For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The memoryless relay channel defined by (3) models a variety of communication problems. Consider, for example, a wireline network with three terminals depicted in
P
Y
Y
|X
X
(b2,b3|a1,a2)=PY
for all a1, a2, b2, b3. If the channels are essentially noise-free, equation (28) might be considered:
P
Y
Y
|X
X
(b2,b3|a1,a2)=1(b2=a1)·1(b3=a2), (7)
where 1(•) is the indicator function that takes on the value one if its argument is true and is zero otherwise.
Some wireline problems have constraints on the network nodes and not only (capacity constraints) on the network channels or edges. For instance, suppose the relay (node 2) has limited processing power and can either transmit or receive, but not both. For noise-free networks, one might model this via the constraint
Note that (6) is no longer true. However, equation (9) may be written
P
Y
Y
|X
X
(b2,b3|a1,a2)=PY
for all a1, a2, b2, b3. More generally, a relay channel is said to be physically degraded if one can write
P
Y
Y
|X
X
(b2,b3|a1,a2)=PY
Consider a wireless network depicted in
where X1, X2, Y2, Y3, Z2, Z3 are complex random variables, hij and dij are the respective (fading) channel gain and distance between nodes i and j, and α is an attenuation exponent (e.g., α=2 for free space propagation). The average energies (or powers) of the inputs are constrained as
It may be assumed that hij is a realization of a complex random variable Hij. The channel exhibits Rayleigh fading if the Hij are statistically independent, proper, complex, Gaussian, zero-mean, unit variance random variables. It is further assumed that Z2 and Z3 are independent, proper, complex, Gaussian, unit variance random variables that are independent of X1, X2, and the Hij for all i, j.
The model defined by (11) and (12) implicitly permits the relay to transmit and receive at the same time in the same frequency band. However, this is often not possible due to the large differences in transmit and receive energies at the antennas of wireless devices. Most practical wireless relays operate under a half-duplex constraint that one can model as
The capacity of a point-to-point memoryless channel (1) is known to be
where I(X;Y) is the mutual information between random variables X and Y. For the complex-alphabet AWGN model:
Y=X+Z, (16)
where
and Z is proper, Gaussian, unit-variance, and independent of X. The maximization in (15) is now performed over all probability density functions pX(•) and the result is
C=log2(1+P) bits per channel use, (17)
where it may be recalled that the channel has complex alphabets.
Consider the relay channel (3). The capacity of this channel is still not known except for special cases. However, good achievable rates and upper bounds on the capacity are known. For example, a standard cut-set upper bound on the capacity is
Turning now to
In the distributed transmission system shown of
In an alternative embodiment, an apparatus for cooperative transmission includes a transmitter that is configured to transmit a first codeword to a relay and subsequently transmit a third codeword while the relay is transmitting a second codeword that is based on the first codeword. In yet another embodiment, an apparatus for cooperative transmission includes a relay that is configured to transmit a second codeword concurrently with a third codeword transmitted by a transmitter wherein the second codeword is based on a first codeword transmitted by the transmitter. Therefore, either the transmitter or the relay may provide primary control of the distributed transmission.
Turning now to
Consider the AWGN channel with (11) and (12) and dij=hij=1 for all i, j. Two codebooks C1′ and C2 that both have 2nR codewords of length n (assume that 2nR is an integer for simplicity) are generated. Every codeword x1′(w), w=1,2, . . . ,2nR, in C1′ is generated by choosing each of its n symbols independently using a proper, complex, Gaussian distribution with zero mean and variance P1′ where P1′≦P1. The codewords x2(w), w=1,2, . . . ,2nR, in C2 are generated in the same way except that the Gaussian distribution have variance P2. The transmission protocol as depicted in
Suppose W has nRB bits. Split these into B equally-sized blocks of nR bits w1,w2, . . . wB. Set wB+1=1. In block b, b=1,2, . . . ,B+1, the transmitter transmits
x
1(wb,wb1)=x1′(wb)+βx2(wb1), (19)
where β=√{square root over ((P1−P1)/P2)}. In block b the relay transmits x2(wb−1). Note that using randomly-generated codebooks with the above transmission protocol will ensure that the power constraints (13) can be satisfied.
The decoding procedure is as follows. After block b, b=1,2, . . . B, the relay decodes wb by using its bth block of channel outputs. After block b, b=2,3, . . . B+1, the receiver decodes wb by using its (b−1)st and bth block of channel outputs.
One may show, using virtually the same analysis as for deriving (17), that the above decode-and-forward strategy achieves the rates R satisfying
R<log(1+P1) and (20)
R<log(1+P1+(1+β)2P2), (21)
where the first and second bounds arise due to the respective relay and receiver decoding steps.
