This patent document contains information subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent, as it appears in the U.S. Patent and Trademark Office files or records but otherwise reserves all copyright rights whatsoever.
Aspects of the present invention relate to network traffic management. Other aspects of the present invention relate to configurable, adaptive, global traffic control and management in networks such as the Internet.
As the volume of Internet traffic grows, providers of web content and applications increasingly need to deliver content from multiple servers at widely-separated locations in order to sustain a good end-user experience under high traffic loads. This need generates several difficult challenges, including, among others:
This invention solves these and other problems by providing a means to distribute network (e.g., Internet) traffic according to a configurable set of rules. The rules can be configured to take into account key factors such as:
These rules together provide an extremely fine-grained level of network Internet traffic control to providers of Internet content and applications, enabling them to dramatically improve the end-user experience (measured by speed of request resolution, associated download time, and the availability of servers) over that provided by conventional web servers and mirrored server farms.
There are many potential uses for the invention. One use is to provide a stand-alone service directing traffic exclusively to a set of designated servers managed by a single organization. The invention may also be used in more general ways—for example, one or more of the designated destinations can refer to servers (or server collections) outside the organization's control. The latter case includes, for example, Content Delivery Networks (CDNs), as well as local load-balancing servers, as potential destinations. The invention can also be used, e.g., to provide the DNS (Domain Name Service) component of a Content Delivery Network itself. It can be deployed as a service on behalf of subscribers, or it can be deployed as software to be used directly by subscribers themselves.
The present invention is further described in terms of exemplary embodiments, which will be described in detail with reference to the drawings. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
a) is an exemplary flowchart of a process, in which a content delivery framework provides adaptive policy-based domain name service, according to embodiments of the present invention;
b) is an exemplary flowchart of a process, in which a domain name server resolves a hostname based on policies, according to embodiments of the present invention;
c) is an exemplary flowchart of a process, in which a monitoring mechanism of a domain name server dynamically monitors the name service operations as well as the availability and the load share status of servers, according to embodiments of the present invention;
d) is an exemplary flowchart of a process, in which an ATC administrative network maintains dynamic policies and monitors the operations of a content delivery framework, according to embodiments of the present invention;
e) is an exemplary flowchart of a process, in which an ATC network monitoring mechanism traps events from different domain name servers and generates alerts when necessary, according to embodiments of the present invention;
a) shows an exemplary secure web based graphical interface, through which a subscriber may define load share and shed fraction policies among static resources, according to embodiments of the present invention;
b) shows an exemplary interface for defining policies for dynamic servers, according to embodiments of the present invention;
c) shows an exemplary graphical user interface through which an overflow server may be defined using a canonical name, according to embodiments of the present invention;
a)-10(b) show example subscriber policies, defined based on a set of resource servers, that govern the selection according to geographical location of an incoming request and the time zone of each of the locations, according to embodiments of the present invention;
c)-10(d) show example subscriber policies, defined based on geographical locations of an incoming request with overflow policies that allow the ATC mechanism 150 to direct traffic to pre-defined services when primary servers are not available, according to embodiments of the present invention; and
a)-11(c) show exemplary archived log information that can be displayed and viewed through a graphical user interface, according to embodiments of the present invention.
The invention is described below, with reference to detailed illustrative embodiments. It will be apparent that the invention can be embodied in a wide variety of forms, some of which may be quite different from those of the disclosed embodiments. Consequently, the specific structural and functional details disclosed herein are merely representative and do not limit the scope of the invention.
Although there are a number of different scenarios in which the invention might be deployed, this description will focus, for clarity and example only, on a scenario in which DNS service is provided by a third party on behalf of a content or applications provider.
As used in this description, the framework according to embodiments of this invention contemplates three groups of users:
The terminology end-user, operator and subscriber is used throughout this description to distinguish these three roles, although there are many scenarios in which more than one role can be taken by a single entity. Such scenarios are contemplated by this invention.
Each server group 106 may correspond to a server hierarchy which includes one or more tiers of servers. For example, the first tier of a server hierarchy may comprise one or more primary servers and the second tier of the server hierarchy may comprise possibly one or more overflow servers that are used when the primary servers in the first tier fail to function properly. In general, for the j-th server group, the primary servers at the first tier of server group 106-j are denoted 108-j, and the overflow servers at the second tier of server group 106-j are denoted 110-j.
Each server in a server group is any process or collection of processes that provide resources in response to requests, e.g., from a client. A server can be any off-the-shelf Web server. In some embodiments, servers are typically a Web server such as the Apache server or Netscape Communications Corporation's Enterprise™ server.
Client 112 accesses the subscriber server network 104 in order to obtain content from the subscriber. Content includes any kind of data, including, without limitation, video and audio data and the like. To achieve this access, a user at client 112 enters a resource locator, e.g., a Universal Resource Locator (“URL”), into a browser 114 on client 112. URLs specify the location of resources (information, data files, etc.) on the network. URLs are defined in detail in T. Berners-Lee et al, Uniform Resource Locators (URL), Network Working Group, Request for Comments: 1738, Category: Standards Track, December 1994, located at “http://ds.internic.net/rfc/rfc1738.txt”, which is hereby incorporated herein by reference. URLs generally have the following form:
The framework or system 100 includes at least one Domain Name Service (DNS) name server 118-1. In preferred embodiments, the system 100 also includes DNS name servers 118-1, 118-2, . . . , 118-n, (collectively referred to as name servers 118) all operated by a single particular entity. In the embodiment shown in
When the client's browser 114 obtains a request (e.g., in the form of a URL), the browser queries its resolver 116 for an address for the hostname specified in the requested URL. The resolver 116 eventually queries a particular name server (e.g., name server 118-1). The name server 118-1 returns (provides or attempts to provide) the IP (Internet Protocol) address (or addresses) of a server (or servers) in the subscriber server network. The determination of the particular IP address returned to the resolver 116 may be based on a number of factors, including the resolver's location (e.g., as determined from the resolver's IP address) and various policies (e.g., subscriber policies 120, other policies 122) in a policy database 124. The client's browser 114 is then able to communicate with the selected server in the subscriber server network in order to obtain the desired resource.
Name servers 118-1, 118-2, . . . , 118-n, according to embodiments of the present invention, include an adaptive traffic control (ATC) mechanism 126 which provides domain name service to a client based on policies in the policy database 124. Each name server 118 includes or has access to a location determination mechanism 128 for associating the client's request with the client's location. Such a mechanism 128 may be, e.g., the TraceWare™ product of Cable & Wireless PLC. TraceWare™ is suite of services which provide an Internet Atlas which gives real-time, geographic intelligence through its ability to recognize the originating country, region and metropolitan area of Internet consumers.
The subscriber server network 104 represents a network of servers that provides, on behalf of an underlying subscriber, Internet content or services. For example, a subscriber may be a content provider, which has its own network of servers that deliver content to end users' browsers via the Internet. The subscriber server network 104 may be configured in such a way that the processing of the service requests may be reasonably distributed among all the servers in the server network 104, according to some criteria. To achieve that distribution, the subscriber server network 104 may be organized, for example, to have one or more server groups (e.g., server group 1106-1, . . . , server group k 106-k), each of which may be responsible for processing a portion of the service requests. For example, service requests coming from Finland may be routed to a server group that is physically located in Europe.
Each server group 106 in the subscriber server network 104 may comprise a plurality of servers to further share the load. For example, a service request from Finland may be subsequently routed to a server located in Scandinavia. Routing service requests to different server groups and subsequently to different servers may be based on various criteria. For example, such routing may be based on the distance between the origin of the request and the location of the server. For example, for a service request originated from Finland, it may be more effective and efficient to direct the request to a server located in Norway instead of directing it to a server located in the U.S. Server load may also be used to determine where to route a service request. For example, a service request originated from the U.S. may be routed to a server group in Mexico if the server group in the U.S. is overloaded while the server group in Mexico is relatively idle.
