Distributing application traffic to servers based on dynamic service response time

Information

  • Patent Grant
  • 9609052
  • Patent Number
    9,609,052
  • Date Filed
    Thursday, December 2, 2010
    14 years ago
  • Date Issued
    Tuesday, March 28, 2017
    7 years ago
Abstract
A service gateway processes a service request received from a host by: relaying the service request from the service gateway to a server over a service session between the service gateway and the server; determining a service request time for the service session; receiving by the service gateway a service response from the server; determining by the service gateway a service response time; calculating by the service gateway a service processing time for the service request from the service request time and the service response time; comparing the service processing time with an expected service processing time; and updating a server busy indicator for the server in response to the comparing. If the service processing time exceeds the expected service processing time, the server busy indicator is updated to indicate that the server is busy. Otherwise, the server busy indicator is updated to indicate that the server is not busy.
Description
BACKGROUND OF THE INVENTION

Field


This invention relates generally to data communications, and more specifically, to a method and system for distributing application traffic to servers based on service process parameters.


Background


Web services and cloud computing are deployed in an unprecedented pace. New servers are unloaded and installed at datacenters every day. Demands of web services and corporate computing come from all directions. Consumer oriented services include smartphone apps, mobile applications such as location based services, turn-by-turn navigation services, e-book services such as Kindle™, video applications such as YouTube™ or Hulu™, music applications such as Pandora™ or iTunes™, Internet television services such as Netflix™, and many other fast growing consumer Web services. On the corporate front, cloud computing based services such as Google™ docs, Microsoft™ Office Live and Sharepoint™ software, Salesforce.Com™'s on-line software services, tele-presence and web conferencing services, and many other corporate cloud computing services.


As a result more and more servers are deployed to accommodate the increasing computing needs. Traditionally these servers are managed by a service gateway such as Application Delivery Controller or Server Load Balancer (ADC/SLB) are typically network appliances in a fixed module or in a Chassis or a software module running in a commoditized server ADC/SLB manage the application traffic to servers based on incoming service requests. Common methods to distribute traffic among servers is to distribute the service requests based on the applications (HTTP, FTP, HTTPS etc.), service addresses such as URL, priorities based on network interfaces or host IP addresses. ADC/SLB may distribute the service requests to a server assuming the server is fully available to handle the service requests. Typically a fully loaded server does not handle service requests well. In fact, most if not all service requests suffer delay or no service available when a server is busy. It is often better not to further distribute service request to a busy server. Current ADC/SLB allows a network administrator to set a maximum service session capacity so that ADC/SLB does not send more than the maximum capacity service requests to the server. However, statically configured limitation on a server cannot fully utilize the server's capacity and not all service requests require the same processing from the server. It is beneficial for an ADC/SLB to determine if a server is busy based on the service response time from a server such that the ADC/SLB can reduce sending further service requests to the server.


Therefore, there is a need for a system and method for an ADC/SLB to protect a server overloading based on dynamic service response time.


BRIEF SUMMARY OF THE INVENTION

According to one embodiment of the present invention, a method for processing a service request received from a host, comprises: (a) relaying the service request from a service gateway to a server over a service session between the service gateway and the server; (b) determining by the service gateway a service request time for the service session; (c) receiving by the service gateway a service response from the server; (d) determining by the service gateway a service response time; (e) calculating by the service gateway a service processing time for the service request from the service request time and the service response time; (f) comparing the service processing time with an expected service processing time; and (g) updating a server busy indicator for the server in response to the comparing.


In one aspect of the present invention, the updating (g) comprises: (g1) in response to determining that the service processing time exceeds the expected service processing time, updating the server busy indicator by the service gateway to indicate that the server is busy; and (g2) in response to determining that the service processing time does not exceed the expected service processing time, updating the server busy indicator by the service gateway to indicate that the server is not busy.


In one aspect of the present invention, the calculating (e) comprises: (e1) calculating by the service gateway the service processing time for the service request as a duration between the service request time and the service response time.


In one aspect of the present invention, the service response comprises an error indication, wherein the service gateway does not calculate the service processing time if the error indication indicates an error.


In one aspect of the present invention, the comparing (f) comprises: (f1) configuring the expected service processing time by the service gateway according to a service attribute of the service request or the server.


In one aspect of the present invention, the expected service processing time is associated with the service attribute and stored in a datastore, wherein the configuring (f1) comprises: (f1i) comparing by the service gateway the service request or the server with the service attribute in the datastore; and (f1ii) if the service request or the server matches the service attribute in the datastore, retrieving the expected service processing time associated with the matching service attribute.


In one aspect of the present invention, the comparing (f) further comprises: (f2) calculating an adjusted expected service processing time based on the service processing times of previous service sessions between the secure gateway and the server.


In one aspect of the present invention, the relaying (a) comprises: (a1) receiving the service request from the host by the service gateway; (a2) checking the server busy indicator for the server by the service gateway; (a3) in response to determining that the server busy indicator indicates that the server is busy, placing the service request in a service request buffer by the service gateway; and (a4) in response to determining that the server busy indicator indicates that the server is not busy, relaying the service request from the service gateway to the server over the service session between the service gateway and the server.


In one aspect of the present invention, the relaying (a4) comprises: (a4i) checking if the service request buffer is empty by the service gateway; (a4ii) in response to determining that the service request buffer is empty, relaying the service request from the service gateway to the server over the service session between the service gateway and the server; and (a4iii) in response to determining that the service request buffer is not empty, placing the service request in the service request buffer by the service gateway.


In one aspect of the present invention, the placing (a3) comprises: (a3i) determining by the service gateway if a timer at the service gateway has expired; and (a3ii) in response to determining that the timer has expired, relaying the service request from the service gateway to the server over the service session between the service gateway and the server.


In one aspect of the present invention, the service request is associated with a priority, wherein the server request buffer is configured to store service requests associated with the priority, wherein the placing (a3) comprises: (a3i) placing the service request in the service request buffer by the service gateway; and (a3ii) relaying the service request in the service request buffer from the service gateway to the server according to the associated priority.


System and computer program products corresponding to the above-summarized methods are also described and claimed herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE FIGURES


FIG. 1 illustrates a service session between a service gateway and a server.



FIG. 2 illustrates an embodiment of a method for processing a service request by a service gateway.



FIG. 3 illustrates an embodiment of a method for determining if server is busy.



FIG. 4 illustrates an embodiment of a method for processing service request based on server busy indicator.



FIG. 5 illustrates an embodiment of a method for processing service requests after service gateway updates server busy indicator.



FIG. 6 illustrates an embodiment of a method for processing service requests based on a service priority.



FIG. 7 is a flowchart illustrating an embodiment of a method for processing a service request by a service gateway.



FIG. 8 is a flowchart illustrating an embodiment of a method for processing service request based on server busy indicator.