Turning now to
From this point forward in the discussion, relay channels defined by (11) and (12) with Rayleigh fading are considered. That is, the Hij are independent, proper, complex, Gaussian, zero-mean, unit variance random variables. Suppose further that the transmitter node does not know the realizations of these random variables, the relay knows H12 only, and the receiver knows H13 and H23 only. These restrictions on channel knowledge apply to the practical case where node j can accurately estimate its channel gains Hij but it cannot (or wishes not to) synchronize its waveform with the other transmitters.
Employing the encoding strategy discussed with respect to
The discussion will now be directed to Block-Markov coding and modulation methods for relay channels that are motivated by coding methods for multiple-input, multiple-output (MIMO) channels. A partial decode-and-forward strategy may be shown to achieve high rates. Using this strategy, protocols constructed in accordance with the principles of the present invention employing one, two, and three codes are discussed and compared. Low-density parity-check (LDPC) codes are designed and simulated for a protocol related to Diagonal Bell-Labs Layered Space-Time (D-BLAST).
There is a direct relation between MIMO communication and relaying. Consider a MIMO channel wherein the “first” MIMO channel input acts as the input of a transmitter node, and the remaining MIMO channel inputs act as inputs of relays that happen to be colocated with the transmitter node. One finds that D-BLAST encoding is precisely a Block-Markov superposition coding scheme for full-duplex relays. This insight is used to adapt coding strategies for MIMO communication to relay channels. For example, coding protocols are suggested for distributed bit-interleaved coded modulation (BICM), distributed Vertical-BLAST (V-BLAST) and distributed D-BLAST.
Recall that a memoryless relay channel may be defined by the conditional probability distribution:
P
Y
Y
|X
X
(a,b|c,d), (22)
where a εγ2, b εγ3, c εχ1, d εχ2, Y2 and Y3 are the relay and receiver channel outputs, respectively, and X1 and X2 are the transmitter and relay channel inputs, respectively.
In a decode-and-forward strategy, the relay decodes the transmitter message, re-encodes it, and transmits the resulting codeword. The relay may use a different codebook than the transmitter. This method is employed in traditional multi-hopping, such as multi-hop wireless transmission systems employing the IEEE 802.11 standard, for example. A variation of this strategy may be employed. For example, a partial decode-and-forward (PDF) strategy has the transmitter split the message into two parts, use superposition encoding to transmit these two parts, and has the relay decode only one of the two parts.
Only decode-and-forward strategies and their variations are considered here, of which there are several types. For example, a regular encoding/sliding window decoding decode-and-forward strategy achieves the rate:
The block Markov superposition encoding scheme used to achieve (23) has a diagonally layered structure that is basically the same as D-BLAST encoding. However, for half-duplex devices an improved transmission rate employing the PDF strategy may be represented by
where U-[X1,X2]-[Y2,Y3] forms a Markov chain. Observe that in (24)
I(X1X2;Y3)=I(UX2;Y2)+I(X1;Y3|UX2). (25)
Returning again to
where Xt, t=1,2, and Yt and Zt, t=2,3, are complex column vectors of length nt, Hst is a complex nt×ns fading matrix, dst is the distance between nodes s and t, and α is an attenuation exponent (e.g., α=2 for free space propagation). The Zt have statistically independent, proper, complex, Gaussian, zero-mean, unit variance entries and are statistically independent of each other and all the Xt and Hst. Further suppose that Hst is statistically independent of Xt, t=1,2,Zt, T=2,3, and all other fading matrices. Rayleigh fading has Hst that have statistically independent, proper, complex, Gaussian, zero-mean, unit variance entries. Now, consider the linear geometry depicted in
Let Xti be the channel input of device (or node) t at time i. The transmitting nodes often have per device and block power constraints
where ∥X∥2=XtX and Xt is the complex-conjugate transpose of X. Alternatively, one might use the network constraint
or, perhaps, the symbol constraints
E[∥X
ti∥2]≦Pt, t=1,2, i=1,2, . . . n. (30)
The model defined by (26) and (27) lets the relay transmit and receive at the same time in the same frequency band. This is often not possible due to large differences in transmit and receive powers. Wireless devices usually operate under a half-duplex constraint that one can model by replacing (26) with
Alternatively, a mode M2 may be introduced that takes on the values L and T for decode (listen) and transmit (talk), respectively. The transmitter is assumed to always talk and the receiver to always listen. This mode can be considered to be part of the relay's channel input so that (24) becomes
where U is a column vector of length n1. Note that if M2 is known ahead of time by the receiver, then one loses the gain I(M2;Y3) above. On the other hand, this gain might be difficult to realize because the relay must switch rapidly between M2=L and M2=T. For simplicity, this gain will be ignored here.