Servers in a server group may be organized into a hierarchy with one or more tiers of servers. Servers at different tiers may have different designated purposes. For instance, servers at the first tier of a server hierarchy may include servers that are primary functioning servers, servers at the second tier may include servers that are used as overflow servers which become active only when the primary servers at the first tier become unavailable or overloaded, and servers at the third tier that are used as second layer overflow servers that become active only when the primary servers and the overflow (or first layer overflow) servers at the second tier become unavailable or overloaded, etc.
The first tier of a server group hierarchy may include one or more primary servers. When multiple primary servers are present, they may be configured in such a way that they share the load. For example, if there are five primary servers at the first tier, they may be configured so that each takes 20% of the total service requests routed to the server group. For each of such primary servers, it may be further configured so that when a particular server is overloaded or fails, the load share originally designated to this server may be shed or directed to other server(s). The load shed may also be configured when the server is not overloaded. The portion to be shed to other server(s) may be governed by certain pre-defined policies.
As discussed above, servers in a server group 106 may be classified into different categories based on specific functionality of the underlying servers. For example, a server in a server group 106 may be a primary server, a first layer overflow server, or a second layer overflow server, etc. A server may also be classified in terms of whether and how a server is to be dynamically monitored. For instance, in some embodiments, a server can be classified as either a monitored server or a managed server.
A classification of a monitored server indicates that the underlying server is to be monitored dynamically for its availability. In this case, the server may be probed for its availability according to some pre-determined schedule. Such a probe may be sent to the underlying server from different locations of the network so that the availability can be detected accurately. That is, if the underlying server failed to respond to one probe sent from one location, it does not necessarily indicate that the server is no longer available (could be due to that only part of the network is congested).
A probe can be realized in different fashion. It can be simply a signal sent to the server to request an acknowledgement. It can also be a poll operation in which a file stored at a designated location on the underlying server is polled. If the file can be successfully polled, the underlying server is considered to be available. The detected availability may be used to adjust or update policies associated with the server so that the network traffic management will respond to the dynamics related to the server.
A server that is classified as a managed server may be actively participating the adaptive policy-based management scheme. Similar to a monitored server, a managed server may be regularly probed for its availability. In addition, a managed server may dynamically provide information related to its load share or load shed. A managed server may update its load share or load shed fraction according to its changed capacity or its current load. For example, when a managed server is upgraded, its capacity may be increased so that it may increase its load share or decrease its load shed fraction. On the other hand, when a managed server is overloaded, it may revise its load share to a lower level or increase its load shed fraction to prevent failure. A managed server may revise its load share or load shed by updating the corresponding load share or load shed information in a designated file stored on the server and this file may be polled by a name server so that the dynamically changed load share and load shed information can be used to direct traffic accordingly.
The distribution of service requests (from a client 112) within the subscriber server network 104 may be controlled through a set of ATC policies (120, 122) stored in the policy database 124. Various authorities may influence the ATC policies and may create policies in the policy database 124. For example, the subscriber may set up policies to direct traffic with respect to considerations such as the geographical locations and the capacities of the underlying servers in the subscriber's network 104. Other policy entities 138, including, for example, the operator of the name servers 118 or various geo-political entities may also have policies regarding how the network traffic should be managed and directed. For example, governmental or some organizational agencies may regulate some aspects of network traffic policies. Such regulation policies may be required to be incorporated so that a service request from the client 112 can be routed in a manner that satisfies regulatory policies.
Thus, the ATC policies in the policy database 124 may be a combination of subscriber policies 120 and other policies 122 from different sources such as subscriber 102 and policy entity 138. Policies from different sources may be accessed by the ATC mechanism 126 from the policy database 124. From the point of view of the ATC mechanism 126, the source of a policy may not be relevant or even determinable. For example, policies may be defined in a textual file stored at a designated location, which may be downloaded to an ATC policy management mechanism 152 in an ATC administrative framework 142 and then broadcast to the database manager 132 located in each of the name servers in the ATC name server network 140. The download may be via either a graphical user interface (GUI), a file transfer protocol (FTP), or some other mechanism. Policy makers may also enter policies directly via a web-based GUI. For example, the subscriber 102 may enter subscriber policies 120 via a browser interface 156 connected with the ATC administrative framework via, preferably a secure interface (e.g., implemented using the “https” protocol).
The policies from the policy database 124 used by the ATC mechanism 126 are collectively referred to as ATC policies, which may include, not is not limited to, the subscriber policies 120 as well as other policies 122. The ATC policies may be organized in a manner that is appropriate to govern and/or control the traffic at different levels of the subscriber server network 104.
The ATC policies (200) may be classified into different types such as geo-political policies 215, load share policies 240, failover policies 245, tiered failover policies 250, shedding policies 255, regulatory policies 260, and Classless Inter-Domain Routing (CIDR) block policies 210.
These exemplary policies in the policy database 124 are described in greater detail below:
Geographic Policy (215):
Decisions are based on location of the end-user or an approximate thereof, e.g., using the IP address of an end-user's resolver. For example, if the IP address is within the U.S., the request may be directed to a “domestic” group of servers in the subscriber server network 104, otherwise it may be directed to “international” servers in the network. The request may be directed to a proprietary Content Delivery Network (CDN) or to another service specified by the subscriber.
Load Share Policy (240):
The subscriber can explicitly specify the amount of traffic (load share) to be directed to each of their servers within a defined server set in the subscriber server network 104. Typically the load may be specified according to the capacity of each server. Based on such specification, the load share of each server may be derived as a percentage of the total load.
Failover policy (245):
The subscriber may specify policies regarding a failover situation where some of the primary servers fail to function. To take care of such a scenario, a failover policy may instruct the ATC mechanism in terms of, for example, how often to monitor the availability of the servers and what strategy to adopt when a partial set of the primary servers are detected to be unavailable. For instance, a failover policy may specify to distribute the load of a failing server to other primary servers. It may also alternatively instruct the ATC framework to direct traffic to servers other than the primary servers.
Tiered Failover Policy (250):
The subscriber may specify a strategy through tiered failover policies by which the load should be re-directed to servers at a next tier when one or more subscriber servers in a previous tier fail to function. For example, in defining the subscriber server network, each server group may be configured as a hierarchy, having the first tier of primary servers, the second tier of first layer overflow servers, and the third tier of second layer overflow servers, etc. In this case, a tiered failover policy may be defined to indicate when the load should be re-directed from the primary servers to the overflow servers. For instance, a tiered failover policy may indicate that when all the primary servers fail, the load should be directed to the second tier, and when servers at both the first tier and the second tier fail, the load should be directed to the overflow servers at the third tier. The traffic may also be re-directed to some other servers. For example, when a content delivery network (CDN) is available, the traffic may be re-directed to the entire CDN.
Shedding Policy (255):
In some circumstances, a fraction of the “load” originally designated to a server may be shed or re-directed to one or more different servers. This may occur when the amount of traffic directed to the subscriber server exceeds a prescribed level. In these cases, a subscriber-specified fraction of traffic (shed fraction) that would otherwise be directed to the server may be shed to one or more other different servers. Such strategy may be adopted to prevent catastrophic failure due to overload. The servers that take the shed load may be an overflow server or some other servers such as a content delivery network. An overload situation may be detected according to the response time of the server. For example, if the response time from a server becomes long, it may indicate that the server is overloaded. In this case, shedding policies 255 may be invoked to re-direct the traffic elsewhere. For instance, if there are a total of 3 primary servers in a server group with load share of (0.3, 0.3, 0.4) and the primary server that is designated to take 40% of the total load is completely overloaded, a shedding policy may specify to shed the load of this server by re-directing 50% of its original load to, for example, the servers located in the CDN 105. A shedding policy may also specify a condition upon which the traffic will be directed again to the shedding server. Such a condition may relate to a desirable level of performance of the shedding server.
