9, 2016 for U.S. Appl. No. 13/541,530. |
Notice of Allowance dated Dec. 28, 2016 for U.S. Appl. No. 13/940,093. |
Office Action dated Oct. 14, 2016 for U.S. Appl. No. 14/530,360. |
Office Action dated Oct. 21, 2016 for U.S. Appl. No. 13/400,093. |
U.S. Appl. No. 13/101,015, filed May 4, 2011. |
U.S. Appl. No. 13/394,288, filed Mar. 5, 2012. |
U.S. Appl. No. 13/541,530, filed Jul. 3, 2012. |
U.S. Appl. No. 13/728,794, filed Dec. 27, 2012. |
U.S. Appl. No. 13/940,093, filed Jul. 11, 2013. |
U.S. Appl. No. 14/530,360, filed Oct. 31, 2014. |
U.S. Appl. No. 13/101,015, filed May 4, 2011, Makansi et al. |
U.S. Appl. No. 13/394,288, filed Mar. 5, 2012, Makansi et al. |
U.S. Appl. No. 13/541,530, filed Jul. 3, 2012, Makansi et al. |
U.S. Appl. No. 13/728,794, filed Dec. 27, 2012, Makansi. |
U.S. Appl. No. 13/940,093, filed Jul. 11, 2013, Makansi et al. |
U.S. Appl. No. 14/530,360, filed Oct. 31, 2014, Makansi et al. |
International Preliminary Report on Patentability issued in related application No. PCT/US2012/071838, dated Jul. 17, 2014 (7 pgs). |
Notice of Allowance issued in related U.S. Appl. No. 13/101,015, dated Jul. 24, 2014 (23 pgs). |
Co-pending U.S. Appl. No. 15/662,534, filed Jul. 28, 2017. |
Extended European Search Report and Search Opinion dated Jun. 30, 2017 for European Patent Application No. EP14859204.1. |
International Search Report and Written Opinion dated Jul. 24, 2017 for International PCT Patent Application No. PCT/US2017/032959. |
Office Action dated May 17, 2017 for U.S. Appl. No. 14/530,360. |
Chinese Office Action (with translation) issued in application No. 201280033604.5, dated Jun. 16, 2015 (25 pgs). |
Indonesian Office Action (no translation) issued in application No. W00201301075, dated Jun. 30, 2015 (2 pgs). |
Office Action issued in U.S. Appl. No. 13/541,530, dated Jul. 30, 2015 (26 pgs). |
Office Action issued in U.S. Appl. No. 13/940,093, dated Jul. 31, 2015 (56 pgs). |
Office Action dated Dec. 15, 2017 for U.S. Appl. No. 14/530,360. |
Evidentiary Reference “3MESH specification sheet”. |
Office action dated Apr. 9, 2018 for U.S. Appl. No. 14/934,757. |
Number | Date | Country | |
---|---|---|---|
20150219368 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61403217 | Sep 2010 | US | |
61417380 | Nov 2010 | US | |
61433489 | Jan 2011 | US | |
61470039 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13101015 | May 2011 | US |
Child | 14473882 | US |