DETAILED DESCRIPTION OF THE INVENTION

The invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, etc.


Furthermore, the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.


The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.


A data processing system suitable for storing and/or executing program code will include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.


Input/output or I/O devices (including but not limited to keyboards, displays, point devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.


Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified local function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.



FIG. 1 illustrates a service session 321 between a service gateway 110 and a server 200. The service gateway 110 receives a service request 301 from a host 100. Service request 301 is delivered over a data network 153. In one embodiment, service request 301 is a Web service request such as a HTTP (Hypertext Transport Protocol) request, a secure HTTP request, a FTP (File Transfer Protocol) request, a file transfer request, a SIP (Session Initiation Protocol) session request, a request based on Web technology, a video or audio streaming request, a Web conferencing session request, or any request over the Internet or corporate network.


Host 100 is a computing device with network access capabilities. The host 100 is operationally coupled to a processor 103 and a computer readable medium 104. The computer readable medium 104 stores computer readable program code for implementing the various embodiments of the present invention as described herein. In one embodiment, host 100 is a workstation, a desktop personal computer or a laptop personal computer. In one embodiment, host 100 is a Personal Data Assistant (PDA), a smartphone, or a cellular phone. In one embodiment, host 100 is a set-top box, an Internet media viewer, an Internet media player, a smart sensor, a smart medical device, a net-top box, a networked television set, a networked DVR, a networked Blu-ray player, or a media center.


In one embodiment, data network 153 is an Internet Protocol (IP) network. In one embodiment, data network 153 is a corporate data network or a regional corporate data network. In one embodiment, data network 153 is an Internet service provider network. In one embodiment, data network 153 is a residential data network. In one embodiment, data network 153 includes a wired network such as Ethernet. In one embodiment, data network 153 includes a wireless network such as a WiFi network, or cellular network.


The service gateway 110 is operationally coupled to a processor 113 and a computer readable medium 114. The computer readable medium 114 stores computer readable program code, which when executed by the processor 113, implements the various embodiments of the present invention as described herein. In some embodiments, service gateway 110 is implemented as a server load balancer, an application delivery controller, a service delivery platform, a traffic manager, a security gateway, a component of a firewall system, a component of a virtual private network (VPN), a load balancer for video servers, or a gateway to distribute load to a plurality of servers.


Server 200 is operationally coupled to a processor 213 and a computer readable medium 214. The computer readable medium 214 stores computer readable program code, which when executed by the processor 213, implements the various embodiments of the present invention as described herein. In some embodiments, the computer readable program code implements server 200 as a Web server, a file server, a video server, a database server, an application server, a voice system, a conferencing server, a media gateway, a SIP server, a remote access server, a VPN server, or a media center.


Service gateway 110 connects to server 200 via data network 155. In one embodiment, data network 155 is the same as data network 153. In one embodiment, data network 155 is different from data network 153. In one embodiment, host 100 does not have direct access to data network 155. In one embodiment, host 100 has direct access to data network 155.



FIGS. 2 and 7 illustrate an embodiment of a method for processing a service request 301 by service gateway 110. In an embodiment, service gateway 110 receives service request 301 from host 100, and relays service request 301 to server 200 (701) by establishing service session 321 between service gateway 110 and server 200. Service gateway 110 determines a service request time 361 for service session 321 (702). In one embodiment the service request time 361 is a time stamp such as a time of the day, a system time, a time counter. In one embodiment service request time 361 is a time when service gateway 110 sends service request 301 to server 200. In one embodiment, service request time 361 is a time when service gateway 110 receives from server 200 an acknowledgement of receiving service request 301.


After server 200 processes service request 301, server 200 responds with a service response 352. In one embodiment, service response 352 includes a web page, a document, a file, a picture, a streaming of audio or video signals, or a voice call. In one embodiment, service response 352 includes an error indication 354. Error indication 354 may include a HTTP error status code, a FTP error code, SIP error message, or any other error code.


Service gateway 110 receives service response 352 and relays the service response 352 to host 100 (703). Service gateway 110 determines service response time 362 upon receipt of service response 352 (704). In an embodiment, service response time 362 is a time stamp such as a time of the day, a system time, a time counter, and is compatible with service request time 361. In one embodiment, service response time 362 is a time when service gateway 110 receives service response 352. In one embodiment, service response time 362 is a time when service gateway 110 receives first piece of information of service response 352. In one embodiment, service response time 362 is a time when service gateway 110 receives the last piece of information of service response 352. In one embodiment, service response time 362 is a time when service gateway 110 disconnects service session 321 from server 200. In one embodiment, service response time 362 is included in service response 352.


After determining service request time 361 and service response time 362, service gateway 110 calculates service processing time 360 for service request 301 from the service request time and service response time (705). Service processing time 360 typically measures the duration between service request time 361 and service response time 362. In one example, service gateway 110 subtracts service request time 361 from service response time 362 to obtain service processing time 360. In another example, service gateway 110 calculates the duration between service request time 361 and service response time 362 to determine service process time. For example, service processing time 360 is 10 milliseconds, 5 milliseconds, 247 milliseconds, 3 seconds, 15 seconds, 1 minute, 75 microseconds, or 289 units of time.


In one embodiment, service gateway 110 verifies service response 352 prior to calculating service processing time 360. In an example, service gateway 110 verifies service response 352 if the response contains an error indication 354. In one embodiment, if there is an error indicated in error indication 354, service gateway 110 does not calculate service processing time 360 for the service request 301.


In one embodiment, service gateway 110 includes a completed service session counter 326, which counts the number of completed service sessions between service gateway 110 and server 200. In one embodiment, service gateway 110 increments the completed service session counter 326 by 1 after service gateway 110 receives service response 352 or after service gateway 110 disconnects service session 321 from server 200. In one embodiment, service gateway 110 increments the completed service session counter 326 by 1 after determining service processing time 360.



FIG. 3 illustrates an embodiment of a method for determining if server 200 is busy. Service gateway 110 includes a server busy indicator 378 for server 200, indicating if server 200 is busy. In one embodiment, a value of 0 or ‘Not Busy’ for server busy indicator 378 indicates server 200 is not busy while a value of 1 or ‘Busy’ indicates server 200 is busy. Service gateway 110 updates server busy indicator 378 based on service processing time 360.


Service gateway 110 includes an expected service processing time 374. Referring to both FIGS. 3 and 7, service gateway 110 compares service processing time 360 with expected service processing time 374 (706). In response to determining that the service processing time exceeds expected service processing time 374, service gateway 110 updates server busy indicator 378 to ‘Busy’ (708). Service processing time 360 may need to be at least 50% larger than expected service processing time 374 in order to exceed expected service processing time 374. In various embodiments, service processing time 360 is at least 300% larger than expected service processing time 374. Service processing time 360 may be larger than expected service processing time 374. After updating server busy indicator 378, service gateway 110 receives a next service request from host 100.