CIDR Policy (210):
Policy decisions are supported based upon CIDR blocks of IP address space. CIDR denotes Classless Inter-Domain Routing, an IP addressing scheme that replaces the system based on classes A, B, and C. With CIDR, a single IP address can be used to designate many unique IP addresses.
Regulatory Policy (260):
Certain policies may be specified by some policy entities to control network traffic. Such policies may be enforced in system 100.
A policy may be static or dynamic. Selection of a server from the subscriber server network 104 may be based on an adaptive, regularly updated map of the state of the Internet as well as adaptively updated policies. The map may cluster IP addresses together according to their network latency to a selected set of network agents. This enables the subscriber servers to be selected according to their “network proximity” to an end user's browser, optimizing resulted download time. The policies may be defined in such an adaptive manner that they reflect the dynamic status of the servers such as the availability and load.
Geo-political policies 215 may govern the selection of a server according to where the client is located. As shown in
Geo-political policies differ from load based policies (described above). The former is designed to guide selections based on geographical criteria or time criteria. The latter concerns the selection process with respect to the dynamic capacity and load of the underlying servers. The load share policies 240 govern the selection according to the capacities of the servers. Partial failover or tiered failover policies (245 and 250) govern the traffic re-direction process when functioning servers in a server group are overloaded or failed.
The ATC policies 200 may be hierarchically constructed to form a decision tree.
Once a DNS request is directed to an appropriate continent, the country based distribution policies 225 may further constrain the selection to particular servers that are in the same or close-by countries where the client 112 is located. For example, if the client 112 is located in the U.S., the country based policies 225 may direct the selection from the servers located in the U.S. Similarly, the region based distribution policies 230 may further constrain the selection to, for example, the west coast or east coast depending on where the client 112 is located.
When a particular server group is selected (e.g., after a hierarchical decisions based on the continent-based policies 220 and the region-based policies 230), the load share policies 240 govern the process whereby servers in a given server group should be selected. Such policies may be determined based on the servers' capacities or may be adaptively revised based on the dynamic performance or load of the underlying servers. The load share policies 240 may specify the percentage (share) of the total requests that each server in a server group should handle. For example, if a server group comprises a total of three primary servers (server 1, server 2, server 3), a load share policy for this server group may specify the load share as (0.3, 0.5, 0.2), indicating that server 1 should take 30% of the total load, server 2 should take 50% of the load, and server 3 should take 20% of the total load.
The tiered failover policies 250 govern the selection of a server when a particular default set of servers is no longer functioning or available. For example, primary servers in a server group may be considered as a default set of servers that provide service when operation is normal. Unavailability of such primary servers may be detected according to the response time of the server. For example, if a server is simply not responding, the server may be considered as not available. When all the primary servers are down, the tiered failover policies 250 govern where the traffic should be directed. For instance, the tiered failover policies 250 may specify to direct all traffic to the overflow servers at the next tier.
The subscriber policies 120 govern selection of one or more servers within the subscriber server network 104 (or in some other network of servers) so that their IP addresses may be returned in response to DNS requests from the client 112 (resolver 116). To determine or to select appropriate servers in the subscriber server network 104, the decisions may be hierarchical. For example, as shown in
As illustrated in
The ATC name server network 140 is responsible for responding to DNS requests, including processing DNS requests, applying the ATC policies 200 to select one or more servers from the subscriber server network (or a different designated network), and replying with the IP address(es) of the selected server(s). The ATC name server network 140 dynamically maintains the ATC policies 200, that are either received from the ATC administrative framework 142 or updated according to the dynamic operational status of the servers. The ATC name server network 140 provides domain name-IP address resolutions based on dynamically updated ATC policies 200. The ATC name server network 140 may also monitor the operational status of individual name servers within the network and supply logging and monitoring data to the ATC administrative framework 142.
The ATC administrative framework 142 may be designed to have fault-tolerance. For example, as depicted in
The ATC name server network 140 may comprise a plurality of name server agents 118-1, 118-2, . . . , 118-k, each of which may be designed to be responsible for the DNS requests of a particular geographical (or any other administrative or functional) region. For example, the name server agent 118-1 may be responsible for processing all the DNS requests from North America, the name server 118-2 may be responsible for Europe's DNS requests, and the name server 118-3 may be responsible for DNS requests from Japan. In addition, a name server agent may also serve as a back up name server agent for other name server agents in the network. For example, if the North America name server agent is not functioning properly, the Europe name server agent may be temporarily assigned to handle the DNS requests from North America. For that purpose, all ATC policies may be propagated to all of the name server agents in the ATC name server network 140.
The ATC policy database 124 stores the ATC policies 200. As discussed above, the ATC policies 200 may include policies from different sources (e.g., from subscribers and from other entities that control network traffic). Both the subscriber policies 120 and other policies 122 may be defined and provided to the AMA 144. In the exemplary configuration shown in
The ATC policy management mechanism 152 may broadcast or propagate the ATC policies 200 to relevant name servers in the ATC name server network 140 so that the ATC policies 200 may be used to control the domain name translation service. The stored ATC policies may be dynamically updated via different means. For example, the policies may be updated through the ATC administrative browser 166, or the administrative policy update mechanism 164 may revise existing ATC policies.
Alternatively, the AMA 144 may also be provided with policies from different sources through the ATC policy management mechanism 152, which may regularly poll dynamically updated policies from different locations. Such locations may include designated network locations that are designated to provide dynamic policy related information or servers (either in the subscriber server network 104 or in the CDN 105) that are classified as managed servers. For instance, a server may dynamically specify its load share via a designated file stored on the server. To retrieve such dynamically defined load share information from a managed server, the ATC policy management mechanism 152 may poll the designated file stored on the managed server to obtain relevant load share information. Dynamic policies may also be polled from other policy making entities.
Broadcasting ATC policies may take place periodically according to some pre-defined interval or may be triggered whenever the stored ATC policies are updated. The ATC policy management mechanism 152 may monitor changes made to the existing ATC policies. The ATC policy management mechanism 152 may poll the ATC policies stored in the ATC policy database and see whether there are changes. On the other hand, whenever the ATC policy management mechanism 152 polls dynamic policies from specified locations (such locations may be specified in existing ATC policies), it may determine whether the dynamically polled policies differ from existing ATC policies. In the event that updated policies are different from the existing ATC policies, the ATC policy management mechanism 152 may re-broadcast the updated ATC policies to the ATC name server network 140.
The ATC network monitoring mechanism 150 may collect DNS log summaries from different name servers in the ATC name server network 140. Such summary log data may be received in the form of events that provide information such as, for example, the number of requests directed to particular servers in a given time period. The ATC network monitoring mechanism 150 may collectively processes such DNS log summaries (or events) from the entire ATC system. The report generation mechanism 168 may generates monitoring status reports from these summaries and makes such reports available to the subscriber 102 via the secure web-based GUI 160.
The administrative master backup mechanism 170 may periodically update the AMA backups 146-1, . . . , 146-m to ensure that all the backup agents are current. This may include replicating the ATC policies, the operational status of various control mechanisms (including the ATC policy management mechanism 152), the policy editing mechanism 162, and the administrative policy update mechanism 164, and providing the up-to-date information to the AMA backups.
A major function of an administrative master agent is to manage the ATC policies, to make sure that updated ATC policies are supplied to the name server agents in the ATC name server network 140, to monitor the various name servers' performance, to generate dynamic monitoring status report of system performance, and to maintain a connection through which policies may be updated dynamically and monitoring report can be examined.
Information flagging system errors and other anomalous conditions is collected by the ATC network monitoring mechanism or agent 150.
The trap handler 176 further comprises an event receiver 178 that intercepts trap events from the name servers and an event consolidation mechanism 180 which may classify the trapped events and organize them in a reasonable and appropriate fashion. The processing mechanism 182 may process the consolidated events to identify useful or informative patterns which may be further used, by the alert generation mechanism 184 to identify problematic patterns which may significantly affect the system performance.