Let V be a column vector of length n1 and let I be an appropriately sized identity matrix. Additionally, U, V, and X2 are chosen to be statistically independent, proper, complex, Gaussian, zero-mean, and having covariance matrices β(M2)PI, (1−β(M2))P1I, and P2I, respectively, where 0≦β(M2)≦1 (note that (30) prevents using power control across modes). Further choose X1=U+V. The resulting expressions in (32) with the model defined by (27) and (31) are
where the p(h) and p({tilde over (h)}) are Gaussian fading distributions (h and {tilde over (h)} are matrices in general). Note that for d12≦d13 it is best to choose β(L)=1 and β(T)=0. Moreover, this distribution is basically the same as using a strategy depicted in
Consider a MIMO channel with M transmit and N receive antennas. The MIMO methods listed in Table I (where APP refers to “a posteriori probability”) may be considered.
For Direct Mapping, one code with rate Rc and length nc is used and the coded bits are mapped directly onto the modulation signal set. For instance, for quaternary phase-shift keying (QPSK) the coded bits are parsed into blocks of length 2M and these blocks are mapped onto an M-antenna QPSK symbol using Gray mappings.
For BICM, one code with rate Rc and length nc is used and the coded bits are interleaved and then mapped onto the modulation signal set as above. For BICM with Inner Space-Time Codes, one code with rate Rc and length nc is used and the coded bits are interleaved and then mapped onto a space-time code.
For V-BLAST, M codes with rates Rc(m), m=1,2, . . . ,M and lengths nc/M are used. The symbols corresponding to each codeword of length nc/M are called a layer. The coded bits of codeword m are mapped onto antenna m, m=1,2, . . . ,M. V-BLAST encoding is basically the same as multi-level coding or generalized concatenated coding.
For D-BLAST, one code with rate Rc and length nc is used and nc/M of the coded bits are mapped onto the first antenna symbol in a first block, another nc/M of these bits are mapped onto a second antenna symbol in a second block, and so forth until the Mth block. The symbols corresponding to the entire codeword of length nc are called a layer. Similar steps with other codewords are performed, but the mappings are successively shifted by one block for every codeword.
Turning now to
x(wi)=[x1(wi),x2(wi),x3(wi)] (37)
Therefore, one codebook is generated and each of its codewords {x}(wi) of length n is split into three codewords {x}1(wi), {x}2(wi) and {x}3(wi) with respective lengths m1, m2 and m3 where m1+m2+m3=n. The coded bits are mapped onto the modulation signal sets at the transmitter and relay, either with or without bit interleaving. The relay decodes the message bits after having received the first block (Block 1) of outputs from the transmitter.
The first codeword may have a first length and the second and third codewords may have a same second length since they are transmitted concurrently from the relay and transmitter, respectively. The first codeword x1(wi) will be transmitted only by the transmitter. The second codeword x2(wi) will be transmitted only by the relay, and the third codeword x3(wi) only by the transmitter. The relay decodes the first codeword x1(wi) once it is complete. The relay is able to decode the entire message corresponding to this codeword even though it has received only the first codeword x1(wi) of the three-part codebook. The first codeword length could be half since Block 1 and Block 2 may have different lengths.
This approach gives good reliability on the combined transmitter and relay-to-receiver link. However, early decoding at the relay may severely restrict the code rate Rc. For example, if n1=n2 (where the relay channel may be referred to as n1×n2×n3 based on the number of transmitter×relay×receiver antennas) and both the transmitter and relay use QPSK, then it is required that Rc<⅓ because the relay has seen only ⅓ of the potential received symbols at the time of decoding. An adjustment of the modulation signal sets and the amount time that the relay listens and talks may alleviate this situation. Additionally, a strategy with one code is a pure DF scheme where the relay decodes all of the message bits. Such an approach may be suboptimal for half-duplex channels.
x(w1)=x1(w1′, w1″) and x2(w1′) and x3(w2), (38)
where wi=[wi′, wi″].
The three separate codebooks can have different rates. The relay decodes after Block 1, wherein it uses the message bits that it has decoded to encode its own codeword. If the rate of the relay codebook with codeword x2(w1′) is the same as the transmitter codebook with first codeword x1(w1′, w1″), then w1″=0 and the bits w1=w1′ are mapped directly into the relay codeword x2(w1′). But, the relay codebook may be chosen to have a smaller rate. If a smaller rate is used, then only a portion of the bits may have been decoded and may be used to encode the codeword. In this case, the second codebook would have an equal or smaller rate than the first codebook. The third codebook can have any rate and will transmit new information.
For example, consider an n1×n2×n3 of 1×1×1 rate point (d,R)=(0.25,1.5). This point may be achieved by using the PDF strategy in
x(wi)=[x1(wi),x2(wi)] and x3(wi). (39)
This transmission protocol depicts an intermediate approach where the transmitter segment of Block 1 and the relay segment of Block 2 come from one codebook that is longer than one transmission block, e.g., it may be twice as long. The transmitter segment of Block 2 comes from another codebook.