Service gateway 110 determines whether service processing time 360 is less than expected service processing time 374 (707), and in response, service gateway 110 updates server busy indicator 378 to ‘Not Busy’ (709). After updating server busy indicator 378, service gateway 110 receives a next service request from host 100.


Expected service processing time 374 may be based on service request 301. In various embodiments, service request 301 comprises a service request Universal Resource Locator (URL), and expected service processing time 374 is configured according to a service attribute 379. The service attribute 379 is an attribute affecting the expected service processing time 374. For example, different protocols would process service requests at different rates, and thus would have different expected service processing times. Service attribute 379 is based on service request URL, or part of service request URL such as the domain name, a web folder name in the web site, a document type, or a protocol indicated in service request URL. For example, if a hypothetical service request URL is “http://www.abc.com/shops/shoe.html”. Service attribute 379 is based on domain name “www.abc.com”, web folder “www.abc.com/shops”, document type.html (or other document type such as .php, .asp, etc.), protocol http (or other protocols such as ftp, https, sip etc.). Service attribute 379 may also be related to program code implemented on server 200. For example, server 200 is a web server using Apache web server software, Microsoft web server software, Oracle web server software or other web server software. Service attribute 379 is related to the web server software.


In various embodiments, service attribute 379 is based on the domain name and the expected service processing time 374 is 10 milliseconds. Service attribute 379 may also be based on HTTP protocol with an expected service processing time 374 of 75 milliseconds. In other embodiments, service attribute 379 is based on FTP file download protocol and the expected service processing time 374 is 2 minutes. In still other embodiments, service attribute 379 is based on HTML document type and the expected service processing time 374 is 20 milliseconds.


In one embodiment, service attribute 379 relates to program code implemented on server 200. In an embodiment, server 200 uses Apache web server software and expected processing time is 50 milliseconds. In an embodiment, server 200 uses Microsoft web server software and expected processing time is 90 milliseconds.


In one embodiment, service attribute 379 relates to a plurality of attributes mentioned in above description. Expected processing time may be determined by a summation of a plurality of expected processing times for the plurality of attributes.


In one embodiment, service gateway 110 includes a datastore 380, which stores the expected service processing time 374 and associated service attribute 379. In an embodiment, service gateway 110 compares service request 301 or server 200 against service attribute 379 in datastore 380. If there is a match, service gateway 110 retrieves expected service processing time 374 associated with the matched service attribute 379, and compares the retrieved expected service processing time 374 with the service processing time 360. In one embodiment, expected service processing time 374 is not related to any service attribute. Service gateway 110 retrieves expected service processing time 374 and compares to service processing time 360.


In one embodiment, expected service processing time 374 is configured by a user.


In one embodiment, expected service processing time 374 is automatically determined based on service processing times of previous service sessions. Upon determining service processing time 360, service gateway 110 calculates an adjusted expected service processing time 376 by using the formula:







adjusted





expected





service





processing





time

=






(




expected





service





processing





time
*






(


completed





service





session





counter

-
1

)




)

+







service





processing





time

)





completed





service





session





counter






Service gateway 110 calculates adjusted expected service processing time 376 prior to changing completed service session counter 326. Service gateway 110 does not adjust expected service processing time 374 if service processing time 360 exceeds expected service processing time 374, or if service response 352 includes an error indication 354. In this embodiment, service gateway 110 does not change completed service session counter 326.


In one embodiment, expected service processing time 374 is associated with service attribute 379. Completed service session counter 326 is also associated with service attribute 379 in order to implement separate counters for each service attribute. Service gateway 110 checks if service request 301 or server 200 matches service attribute 379 prior to calculating adjusted expected service processing time 376.


In one embodiment, service gateway 110 replaces expected service processing time 374 with adjusted expected service processing time 376. The adjusted expected service processing time 376 becomes the expected service processing time 374 for the next service session between the service gateway 110 and the server 200.


After the service gateway 110 updates server busy indication, the service gateway 110 receives a next service request from the host (71) and the process repeats (710).



FIGS. 4 and 8 illustrate an embodiment of a method for processing service request 301 based on server busy indicator 378. Service gateway 110 includes a service request buffer 331. Service gateway 110 receives service request 301 from host 100 (801). Service gateway 110 puts service request 301 into service request buffer 331. In other embodiments, service gateway 110 checks server busy indicator 378 (802). When the server busy indicator 378 indicates server 200 is ‘Busy’ (803), service gateway 110 places service request 301 into service request buffer 331 (804). When server busy indicator 378 indicates server 200 is ‘Not Busy’ (803), service gateway 110 relays service request 301 to server 200 (701), as described above with FIGS. 2 and 7. In yet another embodiment, when server busy indicator 378 indicates server 200 is ‘Not Busy’, service gateway 110 checks if service request buffer 331 is empty (805). If service request buffer 331 is empty, service gateway 110 relays service request 301 to server 200 (701). If service request buffer 331 is not empty, the service gateway 110 places service request 301 into service request buffer 331 (806). The service gateway 110 then relays each service request in the service request buffer 331 to server 200 (701) until the service request buffer 331 is empty or until the server busy indicator 378 is changed to ‘Busy’.



FIG. 5 illustrates an embodiment of a method for processing service requests after service gateway 110 updates server busy indicator 378. Service gateway 110 processes service request 301 in service request buffer 331 according to different values of server busy indicator 378. In one embodiment, server busy indicator 378 has an updated value of ‘Not Busy’. Service gateway 110 examines service request buffer 331 and finds service request 301. Service gateway 110 replays service request 301 to server 200 (701).


In one embodiment, server busy indicator 378 has an updated value of ‘Busy’. In one embodiment, service gateway 110 does not immediately process service request buffer 331. Service gateway 110 includes a timer 119. When timer 119 expires, service gateway 110 finds the service request 301 in the service request buffer 331 and relays service request 301 in service request buffer 331 to server 200 (701). Timer 119 may be configured for duration of, for example, 1 minute, 30 seconds, 1 second, 400 milliseconds, 5 milliseconds, 300 microseconds, or any other duration such that service to service request 301 is not severely affected. In one embodiment, time duration is based on attributes of the service request 301.



FIG. 6 illustrates an embodiment of a method for processing service requests based on a service priority. In one embodiment, service request 303 is associated with a service priority 403. In a scenario, service priority 403 is based on service request 303 URL. In one scenario, service priority 403 is based on host 100, such as host 100 IP address, host 100 user identity. In one scenario, service priority 403 is associated to the network interface from which service gateway 110 receives service request 303. Service gateway 110 determines service priority 403 of service request 303.


Service request buffer 331 is configured to store service requests with service priority 401. In the embodiment where server busy indicator 378 has an updated value of ‘Busy’, service gateway 110 compares service priority 403 to service priority 401. In response to finding a match, service gateway 110 places service request 303 into service request buffer 331.