The Adaptive Traffic Control (ATC) framework according to the present invention may be deployed as a stand-alone service directing traffic solely to the subscriber's servers, in conjunction with another content delivery network (CDN) provider, or in conjunction with any other service.
Each domain name server in the ATC name server network 140 may include (
The database manager 132 maintains the policy database 124. It received policies broadcast from the ATC policy management mechanism 152 in the ATC administrative framework 142 and populates the policies in the policy database 124. The ATC policies received from the ATC administrative framework 142 may also include information that defines or classifies servers in the subscriber server network 104 (or in the CDN 105). For example, some servers may be defined as monitored servers and some may correspond to managed servers.
When the database manager receive such information, it may inform the monitoring mechanism 130 of the classification of the underlying servers so that the monitoring mechanism 130 can monitor each server according to its status. When the ATC policy management mechanism 152 broadcasts updated policies, the database manager 132 accordingly updates the relevant policies stored in the policy database 124.
The monitoring mechanism 130 monitors the operational status of the name server 118-1 and one or more servers in the subscriber server network. It may collect events occurred in the name server 118-1 during operations and send such events to the ATC network monitoring mechanism 150 in the ATC administrative framework 142. On the other hand, it may also monitor the operations of various servers in the subscriber server group 104 (or in the CDN 105) according to how each server is defined (monitored or managed server).
If a server is defined as a monitored server, the monitoring mechanism 130 may dynamically probe the server (as discussed earlier) to determine its availability. If a server is defined as a managed server, the monitoring mechanism 130 may monitor its availability during operation. The monitoring mechanism 130 may also poll dynamic load share information from the server. When the monitoring mechanism 130 detects that a server is no longer available, it may inform the database manager 132 to create a local policy that indicate that the server is no longer available so that the ATC mechanism 126 can take into account when resolving a hostname.
When the monitoring mechanism 130 polls the dynamic load share information from the server, it may inform the database manager 132 to update the load share policies in the policy database 124 that are affected by the dynamics of the polled load share. For example, if three primary servers in a server group originally have load share (0.3, 0.3, 0.4) and the third primary server now changes its load share to 0.2, the database manager 132 may accordingly update the load share among these three primary servers into (0.4, 0.4, 0.2).
The report generator 134 generates reports related to the operations of the underlying name server based on log information 136 recorded. Such generated reports may be sent to a report consolidator 154 in the ATC administrative framework 142 so that reports from different name servers may be consolidated.
A subscriber may activate (turn up) the ATC system (DNS servers) in one of two ways: using a DNS CNAME or using NS delegation. Instead of using ATC to direct traffic for a single DNS hostname, the subscriber may have many different subdomains that it would like to direct to ATC. For example, the subscriber might want all downloads from dl.customer.com handled by ATC, together with all of its subdomains, but have all other domains that it controls, such as www.customer.com, resolved by its own name server:
In this case, instead of adding the CNAME record in the subscriber's DNS zone file, it simply delegates the dl.customer.com. name to ATC via NS records in its zone file.
The delegation (using NS-records) method is presently preferred as it is more flexible and offers all of the reliability, scalability and flexibility of ATC. After the initial contact for delegation, a properly operating resolver making occasional queries will not contact the subscriber's own name server or name servers again. The result provides much better name resolution performance since the unnecessary overhead of routing each fresh DNS request through the subscriber's name server is eliminated. The CNAME method keeps the subscriber's own name server in the loop. That is, whenever the CNAME TTL expires, client resolvers will return to the subscriber's name servers to refresh the record.
For both CNAME and NS delegation methods, the procedure to turn off the ATC switch is the same—the subscriber edits its DNS zone files to remove the delegation authority to ATC. DNS requests will continue to be served in accordance with the subscriber's defined ATC policies until the TTL's have expired on the appropriate delegations.
The System in Operation
a) is an exemplary flowchart of a process, in which a name server resolves a DNS request based on ATC policies, according to an embodiment of the present invention. First, a user enters a URL into the user's browser 114 (or into any application that accepts URLs as input and obtains the corresponding resource for the client) (at 802). The client's resolver 116 attempts to resolve the hostname of the URL in order to obtain an IP address of a server from which the resource identified by the URL can be obtained (at 804). The resolver 116 will be directed by the client's DNS (not shown) to a DNS Name Server 118 in the ATC name server network 134 (at 806). The resolver 116 provides the name server 118 with the hostname it is attempting to resolve.
The name server 118 receives the request to resolve the hostname (at 808) and determines one or more servers in the subscriber server network 104 or in the CDN 105 that can process the client's request according to the location of the resolver 116 as well as relevant ATC policies retrieved from the policy database 124 (at 810). Details of this operation are described with reference to
b) is a flowchart of an exemplary process, in which a domain name server selects one or more servers according to location of the client and relevant ATC policies. The location of the resolver 116 (or client) is first determined (at 816). Relevant ATC policies are then retrieved (at 818) from the policy database 124. One or more servers in either the subscriber server network 104 or the CDN 105 are selected according to the determined location of the client and the relevant ATC policies (at 820).
c) is a flowchart of an exemplary process, in which the monitoring mechanism 130 in a domain name server monitors the operations of the name server as well as one or more servers in the subscriber server network 104 or the CDN 105. Events occurring during domain name service are monitored (at 822). Such events are sent to the ATC network monitoring mechanism 152 (at 824). In addition, the availability of the one or more servers are also monitored (at 826). Furthermore, if any of the one or more servers is defined as a managed server (determined at 828), dynamic load share information is polled (at 830). Both the availability information and the dynamic load share information (if any) are used to update some ATC policies that are local to the name server (at 832).
d) is a flowchart of an exemplary process, in which the ATC policy management mechanism 152 dynamically maintains and broadcasts the ATC policies. Initially, policies from different sources are received (at 834) and broadcast to the name servers 118 (at 836). If backup is necessary (determined at 838), the ATC policy management mechanism 152 sends current policies to the master backup agents 146 (at 840).
The ATC policy management mechanism 152 also performs dynamic policy maintenance. It polls dynamic policy information (at 842) at certain defined intervals and uses such polled dynamic policy information to update existing policy (at 844). The updated policies are then broadcast to the name servers (at 846). If the updated policies need to be propagated to the backup agents (determined at 848), they are sent to the master backup agents (at 850).
e) is a flowchart of an exemplary process, in which the ATC network monitoring mechanism 150 monitors operations of the name servers and sends alert to the NOC 148 and the subscriber 102. Events sent from monitoring mechanisms of different name servers are trapped (at 852). Such trapped events from different sources are then consolidated (at 854) and processed (at 856). If there is any alarming situation (determined at 858), the ATC network monitoring mechanism 150 generates an alert (at 860). The generated alert is then sent to both the NOC 148 and the subscriber 102 (at 862).
Policy Administration
The ATC policies may be initially set up and later adaptively updated according to servers' dynamic operational status. The ATC policies may be formed via various means. The described approaches may also be applied to form other policies. A GUI approach or a file-based approach (or both) may be employed to set up subscriber policies. Through the GUI approach, different means to form subscriber policies may be adopted. For example, a browser may be used so that a subscriber can enter policies directly. An XML file containing descriptions of the subscriber policies may also be loaded using GUI approach so that the policies may be parsed and stored. As another alternative, a file containing descriptions of the subscriber policies may also be loaded in a similar fashion and parsed accordingly. When a file based method is used, a file containing descriptions of the subscriber policies, either constructed based on XML or some other structure, may be accessed via other means such as FTP.
In some preferred embodiments, a subscriber accesses a secure web-based GUI 160 (
a)-9(c) show exemplary secure web based graphical interfaces, through which a subscriber may define load share policies and overflow policies with respect to specified network resources, according to embodiments of the present invention. There may be different types of load sharing servers: (1) static servers, (2) dynamic servers, and (3) overflow servers. A dynamic server is one that is specified as either a monitored or a managed server whose dynamic availability may be monitored and whose load may be re-directed when it becomes unavailable. In the case of a monitored server, both of its load share and load shed fraction may also be made dynamic.