The relay has to decode w1 after having received only the transmitter segment of Block 1 from the transmitter. A value of R<½ is required for the w1 encoder (assuming that n1=n2 and the transmitter and relay use the same signal set). It may be noted that the D-BLAST approach to half-duplex relaying does not suffer from error propagation, which is different from the full-duplex case.
Examples of MIMO applications employing the PDF transmission protocols depicted in
Turning now to
Turning now to
Code design is usually done by using density evolution or EXIT charts. The latter approach may be employed to design irregular low-density parity-check (LDPC) codes using a curve-fitting procedure. The coded bits are mapped to QPSK symbols via the Gray mapping. A decoder uses the standard graph representation of an LDPC code with variable nodes on the left and check nodes on the right. The left and right nodes are connected by edges whose nodes are chosen with a random permutation that avoids 2-cycles. The decoder iterates 60 times between the left and right nodes by using an a posteriori probability (APP) decoder.
Turning now to
Consider next R=1 wherein an LDPC code is designed with rate Rc=⅜ and length nc=16,000 that has an (single-antenna, no fading, BPSK) AWGN decoding threshold of Eb/N0=0.1 dB, which is about 0.45 dB from capacity. The encoding and decoding procedure is as follows.
In the odd-numbered time blocks b=1,3,5, . . . , the transmitter transmits 4000 QPSK symbols (or 8,000 of the 16,000 codeword bits) by using the rate Rc=⅜ LDPC code. After every odd-numbered block b, the relay decodes the information bits of the Rc=⅜ code from this block. Note that the relay has received only half of this codeword's symbols. In the even-numbered time blocks b=2,4,6, . . . , the transmitter transmits using the rate Rc=¼ code described above. In the even-numbered blocks, the relay encodes the information bits decoded from the previous block by using the Rc=⅜ encoder and transmits the last 4000 QPSK symbols of this codeword (or the last 8,000 of the 16,000 codeword bits).
After every even-numbered time block, the receiver decodes the information bits of the rate Rc=⅜ code. The receiver performs only one detector activation per codeword (multiple detector activations may improve the performance marginally). The receiver cancels the interference caused by the symbols of the Rc=⅜ code from the even-numbered time blocks. After every even-numbered time block, the receiver decodes the information bits of the Rc=¼ code.
The overall rate is R=2(⅜)+2(¼)(½)=1 bit per use, where the leading factors 2 are due to the QPSK modulation. There are three decoding steps to consider. The FER of the relay decoding step is not shown in
The FER of the receiver decoding the information bits from the Rc=¼ code is the same as the case where there is no relay, and is the curve 905 in
Turing now to
In a subsequent transmission, a second codeword, which is based on the first codeword, is transmitted from the relay in a step 1015. Along with this subsequent relay transmission in the step 1015, the transmitter transmits a third codeword concurrently with the second codeword from the relay, in a step 1020.
The codewords may be derived from a single codebook, come from separate codebooks or share a portion of one of several codebooks that are employed. In one embodiment, the first, second and third codewords correspond to a single message and are derived from a single codebook.
In an alternative embodiment, the first and second codewords correspond to a first portion of a message and the third codeword corresponds to a second portion of the message. The first codeword is derived from a first codebook, the second codeword is derived from a second codebook and the third codeword is derived from a third codebook. Additionally, the method further includes generating first and second data based on a portion of a message, the first codeword corresponds to both first and second data and the second codeword corresponds to only one of the first and second data.
In yet another embodiment, the first codeword and the second codeword are derived from a first codebook and the third codeword is derived from a second codebook. Here, the first codeword and the second codeword may correspond to a first portion of a message and the third codeword may correspond to a second portion of the message. The method ends in a step 1025.
While the method disclosed herein has been described and shown with reference to particular steps performed in a particular order, it will be understood that these steps may be combined, subdivided, or reordered to form an equivalent method without departing from the teachings of the present invention. Accordingly, unless specifically indicated herein, the order or the grouping of the steps is not a limitation of the present invention.
In summary, embodiments of the present invention relating to transmission systems and methods that involve a relay have been presented. The systems include a distributed transmitter that includes a transmitter and a relay. In the new method, the transmitter transmits a codeword for a data block to the relay and to a receiver in a first time block. The relay receives and decodes this transmitted codeword. In a later time block, the relay transmits a second codeword and the transmitter transmits a third codeword concurrently with the second codeword for the data block. Thus, the receiver receives first and third codewords from the transmitter and the second codeword from the relay. In particular, the receiver receives a portion of the codewords in different time blocks, that is, in a time diverse manner. Typically, the transmitter and relay are not co-located.
Although the present invention has been described in detail, those skilled in the art should understand that they can make various changes, substitutions and alterations herein without departing from the spirit and scope of the invention in its broadest form.