In one embodiment, service gateway 110 includes a second service request buffer 332. Service request buffer 332 is configured to store service request with service priority 402, which is higher than service priority 401.


In the embodiment where server busy indicator 378 has an updated value of ‘Not Busy’, service gateway 110 processes service requests in service request buffer 332 prior to service request buffer 331. In one embodiment, service gateway 110 sends service request 302 in service request buffer 332 to server 200 prior to sending service request 301 in service request buffer 331 to server 200.


In one embodiment, service gateway 110 processes all service requests from service request buffer 332 before processing service request buffer 331. In one embodiment, service gateway 110 includes a serving ratio 117 wherein service gateway 110 processes service request buffer 332 and service request buffer 331 according to ratio 117, where serving ratio 117 favors high priority service request buffer 332 to the lower priority service request buffer 331 in order to avoid starving the lower priority service requests in service request buffer 331.


Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims
  • 1. A method for distributing application traffic received by a service gateway from a host to a server of a plurality of servers, based on dynamic service response time of the server, the method comprising: receiving a first service request for a service session from the host by the service gateway;determining by the service gateway a service request time for the service session;relaying the first service request from the service gateway to a first server of the plurality of servers, the relaying occurring over the service session between the service gateway and the first server;receiving by the service gateway a service response from the first server;determining by the service gateway a service response time;calculating by the service gateway a dynamic service processing time for the first service request from the service request time and the service response time;comparing the dynamic service processing time with an expected service processing time for the first server to determine whether the dynamic service processing time exceeds the expected service processing time by at least a threshold amount, wherein the expected service processing time is determined by the service gateway according to a service attribute of the first service request or according to a service attribute of the first server, wherein the expected service processing time is based on the service attribute of the first service request or a service attribute of the first server and stored in a datastore, wherein the determining the expected service processing time comprises: comparing by the service gateway the first service request or the first server with the service attribute in the datastore; andif the first service request or the first server matches the service attribute in the datastore, retrieving the expected service processing time associated with the matching service attribute, wherein the expected service processing time is variable based on the matching service attribute;updating a server busy indicator for the first server in response to the comparing, wherein a server busy indicator for each of the plurality of servers is maintained at the service gateway;receiving a second service request from the host by the service gateway;checking the server busy indicator for the first server by the service gateway;in response to determining that the server busy indicator indicates that the first server is busy, placing the second service request in a service request buffer of the service gateway and maintaining a connection to the host; andin response to determining that the server busy indicator indicates that the first server is not busy, relaying the second service request from the service gateway to the first server over the service session between the service gateway and the first server.
  • 2. The method of claim 1, wherein the updating the server busy indicator for the first server comprises: in response to determining that the dynamic service processing time exceeds the expected service processing time, updating the server busy indicator by the service gateway to indicate that the first server is busy; andin response to determining that the dynamic service processing time does not exceed the expected service processing time, updating the server busy indicator by the service gateway to indicate that the first server is not busy.
  • 3. The method of claim 1, wherein the calculating by the service gateway the dynamic service processing time for the first service request comprises: calculating by the service gateway the dynamic service processing time for the first service request as a duration between the service request time and the service response time.
  • 4. The method of claim 1, wherein the service response comprises an error indication, and the service gateway does not calculate the dynamic service processing time if the error indication indicates an error.
  • 5. The method of claim 1, wherein the comparing further comprises: calculating an adjusted expected service processing time based on the dynamic service processing times of previous service sessions between the service gateway and the first server.
  • 6. The method of claim 1, wherein the relaying the second service request from the service gateway to the first server over the service session between the service gateway and the first server comprises: checking if the service request buffer is empty by the service gateway;in response to determining that the service request buffer is empty, relaying the second service request from the service gateway to the first server over the service session between the service gateway and the first server; andin response to determining that the service request buffer is not empty, placing the second service request in the service request buffer by the service gateway.
  • 7. The method of claim 1, wherein the second service request is associated with a priority, wherein the service request buffer is configured to store service requests associated with the priority, wherein the placing the second service request in the service request buffer of the service gateway further comprises: relaying the second service request in the service request buffer from the service gateway to a second server according to the associated priority.
  • 8. The method of claim 1, wherein the service attribute is one or more of a URL, a protocol, domain name, web folder name, or document type.