Correspondingly, the policies governing routing requests to different types of servers may also be defined accordingly. First, the policies that govern static servers are applied when servers are relatively static and do not change often over time. This may mean that the availability of the servers is fairly stable and load sharing among different servers is also relatively stable. The policies that control dynamic servers are applied when servers are expected to change frequently. Such policies include failover policies, shedding policies, and tiered failover policies (described earlier). The overflow policies control the change of flow of the requests when, for some reason, primary servers, either static or dynamic, become unavailable or overloaded. In this case, relevant overflow policies determine to which overflow server a request for name service should be directed.
The load share with respect to a given server represents the amount of traffic that will be sent to that server within a static server setting. An exemplary method to compute the load share of the traffic sent to the server is to sum the load share amount of all servers in a current static server setting and divide the load share for that server by the summed total to derive the load share.
The shed fraction for a given server represents the percentage of traffic that should be redirected away from the server. The redirection may be carried out after load share is made based upon load share policies.
Shedding fractions may also be computed automatically on the fly. For example, when a server is detected to have slow response, indicating that it may be overloaded, a shedding fraction may be computed according to the discrepancy between its expected response time and the actual response time. Such an automatically computed shedding fraction can then be applied to re-direct the newly computed fraction of the traffic to a different server to unload some of the traffic originally intended to be directed to the overloaded server.
For each resource server, an on-line flag may also be set to indicate whether the server is currently available. This flag is shown in
Due to the fact that dynamic servers are expected to change relatively frequently, policies that govern their selection may be defined in two stages. The policies for dynamic servers may be initially specified in a similar fashion as for static servers. For instance, load share and shed fraction can be defined for dynamic servers New York and London, as shown in
The on-line status report may be provided at one or more network locations specified by the subscriber. The locations may be specified as a Uniform Resource Locator (URL) and may be accessed through an HTTP request. A location of the status report may be specified in the initial policy, providing a constant link to the location.
The frequency with which the status report is accessed may also be specified explicitly. For example, it may require the relevant mechanisms (specifically, the ATC policy management mechanism or the monitoring mechanism of each name server) to poll the status report at a regular time, e.g., every thirty seconds.
A status report may be constructed using some standard language such as extendible Markup Language (XML). Such a status report may contain revised policies, which may be determined by the subscriber manually based on network performance, devised by an automated process based on network performance, or may be generated by an individual managed server. In such cases, the status report includes updated policies and when it is polled, the updated policies are used in future traffic control. For example, a managed server may re-define its load share of according to its dynamic capacity. When such dynamically defined load share information is accessed and used in enforcement, the traffic is controlled in a manner that is adaptive to the network dynamics.
When a status report is accessed, the relevant mechanisms (e.g., the ATC policy management mechanism in the ATC administrative framework or the ATC mechanism in corresponding name server) updates the associated policies based on the information contained in the status report. For example, a status report may indicate that the current load share for server New York should be 0.4 (down from 1.0 previously) with the same shed fraction (0.2) and the current load share for server London should be 0.5 (down from previous 1.0) with 0.4 shed fraction (40% shed fraction). An alternative scenario may be that the status report provides network performance data about each dynamic server and the ATC mechanism, after accessing the status report, determines how the current policies may be revised accordingly.
When the status report provides dynamic policies, it may, in general include, for each dynamic server, the following information: <ServerStatus loadShare=“LS” shedFraction=“SF” online=“Boolean”/>, where LS and SF represent numerical numbers and “Boolean” represents a logical value of either “true” or “false”.
With the mechanism of dynamic policies described above, a subscriber or a server can easily specify changes to existing policies (e.g., changes to load share, shed fraction policies and the On-line flag) without having to update an entire ATC policy hierarchy. In addition, a parameter (called “Down on line” in some embodiments) can be set in an ATC policy to control the behavior of the ATC mechanism under the circumstance that the ATC policy management mechanism is unable to properly access the status report due to reasons such as a failed polling or retrieval or failing to parse the status report's content. According to some embodiments of the present invention, three different exemplary approaches may be applied to handle the situation.
With the first approach, a subscriber may instruct an ATC mechanism in a name server not to select a particular server if the status report for that server can not be properly obtained. The subscriber may specify this policy by setting parameter “Down on line” to false. In this case, the ATC mechanism will not consider the underlying server as a candidate for selection process until the polling mechanism retrieves a valid status report.
The second approach to deal with a polling failure is to allow the ATC mechanism to select the underlying dynamic server according to its default policies (or original policies). To specify this solution, the subscriber may set the “Down on line” parameter true.
The third approach to handle the situation where the status report can not be properly retrieved is to allow the ATC mechanism to select the underlying server if its “on line” flag is on (it is available). To achieve this, a subscriber may specify only the “on line” ServerStatus in the status report, with parameter “Down on line” set to either true or false. In this case, the ATC mechanism will use a load share and a shed fraction specified in the policy when the “On line” flag is set to true. The load share and the load shed fraction may both be dynamically determined (either broadcasted from the ATC policy management mechanism or polled by the ATC mechanism 130 from the underlying server.
Both static and dynamic servers are primary servers, although their selection may be controlled by operationally different policies. The third type of servers are called overflow servers. They provide alternatives when primary servers, for some reason, can not be selected. Typically, an overflow server corresponds to a Canonical name or CName, pointing to a service providing a CDN (such as, e.g., Cable & Wireless PLC's Footprint service). The choice of overflow servers may be determined based on the belief that they are in general always available. An overflow server may be defined through a window illustrated in
a)-10(b) show example subscriber policies, defined based on a set of resource servers, that govern the selection of the servers according to different criteria such as geographical location of an incoming request and the time zone of each of the locations. In
b) shows an exemplary decision tree embedded in a set of geographical policies that guide how the traffic should be directed to a set of servers. In the decision tree depicted in
c)-10(d) show another example decision tree constructed based on a set of resources (servers or CDNs) and subscriber policies that are defined based on geographical locations of an incoming request with overflow policies that allow the ATC mechanism to direct traffic to pre-defined overflow servers when primary servers are not available. In the Resource window shown in
The decision tree in
In addition to the various web-based interfaces described herein, there are also other means through which subscriber policies may be defined. As discussed earlier, for example, subscriber policies may also be constructed or specified in an XML file which can be downloaded by an ATC mechanism and used to control the traffic.
Policies defined via different means (e.g., through web based GUI or XML file) may be converted into some pre-defined format within the ATC mechanism. Such pre-defined format may be designed for efficiency in manage and handling the ATC policies. For example, the internal format for ATC policies may be designed so that, internally, the AMAs can conveniently store, access, and broadcast the ATC policies to the name server agents and the name server agents can efficiently apply the policies.
As mentioned earlier, in addition to management of the ATC policies, the AMA may also monitor the performance of name servers and generates viewable DNS log reports. The monitoring mechanism may gather performance information from either the DNS logs of the name servers or the events trapped from the name servers. Such gathered information may be used by the report generation mechanism to construct informative reports. The report generation mechanism may also make such reports available to the subscribers via the secure web-based GUI.
The various mechanisms described herein, including, without limitation, the adaptive traffic control (ATC) mechanism, the location determination mechanism, policy editing mechanism, administrative policy update mechanism, ATC policy management mechanism, report generation mechanism, a monitoring mechanism, and an administrative master backup mechanism may be implemented in hardware, software or a combination thereof. When implemented in software, they may be implemented in any type of appropriate interpreted or compiled programming language. When implemented fully or partially in software, aspects of the invention can reside on any memory or storage medium, including but not limited to a ROM, a disk, an ASIC, a PROM and the like. While the invention has been described with reference to particular mechanisms (algorithms, processes and functions) and architectures, one skilled in the art would realize that other mechanisms and/or architectures could be used while still achieving the invention.