  • 9. A non-transitory computer readable storage medium having computer readable program code embodied therewith for processing a service request received from a host, the computer readable program code configured to: receive a first service request for a service session from the host by a service gateway;determine a service request time for the service session;relay the first service request from the service gateway to a server over the service session between the service gateway and the server;receive a service response from the server;determine a service response time;calculate a service processing time for the first service request from the service request time and the service response time;compare the service processing time with an expected service processing time to determine whether the service processing time exceeds the expected service processing time by at least a threshold amount, wherein the expected service processing time is determined by the service gateway according to a service attribute of the first service request or the server, wherein the expected service processing time is associated with the service attribute and stored in a datastore, wherein the computer readable program code is configured to determine the expected service processing time according to the service attribute of the first service request or the server by: comparing the first service request or the server with the service attribute in the datastore; andif the first service request or the server matches the service attribute in the datastore, retrieving the expected service processing time associated with the matching service attribute, wherein the expected service processing time is variable based on the matching service attribute;update a server busy indicator for the server in response to the comparing the service processing time with the expected service processing time, wherein the server busy indicator for the server is maintained at the service gateway;receive a second service request from the host;check the server busy indicator for the server;in response to determining that the server busy indicator indicates that the server is busy, place the second service request in a service request buffer of the service gateway and maintain a connection to the host; andin response to determining that the server busy indicator indicates that the server is not busy, relay the second service request from the service gateway to the server over the service session between the service gateway and the server.
  • 10. The storage medium of claim 9, wherein the computer readable program code configured to update the server busy indicator for the server in response to the comparing is further configured to: in response to determining that the service processing time exceeds the expected service processing time by at least the threshold amount, update the server busy indicator to indicate that the server is busy; andin response to determining that the service processing time exceeds the expected service processing time by less than the threshold amount, update the server busy indicator to indicate that the server is not busy.
  • 11. The storage medium of claim 9, wherein the computer readable program code configured to calculate the service processing time for the first service request from the service request time and the service response time is further configured to: calculate the service processing time for the first service request as a duration between the service request time and the service response time.
  • 12. The storage medium of claim 9, wherein the computer readable program code configured to compare the service processing time with the expected service processing time is further configured to: calculate an adjusted expected service processing time based on the service processing times of previous service sessions between the service gateway and the server.
  • 13. The storage medium of claim 9, wherein the computer readable program code configured to relay the second service request from the service gateway to the server over the service session between the service gateway and the server in response to determining that the server busy indicator indicates that the server is not busy is further configured to: check to determine if the service request buffer is empty;in response to determining that the service request buffer is empty, relay the second service request from the service gateway to the server over the service session between the service gateway and the server; andin response to determining that the service request buffer is not empty, place the second service request in the service request buffer.
  • 14. The storage medium of claim 9, wherein the computer readable program code configured to place the second service request in the service request buffer in response to determining that the server busy indicator indicates that the server is busy is further configured to: determine if a timer at the service gateway has expired, wherein the timer is determined by the service gateway according to a service attribute of the second service request or the server; andin response to determining that the timer has expired, relay the second service request from the service gateway to the server over the service session between the service gateway and the server.
  • 15. The storage medium of claim 9, wherein the second service request is associated with a priority, wherein the service request buffer is configured to store service requests associated with the priority, wherein the computer readable program code configured to place the second service request in the service request buffer in response to determining that the server busy indicator indicates that the server is busy is further configured to: place the second service request in the service request buffer; andrelaying the service request in the service request buffer from the service gateway to the server according to the associated priority.
  • 16. The storage medium of claim 9, wherein the service attribute is one or more of a URL, a protocol, domain name, web folder name, or document type.
  • 17. The storage medium of claim 9, wherein the expected service processing time is different for each service attribute.
  • 18. A system, comprising: a server for processing service requests; anda service gateway comprising a processor and a computer readable storage medium having computer readable program code embodied therewith, wherein when the computer readable program code is executed by the processor, causes the service gateway to: receive a first service request from a host;determine a service request time for a service session;relay the first service request to a server over the service session between the service gateway and the server;receive a service response from the server;determine a service response time;calculate a service processing time for the first service request from the service request time and the service response time;compare the service processing time with an expected service processing time to determine whether the service processing time exceeds the expected service processing time by at least a threshold amount, wherein the expected service processing time is determined by the service gateway according to a service attribute of the first service request or the server, wherein the expected service processing time is based on the service attribute and stored in a datastore, wherein the determining the expected service processing time according to the service attribute of the first service request or the server comprises: compare the first service request or the server with the service attribute in the datastore; andif the first service request or the server matches the service attribute in the datastore, retrieve the expected service processing time associated with the matching service attribute, wherein the expected service processing time is variable based on the matching service attribute;update a server busy indicator for the server in response to the comparing the service processing time with the expected service processing time wherein the server busy indicator for the server is maintained at the service gateway;receive a second service request from the host;check the server busy indicator for the server;in response to determining that the server busy indicator indicates that the server is busy, place the second service request in a service request buffer of the service gateway and maintain a connection to the host; andin response to determining that the server busy indicator indicates that the server is not busy, relay the second service request from the service gateway to the server over the service session between the service gateway and the server.
  • 19. The system of claim 18, wherein the update the server busy indicator for the server in response to the comparing comprises: in response to determining that the service processing time exceeds the expected service processing time by at least the threshold amount, update the server busy indicator to indicate that the server is busy; andin response to determining that the service processing time does not exceed the expected service processing time by at least the threshold amount, update the server busy indicator to indicate that the server is not busy.
  • 20. The system of claim 18, wherein the compare the service processing time with the expected service processing time comprises: calculate an adjusted expected service processing time based on the service processing times of previous service sessions between the service gateway and the server.
  • 21. The system of claim 18, wherein the service attribute is one or more of a URL, a protocol, domain name, web folder name, or document type.
US Referenced Citations (383)
Number Name Date Kind
5218602 Grant Jun 1993 A
5774660 Brendel et al. Jun 1998 A
5935207 Logue et al. Aug 1999 A
5958053 Denker Sep 1999 A
5995981 Wikstrom Nov 1999 A
6003069 Cavill Dec 1999 A
6047268 Bartoli et al. Apr 2000 A
6131163 Wiegel Oct 2000 A
6219706 Fan et al. Apr 2001 B1
6259705 Takahashi et al. Jul 2001 B1
6321338 Porras et al. Nov 2001 B1
6374300 Masters Apr 2002 B2
6459682 Ellesson et al. Oct 2002 B1
6587866 Modi et al. Jul 2003 B1
6748414 Bournas Jun 2004 B1
6772334 Glawitsch Aug 2004 B1
6779017 Lamberton et al. Aug 2004 B1
6779033 Watson et al. Aug 2004 B1
6952728 Alles et al. Oct 2005 B1
7010605 Dharmarajan Mar 2006 B1
7013482 Krumel Mar 2006 B1
7058718 Fontes et al. Jun 2006 B2
7069438 Balabine et al. Jun 2006 B2
7076555 Orman et al. Jul 2006 B1
7143087 Fairweather Nov 2006 B2
7181524 Lele Feb 2007 B1
7218722 Turner May 2007 B1
7228359 Monteiro Jun 2007 B1
7234161 Maufer et al. Jun 2007 B1
7236457 Joe Jun 2007 B2
7254133 Govindarajan et al. Aug 2007 B2
7269850 Govindarajan et al. Sep 2007 B2
7277963 Dolson et al. Oct 2007 B2
7301899 Goldstone Nov 2007 B2
7308499 Chavez Dec 2007 B2
7310686 Uysal Dec 2007 B2
7328267 Bashyam et al. Feb 2008 B1
7334232 Jacobs et al. Feb 2008 B2
7337241 Boucher et al. Feb 2008 B2
7343399 Hayball et al. Mar 2008 B2
7349970 Clement et al. Mar 2008 B2
7370353 Yang May 2008 B2
7391725 Huitema et al. Jun 2008 B2
7398317 Chen et al. Jul 2008 B2
7423977 Joshi Sep 2008 B1
7430755 Hughes et al. Sep 2008 B1
7463648 Eppstein et al. Dec 2008 B1
7467202 Savchuk Dec 2008 B2
7472190 Robinson Dec 2008 B2
7492766 Cabeca et al. Feb 2009 B2
7506360 Wilkinson et al. Mar 2009 B1
7509369 Tormasov Mar 2009 B1
7512980 Copeland et al. Mar 2009 B2
7533409 Keane et al. May 2009 B2
7552323 Shay Jun 2009 B2
7584262 Wang et al. Sep 2009 B1
7584301 Joshi Sep 2009 B1
7590736 Hydrie et al. Sep 2009 B2
7613193 Swami et al. Nov 2009 B2
7613822 Joy et al. Nov 2009 B2
7673072 Boucher et al. Mar 2010 B2
7675854 Chen et al. Mar 2010 B2
7703102 Eppstein et al. Apr 2010 B1
7707295 Szeto et al. Apr 2010 B1
7711790 Barrett et al. May 2010 B1
7739395 Parlamas et al. Jun 2010 B1
7747748 Allen Jun 2010 B2
7751409 Carolan Jul 2010 B1
7765328 Bryers et al. Jul 2010 B2
7792113 Foschiano et al. Sep 2010 B1
7808994 Vinokour et al. Oct 2010 B1
7826487 Mukerji et al. Nov 2010 B1
7881215 Daigle et al. Feb 2011 B1
7948952 Hurtta et al. May 2011 B2
7970934 Patel Jun 2011 B1
7983258 Ruben et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
7991859 Miller et al. Aug 2011 B1
8019870 Eppstein et al. Sep 2011 B1
8032634 Eppstein et al. Oct 2011 B1
8090866 Bashyam et al. Jan 2012 B1
8122116 Matsunaga et al. Feb 2012 B2
8179809 Eppstein et al. May 2012 B1
8185651 Moran et al. May 2012 B2
8191106 Choyi et al. May 2012 B2
8224971 Miller et al. Jul 2012 B1
8266235 Jalan et al. Sep 2012 B2
8296434 Miller et al. Oct 2012 B1
8312507 Chen et al. Nov 2012 B2
8379515 Mukerji Feb 2013 B1
8499093 Grosser et al. Jul 2013 B2
8539075 Bali et al. Sep 2013 B2
8554929 Szeto et al. Oct 2013 B1
8560693 Wang et al. Oct 2013 B1
8584199 Chen et al. Nov 2013 B1
8595791 Chen et al. Nov 2013 B1
RE44701 Chen et al. Jan 2014 E
8675488 Sidebottom et al. Mar 2014 B1
8681610 Mukerji Mar 2014 B1
8750164 Casado et al. Jun 2014 B2
8782221 Han Jul 2014 B2
8813180 Chen et al. Aug 2014 B1
8826372 Chen et al. Sep 2014 B1
8879427 Krumel Nov 2014 B2
8885463 Medved et al. Nov 2014 B1
8897154 Jalan et al. Nov 2014 B2
8965957 Barros Feb 2015 B2
8977749 Han Mar 2015 B1
8990262 Chen et al. Mar 2015 B2
9094364 Jalan et al. Jul 2015 B2
9106561 Jalan et al. Aug 2015 B2