When the various mechanisms of the present invention are running on a particular machine (e.g., the at a client or on a server), they may reside in the memory of the machine or on a storage device or in a combination. Further, while many of the operations have been shown as being performed in a particular order, one skilled in the art would realize that other orders, including some parallelization of operations, are possible and are considered to be within the scope of the invention.
The present invention has been described above in connection with a preferred embodiment thereof; however, this has been done for purposes of illustration only, and the invention is not so limited. Indeed, variations of the invention will be readily apparent to those skilled in the art. Such variations also fall within the scope of the invention. Thus, while the invention has been described with reference to the certain illustrated embodiments, the words that have been used herein are words of description, rather than words of limitation. Changes may be made, within the purview of the appended claims, without departing from the scope and spirit of the invention in its aspects. Although the invention has been described herein with reference to particular structures, acts, and materials, the invention is not to be limited to the particulars disclosed, but rather extends to all equivalent structures, acts, and, materials, such as are within the scope of the appended claims.
The processing described may be performed by a properly programmed general-purpose computer alone or in connection with a special purpose computer. Such processing may be performed by a single platform or by a distributed processing platform. In addition, such processing and functionality can be implemented in the form of special purpose hardware or in the form of software being run by a general-purpose computer. Any data handled in such processing or created as a result of such processing can be stored in any memory as is conventional in the art. By way of example, such data may be stored in a temporary memory, such as in the RAM of a given computer system or subsystem. In addition, or in the alternative, such data may be stored in longer-term storage devices, for example, magnetic disks, rewritable optical disks, and so on. For purposes of the disclosure herein, a computer-readable media may comprise any form of data storage mechanism, including such existing memory technologies as well as hardware or circuit representations of such structures and of such data.
This application is related to and claims priority from U.S. application Ser. No. 10/259,497, titled “Configurable adaptive global traffic control and management,” filed Sep. 30, 2002, the entire contents of which are hereby incorporated herein by reference. This application is related to and claims priority from provisional U.S. Patent Application No. 60/325,177, titled “Configurable Adaptive Global Traffic Control and Management,” filed Sep. 28, 2001, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4495570 | Kitajima et al. | Jan 1985 | A |
4591983 | Bennett et al. | May 1986 | A |
4594704 | Ollivier | Jun 1986 | A |
4726017 | Krum et al. | Feb 1988 | A |
4803641 | Hardy et al. | Feb 1989 | A |
4839798 | Eguchi et al. | Jun 1989 | A |
4847784 | Clancey | Jul 1989 | A |
4920432 | Eggers | Apr 1990 | A |
4922417 | Churm et al. | May 1990 | A |
4943932 | Lark et al. | Jul 1990 | A |
4949187 | Cohen | Aug 1990 | A |
4949248 | Caro | Aug 1990 | A |
5029232 | Nall | Jul 1991 | A |
5130792 | Tindell et al. | Jul 1992 | A |
5132992 | Yurt et al. | Jul 1992 | A |
5136716 | Harvey | Aug 1992 | A |
5172413 | Bradley | Dec 1992 | A |
5191573 | Hair | Mar 1993 | A |
5253275 | Yurt et al. | Oct 1993 | A |
5253341 | Rozmanith | Oct 1993 | A |
5287499 | Nemes | Feb 1994 | A |
5287537 | Newmark et al. | Feb 1994 | A |
5291554 | Morales | Mar 1994 | A |
5341477 | Pitkin et al. | Aug 1994 | A |
5371532 | Gelman | Dec 1994 | A |
5410343 | Coddington | Apr 1995 | A |
5414455 | Hooper | May 1995 | A |
5442389 | Blahut | Aug 1995 | A |
5442390 | Hooper | Aug 1995 | A |
5442749 | Northcutt | Aug 1995 | A |
5471622 | Eadline | Nov 1995 | A |
5475615 | Lin | Dec 1995 | A |
5508732 | Bottomley | Apr 1996 | A |
5515511 | Nguyen | May 1996 | A |
5519435 | Anderson | May 1996 | A |
5522070 | Sumimoto | May 1996 | A |
5528281 | Grady | Jun 1996 | A |
5539621 | Kikinis | Jul 1996 | A |
5542087 | Neimat et al. | Jul 1996 | A |
5544313 | Shachnai | Aug 1996 | A |
5544327 | Dan | Aug 1996 | A |
5550577 | Verbiest | Aug 1996 | A |
5550863 | Yurt | Aug 1996 | A |
5550982 | Long | Aug 1996 | A |
5557317 | Nishio | Sep 1996 | A |
5572643 | Judson | Nov 1996 | A |
5590288 | Castor | Dec 1996 | A |
5592611 | Midgely | Jan 1997 | A |
5594910 | Filepp et al. | Jan 1997 | A |
5603026 | Demers et al. | Feb 1997 | A |
5619648 | Canale | Apr 1997 | A |
5623656 | Lyons | Apr 1997 | A |
5625781 | Cline | Apr 1997 | A |
5627829 | Gleeson et al. | May 1997 | A |
5630067 | Kindell | May 1997 | A |
5633999 | Clowes | May 1997 | A |
5634006 | Baugher et al. | May 1997 | A |
5638443 | Stefik et al. | Jun 1997 | A |
5644714 | Kikinis | Jul 1997 | A |
5646676 | Dewkett et al. | Jul 1997 | A |
5649186 | Ferguson | Jul 1997 | A |
5659729 | Nielsen | Aug 1997 | A |
5666362 | Chen | Sep 1997 | A |
5671279 | Elgamai | Sep 1997 | A |
5675734 | Hair | Oct 1997 | A |
5682512 | Tetrick | Oct 1997 | A |
5699513 | Feigen et al. | Dec 1997 | A |
5708780 | Levergood et al. | Jan 1998 | A |
5712979 | Graber et al. | Jan 1998 | A |
5715453 | Stewart | Feb 1998 | A |
5721914 | DeVries | Feb 1998 | A |
5734831 | Sanders | Mar 1998 | A |
5740423 | Logan et al. | Apr 1998 | A |
5742762 | Scholl | Apr 1998 | A |
5751961 | Smyk | May 1998 | A |
5761507 | Govett | Jun 1998 | A |
5761663 | Lagarde et al. | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5774668 | Choquier et al. | Jun 1998 | A |