9154577 Jalan et al. Oct 2015 B2
9154584 Han Oct 2015 B1
9215275 Kannan et al. Dec 2015 B2
9219751 Chen et al. Dec 2015 B1
9253152 Chen et al. Feb 2016 B1
9270705 Chen et al. Feb 2016 B1
9270774 Jalan et al. Feb 2016 B2
9338225 Jalan et al. May 2016 B2
9350744 Chen et al. May 2016 B2
9356910 Chen et al. May 2016 B2
9386088 Zheng et al. Jul 2016 B2
20010049741 Skene et al. Dec 2001 A1
20020032777 Kawata et al. Mar 2002 A1
20020078164 Reinschmidt Jun 2002 A1
20020091844 Craft et al. Jul 2002 A1
20020103916 Chen et al. Aug 2002 A1
20020133491 Sim et al. Sep 2002 A1
20020138618 Szabo Sep 2002 A1
20020143991 Chow et al. Oct 2002 A1
20020178259 Doyle et al. Nov 2002 A1
20020191575 Kalavade et al. Dec 2002 A1
20020194335 Maynard Dec 2002 A1
20020194350 Lu et al. Dec 2002 A1
20030009591 Hayball et al. Jan 2003 A1
20030014544 Pettey Jan 2003 A1
20030023711 Parmar et al. Jan 2003 A1
20030023873 Ben-Itzhak Jan 2003 A1
20030035409 Wang et al. Feb 2003 A1
20030035420 Niu Feb 2003 A1
20030065762 Stolorz et al. Apr 2003 A1
20030091028 Chang May 2003 A1
20030131245 Linderman Jul 2003 A1
20030135625 Fontes et al. Jul 2003 A1
20030195962 Kikuchi et al. Oct 2003 A1
20040062246 Boucher et al. Apr 2004 A1
20040073703 Boucher et al. Apr 2004 A1
20040078419 Ferrari et al. Apr 2004 A1
20040078480 Boucher et al. Apr 2004 A1
20040111516 Cain Jun 2004 A1
20040128312 Shalabi et al. Jul 2004 A1
20040139057 Hirata et al. Jul 2004 A1
20040139108 Tang et al. Jul 2004 A1
20040141005 Banatwala et al. Jul 2004 A1
20040143599 Shalabi et al. Jul 2004 A1
20040187032 Gels et al. Sep 2004 A1
20040199616 Karhu Oct 2004 A1
20040199646 Susai et al. Oct 2004 A1
20040202182 Lund et al. Oct 2004 A1
20040210623 Hydrie et al. Oct 2004 A1
20040210663 Phillips et al. Oct 2004 A1
20040213158 Collett et al. Oct 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050005207 Herneque Jan 2005 A1
20050009520 Herrero et al. Jan 2005 A1
20050021848 Jorgenson Jan 2005 A1
20050027862 Nguyen et al. Feb 2005 A1
20050036501 Chung et al. Feb 2005 A1
20050036511 Baratakke et al. Feb 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050074013 Hershey et al. Apr 2005 A1
20050080890 Yang et al. Apr 2005 A1
20050102400 Nakahara et al. May 2005 A1
20050125276 Rusu Jun 2005 A1
20050163073 Heller et al. Jul 2005 A1
20050198335 Brown et al. Sep 2005 A1
20050213586 Cyganski et al. Sep 2005 A1
20050240989 Kim et al. Oct 2005 A1
20050249225 Singhal Nov 2005 A1
20050259586 Hafid et al. Nov 2005 A1
20050289231 Harada Dec 2005 A1
20060023721 Miyake et al. Feb 2006 A1
20060036610 Wang Feb 2006 A1
20060036733 Fujimoto et al. Feb 2006 A1
20060064478 Sirkin Mar 2006 A1
20060069774 Chen et al. Mar 2006 A1
20060069804 Miyake et al. Mar 2006 A1
20060077926 Rune Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060098645 Walkin May 2006 A1
20060112170 Sirkin May 2006 A1
20060168319 Trossen Jul 2006 A1
20060187901 Cortes et al. Aug 2006 A1
20060190997 Mahajani et al. Aug 2006 A1
20060209789 Gupta et al. Sep 2006 A1
20060230129 Swami et al. Oct 2006 A1
20060233100 Luft et al. Oct 2006 A1
20060251057 Kwon et al. Nov 2006 A1
20060277303 Hegde et al. Dec 2006 A1
20060280121 Matoba Dec 2006 A1
20070019543 Wei et al. Jan 2007 A1
20070086382 Narayanan et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070118881 Mitchell et al. May 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070165622 O'Rourke et al. Jul 2007 A1
20070185998 Touitou et al. Aug 2007 A1
20070195792 Chen et al. Aug 2007 A1
20070230337 Igarashi et al. Oct 2007 A1
20070245090 King et al. Oct 2007 A1
20070259673 Willars et al. Nov 2007 A1
20070283429 Chen et al. Dec 2007 A1
20070286077 Wu Dec 2007 A1
20070288247 Mackay Dec 2007 A1
20070294209 Strub et al. Dec 2007 A1
20080031263 Ervin et al. Feb 2008 A1
20080101396 Miyata May 2008 A1
20080109452 Patterson May 2008 A1
20080109870 Sherlock et al. May 2008 A1
20080134332 Keohane et al. Jun 2008 A1
20080162679 Maher et al. Jul 2008 A1
20080228781 Chen et al. Sep 2008 A1
20080250099 Shen et al. Oct 2008 A1
20080263209 Pisharody et al. Oct 2008 A1
20080271130 Ramamoorthy Oct 2008 A1
20080282254 Blander et al. Nov 2008 A1
20080291911 Lee et al. Nov 2008 A1
20090049198 Blinn et al. Feb 2009 A1
20090070470 Bauman et al. Mar 2009 A1
20090077651 Poeluev Mar 2009 A1
20090092124 Singhal et al. Apr 2009 A1
20090106830 Maher Apr 2009 A1
20090138606 Moran et al. May 2009 A1
20090138945 Savchuk May 2009 A1
20090141634 Rothstein et al. Jun 2009 A1
20090164614 Christian et al. Jun 2009 A1
20090172093 Matsubara Jul 2009 A1
20090213858 Dolganow et al. Aug 2009 A1
20090222583 Josefsberg et al. Sep 2009 A1
20090227228 Hu et al. Sep 2009 A1
20090228547 Miyaoka et al. Sep 2009 A1
20090262741 Jungck et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090313379 Rydnell et al. Dec 2009 A1
20100008229 Bi et al. Jan 2010 A1
20100023621 Ezolt et al. Jan 2010 A1
20100036952 Hazlewood et al. Feb 2010 A1
20100054139 Chun et al. Mar 2010 A1
20100061319 Aso et al. Mar 2010 A1
20100064008 Yan et al. Mar 2010 A1
20100082787 Kommula et al. Apr 2010 A1
20100083076 Ushiyama Apr 2010 A1
20100094985 Abu-Samaha et al. Apr 2010 A1
20100098417 Tse-Au Apr 2010 A1
20100106833 Banerjee et al. Apr 2010 A1
20100106854 Kim et al. Apr 2010 A1
20100128606 Patel et al. May 2010 A1
20100162378 Jayawardena et al. Jun 2010 A1
20100210265 Borzsei et al. Aug 2010 A1
20100217793 Preiss Aug 2010 A1
20100217819 Chen et al. Aug 2010 A1
20100223630 Degenkolb et al. Sep 2010 A1
20100228819 Wei Sep 2010 A1
20100228878 Xu et al. Sep 2010 A1
20100235507 Szeto et al. Sep 2010 A1
20100235522 Chen et al. Sep 2010 A1
20100235880 Chen et al. Sep 2010 A1
20100238828 Russell Sep 2010 A1
20100265824 Chao et al. Oct 2010 A1
20100268814 Cross et al. Oct 2010 A1
20100293296 Hsu et al. Nov 2010 A1
20100312740 Clemm et al. Dec 2010 A1
20100318631 Shukla Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100330971 Selitser et al. Dec 2010 A1
20100333101 Pope et al. Dec 2010 A1
20110007652 Bai Jan 2011 A1
20110019550 Bryers et al. Jan 2011 A1
20110023071 Li et al. Jan 2011 A1
20110029599 Pulleyn et al. Feb 2011 A1
20110032941 Quach et al. Feb 2011 A1
20110040826 Chadzelek et al. Feb 2011 A1
20110047294 Singh et al. Feb 2011 A1
20110060831 Ishii et al. Mar 2011 A1
20110060840 Susai Mar 2011 A1
20110093522 Chen et al. Apr 2011 A1
20110099403 Miyata et al. Apr 2011 A1
20110110294 Valluri et al. May 2011 A1
20110145324 Reinart et al. Jun 2011 A1
20110153834 Bharrat Jun 2011 A1
20110178985 San Martin Arribas et al. Jul 2011 A1
20110185073 Jagadeeswaran et al. Jul 2011 A1
20110191773 Pavel et al. Aug 2011 A1
20110196971 Reguraman et al. Aug 2011 A1
20110276695 Maldaner Nov 2011 A1
20110276982 Nakayama et al. Nov 2011 A1
20110289496 Steer Nov 2011 A1
20110292939 Subramaian et al. Dec 2011 A1
20110302256 Sureshehandra et al. Dec 2011 A1
20110307541 Walsh et al. Dec 2011 A1
20120008495 Shen et al. Jan 2012 A1
20120023231 Ueno Jan 2012 A1
20120026897 Guichard et al. Feb 2012 A1
20120030341 Jensen et al. Feb 2012 A1
20120066371 Patel et al. Mar 2012 A1
20120084419 Kannan et al. Apr 2012 A1
20120084460 McGinnity et al. Apr 2012 A1
20120106355 Ludwig May 2012 A1
20120117571 Davis et al. May 2012 A1
20120144014 Natham et al. Jun 2012 A1
20120151353 Joanny Jun 2012 A1
20120170548 Rajagopalan et al. Jul 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120179770 Jalan et al. Jul 2012 A1
20120191839 Maynard Jul 2012 A1
20120239792 Banerjee et al. Sep 2012 A1
20120240185 Kapoor et al. Sep 2012 A1
20120290727 Tivig Nov 2012 A1
20120297046 Raja et al. Nov 2012 A1
20120311116 Jalan et al. Dec 2012 A1
20130046876 Narayana et al. Feb 2013 A1
20130058335 Koponen et al. Mar 2013 A1
20130074177 Varadhan et al. Mar 2013 A1
20130083725 Mallya et al. Apr 2013 A1
20130100958 Jalan et al. Apr 2013 A1
20130124713 Feinberg et al. May 2013 A1
20130136139 Zheng et al. May 2013 A1
20130148500 Sonoda et al. Jun 2013 A1
20130166762 Jalan et al. Jun 2013 A1
20130173795 McPherson Jul 2013 A1
20130176854 Chisu et al. Jul 2013 A1
20130191486 Someya et al. Jul 2013 A1
20130198385 Han et al. Aug 2013 A1
20130250765 Ehsan et al. Sep 2013 A1
20130250770 Zou et al. Sep 2013 A1
20130258846 Damola Oct 2013 A1
20130268646 Doron et al. Oct 2013 A1
20130282791 Kruglick Oct 2013 A1
20130336159 Previdi et al. Dec 2013 A1
20140012972 Han Jan 2014 A1
20140089500 Sankar et al. Mar 2014 A1
20140164617 Jalan et al. Jun 2014 A1
20140169168 Jalan et al. Jun 2014 A1
20140207845 Han et al. Jul 2014 A1
20140226658 Kakadia et al. Aug 2014 A1
20140235249 Jeong et al. Aug 2014 A1
20140248914 Aoyagi et al. Sep 2014 A1
20140258465 Li Sep 2014 A1
20140258536 Chiong Sep 2014 A1
20140269728 Jalan et al. Sep 2014 A1
20140286313 Fu et al. Sep 2014 A1
20140298091 Carlen et al. Oct 2014 A1
20140325649 Zhang Oct 2014 A1
20140330982 Jalan et al. Nov 2014 A1
20140334485 Jain et al. Nov 2014 A1
20140359052 Joachimpillai et al. Dec 2014 A1
20150039671 Jalan et al. Feb 2015 A1
20150098333 Lin et al. Apr 2015 A1
20150156223 Xu et al. Jun 2015 A1
20150215436 Kancherla Jul 2015 A1
20150237173 Virkki et al. Aug 2015 A1
20150281087 Jalan et al. Oct 2015 A1
20150281104 Golshan et al. Oct 2015 A1
20150296058 Jalan et al. Oct 2015 A1
20150312268 Ray Oct 2015 A1
20150333988 Jalan et al. Nov 2015 A1
20150350048 Sampat et al. Dec 2015 A1
20150350379 Jalan et al. Dec 2015 A1
20160014052 Han Jan 2016 A1
20160036778 Chen et al. Feb 2016 A1
20160042014 Jalan et al. Feb 2016 A1
20160043901 Sankar et al. Feb 2016 A1
20160044095 Sankar et al. Feb 2016 A1
20160050233 Chen et al. Feb 2016 A1
20160088074 Kannan et al. Mar 2016 A1
20160094470 Skog Mar 2016 A1
20160105395 Chen et al. Apr 2016 A1
20160105446 Chen et al. Apr 2016 A1
20160119382 Chen et al. Apr 2016 A1
20160139910 Ramanathan et al. May 2016 A1
20160156708 Jalan et al. Jun 2016 A1
20160164792 Oran Jun 2016 A1
20160173579 Jalan et al. Jun 2016 A1
Foreign Referenced Citations (108)
Number Date Country
1372662 Oct 2002 CN
1449618 Oct 2003 CN
1529460 Sep 2004 CN
1575582 Feb 2005 CN
1714545 Dec 2005 CN
1725702 Jan 2006 CN
101004740 Jul 2007 CN
101094225 Dec 2007 CN
101163336 Apr 2008 CN
101169785 Apr 2008 CN
101189598 May 2008 CN
101193089 Jun 2008 CN
101247349 Aug 2008 CN
101261644 Sep 2008 CN
102143075 Aug 2011 CN
102546590 Jul 2012 CN
102571742 Jul 2012 CN
102577252 Jul 2012 CN
102918801 Feb 2013 CN
103533018 Jan 2014 CN
103944954 Jul 2014 CN
104040990 Sep 2014 CN
104067569 Sep 2014 CN
104106241 Oct 2014 CN
104137491 Nov 2014 CN
104796396 Jul 2015 CN
102577252 Mar 2016 CN
102918801 May 2016 CN
102571742 Jul 2016 CN
1209876 May 2002 EP
2647174 Oct 2003 EP
1770915 Apr 2007 EP
1885096 Feb 2008 EP
02296313 Mar 2011 EP
2577910 Apr 2013 EP
2622795 Aug 2013 EP
2760170 Jul 2014 EP
2772026 Sep 2014 EP
2901308 Aug 2015 EP
2760170 Dec 2015 EP
1182560 Nov 2013 HK
1183569 Dec 2013 HK
1183996 Jan 2014 HK
1189438 Jun 2014 HK
1198565 May 2015 HK
1198848 Jun 2015 HK
1199153 Jun 2015 HK
1199779 Jul 2015 HK
1200617 Aug 2015 HK
IN3764CHN2014 Sep 2015 IN
261CHE2014 Jul 2016 IN
1668CHENP2015 Jul 2016 IN
H09-097233 Apr 1997 JP
1999096128 Apr 1999 JP
H11-338836 Oct 1999 JP
2000276432 Oct 2000 JP
2000307634 Nov 2000 JP
2001051859 Feb 2001 JP
2001298449 Oct 2001 JP
2002091936 Mar 2002 JP
2003141068 May 2003 JP
2003186776 Jul 2003 JP
2005141441 Jun 2005 JP
2006332825 Dec 2006 JP
2008040718 Feb 2008 JP
2009500731 Jan 2009 JP
2013528330 May 2011 JP
2014504484 Feb 2014 JP
2014-143686 Aug 2014 JP
2015507380 Mar 2015 JP
5855663 Dec 2015 JP
5913609 Apr 2016 JP
5946189 Jun 2016 JP
5963766 Aug 2016 JP
10-0830413 May 2008 KR
1020120117461 Aug 2013 KR
1020080008340 Oct 2014 KR
101576585 Dec 2015 KR
101632187 Jun 2016 KR
101692751 Jan 2017 KR
0113228 Feb 2001 WO
0114990 Mar 2001 WO
WO0145349 Jun 2001 WO
03103237 Dec 2003 WO
WO2004084085 Sep 2004 WO
WO2006098033 Sep 2006 WO
2008053954 May 2008 WO
WO2008078593 Jul 2008 WO
2011049770 Apr 2011 WO
WO2011079381 Jul 2011 WO
2011149796 Dec 2011 WO
2012050747 Apr 2012 WO
2012075237 Jun 2012 WO
WO2012083264 Jun 2012 WO
WO2012097015 Jul 2012 WO
2013070391 May 2013 WO
2013081952 Jun 2013 WO
2013096019 Jun 2013 WO
2013112492 Aug 2013 WO
WO2013189024 Dec 2013 WO
WO2014031046 Feb 2014 WO
2014052099 Apr 2014 WO
2014088741 Jun 2014 WO
2014093829 Jun 2014 WO
2014138483 Sep 2014 WO
2014144837 Sep 2014 WO
WO 2014179753 Nov 2014 WO
WO2015153020 Oct 2015 WO
Non-Patent Literature Citations (10)
Entry
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000.
Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009.
Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, The Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009.
Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999.
Goldszmidt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853, May 19, 1997.
Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18.
Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114.
Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30.
Gite, Vivek, “Linux Tune Network Stack (Buffers Size) to Increase Networking Performance,” nixCraft [online], Jul. 8, 2009 [retreived on Apr. 13, 2016], Retreived from the Internt: <URL:http://www.cyberciti.biz/faq/linux-tcp-tuning/>.
FreeBSD, “tcp—TCP Protocol,” Linux Programmer's Manual [online], Nov. 25, 2007 [retreived on Apr. 13, 2016], Retreived from the Internet: <URL:https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci>.
Related Publications (1)
Number Date Country
20120144015 A1 Jun 2012 US