5777988 | Cisneros | Jul 1998 | A |
5777989 | McGarvey | Jul 1998 | A |
5784058 | LaStrange et al. | Jul 1998 | A |
5796952 | Davis | Aug 1998 | A |
5799141 | Galipeau et al. | Aug 1998 | A |
5802106 | Packer | Sep 1998 | A |
5802291 | Balick et al. | Sep 1998 | A |
5812769 | Graber et al. | Sep 1998 | A |
5815664 | Asano | Sep 1998 | A |
5826031 | Nielsen | Oct 1998 | A |
5828847 | Gehr | Oct 1998 | A |
5832506 | Kuzma | Nov 1998 | A |
5832514 | Norin et al. | Nov 1998 | A |
5835718 | Blewett | Nov 1998 | A |
5838906 | Doyle et al. | Nov 1998 | A |
5845303 | Templeman | Dec 1998 | A |
5856974 | Gervais et al. | Jan 1999 | A |
5862339 | Bonnaure | Jan 1999 | A |
5867706 | Martin et al. | Feb 1999 | A |
5867799 | Lang et al. | Feb 1999 | A |
5870546 | Kirsch | Feb 1999 | A |
5870559 | Leshem et al. | Feb 1999 | A |
5878212 | Civanlar et al. | Mar 1999 | A |
5884038 | Kapoor | Mar 1999 | A |
5890171 | Blumer et al. | Mar 1999 | A |
5893116 | Simmonds et al. | Apr 1999 | A |
5894554 | Lowery et al. | Apr 1999 | A |
5896533 | Ramos et al. | Apr 1999 | A |
5903723 | Beck et al. | May 1999 | A |
5907704 | Gudmundson et al. | May 1999 | A |
5913028 | Wang et al. | Jun 1999 | A |
5913033 | Grout | Jun 1999 | A |
5918010 | Appleman et al. | Jun 1999 | A |
5919247 | Van Hoff et al. | Jul 1999 | A |
5920701 | Miller et al. | Jul 1999 | A |
5931904 | Banga | Aug 1999 | A |
5933832 | Suzuoka et al. | Aug 1999 | A |
5935207 | Logue et al. | Aug 1999 | A |
5944780 | Chase | Aug 1999 | A |
5945989 | Freishtat et al. | Aug 1999 | A |
5956489 | San Andres et al. | Sep 1999 | A |
5956716 | Kenner | Sep 1999 | A |
5958008 | Pogrebisky et al. | Sep 1999 | A |
5961596 | Takubo et al. | Oct 1999 | A |
5966440 | Hair | Oct 1999 | A |
5968121 | Logan et al. | Oct 1999 | A |
5973696 | Agranat et al. | Oct 1999 | A |
5978791 | Farber et al. | Nov 1999 | A |
5983214 | Lang et al. | Nov 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
5987606 | Cirasole et al. | Nov 1999 | A |
5991809 | Kriegsman | Nov 1999 | A |
5996025 | Day | Nov 1999 | A |
6002720 | Yurt et al. | Dec 1999 | A |
6003030 | Kenner et al. | Dec 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6012090 | Chung et al. | Jan 2000 | A |
6014686 | Elnozahy et al. | Jan 2000 | A |
6014698 | Griffiths | Jan 2000 | A |
6018516 | Packer | Jan 2000 | A |
6021426 | Douglis | Feb 2000 | A |
6026440 | Sharder et al. | Feb 2000 | A |
6029175 | Chow et al. | Feb 2000 | A |
6029176 | Cannon | Feb 2000 | A |
6035332 | Ingrassia, Jr. et al. | Mar 2000 | A |
6038216 | Packer | Mar 2000 | A |
6038310 | Hollywood et al. | Mar 2000 | A |
6038610 | Belfiore et al. | Mar 2000 | A |
6041307 | Ahuja et al. | Mar 2000 | A |
6041324 | Earl et al. | Mar 2000 | A |
6044405 | Driscoll, III et al. | Mar 2000 | A |
6046980 | Packer | Apr 2000 | A |
6049831 | Gardell et al. | Apr 2000 | A |
6052718 | Gifford | Apr 2000 | A |
6052730 | Feliciano et al. | Apr 2000 | A |
6052788 | Wesinger et al. | Apr 2000 | A |
6065051 | Steele et al. | May 2000 | A |
6065062 | Periasamy et al. | May 2000 | A |
6070191 | Narendran et al. | May 2000 | A |
6081829 | Sidana | Jun 2000 | A |
6092112 | Fukushige | Jul 2000 | A |
6092178 | Jindal et al. | Jul 2000 | A |
6092204 | Baker | Jul 2000 | A |
6098078 | Gehani | Aug 2000 | A |
6105028 | Sullivan et al. | Aug 2000 | A |
6108673 | Brandt et al. | Aug 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6112231 | DeSimone et al. | Aug 2000 | A |
6112239 | Kenner et al. | Aug 2000 | A |
6112240 | Pogue et al. | Aug 2000 | A |
6115357 | Packer et al. | Sep 2000 | A |
6115752 | Chauhan | Sep 2000 | A |
6119143 | Dias et al. | Sep 2000 | A |
6125388 | Reisman | Sep 2000 | A |
6125394 | Rabinovich | Sep 2000 | A |
6128601 | Van Horne et al. | Oct 2000 | A |
6128660 | Grimm et al. | Oct 2000 | A |
6130890 | Leinwand et al. | Oct 2000 | A |
6134583 | Herriot | Oct 2000 | A |
6144375 | Jain et al. | Nov 2000 | A |
6144702 | Yurt et al. | Nov 2000 | A |
6144996 | Starnes et al. | Nov 2000 | A |
6151624 | Teare et al. | Nov 2000 | A |
6154738 | Call | Nov 2000 | A |
6154744 | Kenner et al. | Nov 2000 | A |
6154753 | McFarland | Nov 2000 | A |
6154777 | Ebrahim | Nov 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6163779 | Mantha et al. | Dec 2000 | A |
6167427 | Rabinovich et al. | Dec 2000 | A |
6173311 | Hassett et al. | Jan 2001 | B1 |
6173322 | Hu | Jan 2001 | B1 |
6178160 | Bolton et al. | Jan 2001 | B1 |
6181867 | Kenner et al. | Jan 2001 | B1 |
6185598 | Farber | Feb 2001 | B1 |
6185619 | Joffe et al. | Feb 2001 | B1 |
6189030 | Kirsch et al. | Feb 2001 | B1 |
6189039 | Harvey | Feb 2001 | B1 |
6195680 | Goldszmidt | Feb 2001 | B1 |
6205120 | Packer et al. | Mar 2001 | B1 |
6226618 | Downs | May 2001 | B1 |
6226642 | Beranek et al. | May 2001 | B1 |
6230196 | Guenthner et al. | May 2001 | B1 |
6243760 | Armbruster et al. | Jun 2001 | B1 |
6249810 | Kiraly | Jun 2001 | B1 |
6256675 | Rabinovich | Jul 2001 | B1 |
6263313 | Milsted | Jul 2001 | B1 |
6266699 | Sevcik | Jul 2001 | B1 |
6269394 | Kenner et al. | Jul 2001 | B1 |
6272566 | Craft | Aug 2001 | B1 |
6275470 | Ricciulli | Aug 2001 | B1 |
6282569 | Wallis et al. | Aug 2001 | B1 |
6282574 | Voit | Aug 2001 | B1 |
6286045 | Griffiths et al. | Sep 2001 | B1 |
6298041 | Packer | Oct 2001 | B1 |
6311214 | Rhoads | Oct 2001 | B1 |
6314565 | Kenner et al. | Nov 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6330602 | Law et al. | Dec 2001 | B1 |
6332195 | Green et al. | Dec 2001 | B1 |
6338044 | Cook et al. | Jan 2002 | B1 |
6347085 | Kelly | Feb 2002 | B2 |
6360256 | Lim | Mar 2002 | B1 |
6370571 | Medin, Jr. | Apr 2002 | B1 |
6370580 | Kriegsman | Apr 2002 | B2 |
6398245 | Gruse | Jun 2002 | B1 |
6405252 | Gupta et al. | Jun 2002 | B1 |
6405257 | Gersht et al. | Jun 2002 | B1 |
6412000 | Riddle et al. | Jun 2002 | B1 |
6415280 | Farber et al. | Jul 2002 | B1 |
6418421 | Hurtado | Jul 2002 | B1 |
6421726 | Kenner et al. | Jul 2002 | B1 |
6430618 | Karger et al. | Aug 2002 | B1 |
6442549 | Schneider | Aug 2002 | B1 |
6456630 | Packer et al. | Sep 2002 | B1 |
6460082 | Lumelsky | Oct 2002 | B1 |
6460085 | Toporek et al. | Oct 2002 | B1 |
6463454 | Lumelsky | Oct 2002 | B1 |
6463508 | Wolf | Oct 2002 | B1 |
6470389 | Chung et al. | Oct 2002 | B1 |
6473405 | Ricciulli | Oct 2002 | B2 |
6480893 | Kriegsman | Nov 2002 | B2 |
6484143 | Swildens et al. | Nov 2002 | B1 |
6484204 | Rabinovich | Nov 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6490580 | Dey et al. | Dec 2002 | B1 |
6493707 | Dey et al. | Dec 2002 | B1 |
6496856 | Kenner et al. | Dec 2002 | B1 |
6502125 | Kenner et al. | Dec 2002 | B1 |
6502215 | Raad et al. | Dec 2002 | B2 |
6505248 | Casper et al. | Jan 2003 | B1 |
6529477 | Toporek et al. | Mar 2003 | B1 |
6553413 | Leeighton et al. | Apr 2003 | B1 |
6553420 | Karger et al. | Apr 2003 | B1 |
6557054 | Reisman | Apr 2003 | B2 |
6564251 | Katariya et al. | May 2003 | B2 |
6577595 | Counterman | Jun 2003 | B1 |
6581090 | Lindbo et al. | Jun 2003 | B1 |
6584083 | Toporek et al. | Jun 2003 | B1 |
6587837 | Spagna | Jul 2003 | B1 |
6591299 | Riddle et al. | Jul 2003 | B2 |
6605120 | Fields et al. | Aug 2003 | B1 |
6611862 | Reisman | Aug 2003 | B2 |
6625643 | Colby et al. | Sep 2003 | B1 |
6654344 | Toporek et al. | Nov 2003 | B1 |
6654807 | Farber et al. | Nov 2003 | B2 |
6658464 | Reisman | Dec 2003 | B2 |
6665706 | Kenner et al. | Dec 2003 | B2 |
6665726 | Leighton et al. | Dec 2003 | B1 |
6691148 | Zinky et al. | Feb 2004 | B1 |
6694358 | Swildens et al. | Feb 2004 | B1 |
6699418 | Okada et al. | Mar 2004 | B2 |
6708137 | Carley | Mar 2004 | B2 |
6718328 | Norris | Apr 2004 | B1 |
6741563 | Packer | May 2004 | B2 |
6751673 | Shaw | Jun 2004 | B2 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6754706 | Swildens et al. | Jun 2004 | B1 |
6763377 | Belknap et al. | Jul 2004 | B1 |
6763388 | Tsimelzon | Jul 2004 | B1 |
6778502 | Ricciulli | Aug 2004 | B2 |
6785704 | McCanne | Aug 2004 | B1 |
6799221 | Kenner et al. | Sep 2004 | B1 |
6801576 | Haldeman et al. | Oct 2004 | B1 |
6834306 | Tsimelzon | Dec 2004 | B1 |
6842604 | Cook et al. | Jan 2005 | B1 |
6859791 | Spagna | Feb 2005 | B1 |
6870851 | Leinwand et al. | Mar 2005 | B1 |
6874032 | Gersht et al. | Mar 2005 | B2 |
6901604 | Kiraly | May 2005 | B1 |
6915329 | Kriegsman | Jul 2005 | B2 |
6928442 | Farber et al. | Aug 2005 | B2 |
6934255 | Toporek et al. | Aug 2005 | B1 |
6950623 | Brown et al. | Sep 2005 | B2 |
6963910 | Belknap | Nov 2005 | B1 |
6963980 | Mattsson | Nov 2005 | B1 |
6963981 | Bailey et al. | Nov 2005 | B1 |
6965890 | Dey et al. | Nov 2005 | B1 |
6970432 | Hankins et al. | Nov 2005 | B1 |
6973485 | Ebata et al. | Dec 2005 | B2 |
6973490 | Robertson et al. | Dec 2005 | B1 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6981050 | Tobias et al. | Dec 2005 | B1 |
6981180 | Bailey et al. | Dec 2005 | B1 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7003572 | Lownsbrough et al. | Feb 2006 | B1 |
7007089 | Freedman | Feb 2006 | B2 |
7010578 | Lewin et al. | Mar 2006 | B1 |
7012900 | Riddle | Mar 2006 | B1 |
7039633 | Dey et al. | May 2006 | B1 |
7047300 | Oehrke et al. | May 2006 | B1 |
7054935 | Farber et al. | May 2006 | B2 |
7058706 | Iyer et al. | Jun 2006 | B1 |
7069177 | Carley | Jun 2006 | B2 |
7096266 | Lewin et al. | Aug 2006 | B2 |
7103564 | Ehnebuske | Sep 2006 | B1 |
7103645 | Leighton et al. | Sep 2006 | B2 |
7110984 | Spagna | Sep 2006 | B1 |
7117259 | Rohwer | Oct 2006 | B1 |
7185052 | Day | Feb 2007 | B2 |
7188085 | Pelletier | Mar 2007 | B2 |
7206748 | Gruse | Apr 2007 | B1 |
7254645 | Nishi | Aug 2007 | B2 |
7373644 | Aborn | May 2008 | B2 |
7577754 | Garcia-Luna-Aceves et al. | Aug 2009 | B2 |
20010029525 | Lahr | Oct 2001 | A1 |
20010056500 | Farber et al. | Dec 2001 | A1 |
20020018449 | Ricciulli | Feb 2002 | A1 |
20020023164 | Lahr | Feb 2002 | A1 |
20020023165 | Lahr | Feb 2002 | A1 |
20020040404 | Lahr | Apr 2002 | A1 |
20020042817 | Lahr | Apr 2002 | A1 |
20020046273 | Lahr et al. | Apr 2002 | A1 |
20020046405 | Lahr | Apr 2002 | A1 |
20020049857 | Farber et al. | Apr 2002 | A1 |
20020059592 | Kiraly | May 2002 | A1 |
20020066038 | Mattsson | May 2002 | A1 |
20020073199 | Levine et al. | Jun 2002 | A1 |
20020078233 | Biliris et al. | Jun 2002 | A1 |
20020082999 | Lee et al. | Jun 2002 | A1 |
20020083124 | Knox et al. | Jun 2002 | A1 |
20020087684 | Foth | Jul 2002 | A1 |
20020099850 | Farber et al. | Jul 2002 | A1 |
20020116444 | Chaudhri et al. | Aug 2002 | A1 |
20020124080 | Leighton et al. | Sep 2002 | A1 |
20020129134 | Leighton et al. | Sep 2002 | A1 |
20020131645 | Hamilton | Sep 2002 | A1 |
20020143798 | Lisiecki et al. | Oct 2002 | A1 |
20020143888 | Lisiecki et al. | Oct 2002 | A1 |
20020145975 | MeLampy et al. | Oct 2002 | A1 |
20020147774 | Lisiecki et al. | Oct 2002 | A1 |
20020163882 | Bornstein et al. | Nov 2002 | A1 |
20020199016 | Freedman | Dec 2002 | A1 |
20030009444 | Eidler et al. | Jan 2003 | A1 |
20030018966 | Cook et al. | Jan 2003 | A1 |
20030028623 | Hennessey et al. | Feb 2003 | A1 |
20030028626 | Hennessey et al. | Feb 2003 | A1 |
20030028777 | Hennessey et al. | Feb 2003 | A1 |
20030055972 | Fuller et al. | Mar 2003 | A1 |
20030061263 | Riddle | Mar 2003 | A1 |
20030061280 | Bulson et al. | Mar 2003 | A1 |
20030078888 | Lee et al. | Apr 2003 | A1 |
20030078889 | Lee et al. | Apr 2003 | A1 |
20030105604 | Ash et al. | Jun 2003 | A1 |
20030149581 | Chaudhri et al. | Aug 2003 | A1 |
20040022194 | Ricciulli | Feb 2004 | A1 |
20040039798 | Hotz et al. | Feb 2004 | A1 |
20040139097 | Farber et al. | Jul 2004 | A1 |
20040177148 | Tsimelzon | Sep 2004 | A1 |
20050033858 | Swildens et al. | Feb 2005 | A1 |
20050038851 | Kriegsman | Feb 2005 | A1 |
20050100027 | Leinwand et al. | May 2005 | A1 |
20050114296 | Farber et al. | May 2005 | A1 |
20050262104 | Robertson et al. | Nov 2005 | A1 |
20060143293 | Freedman | Jun 2006 | A1 |
20070055764 | Dilley et al. | Mar 2007 | A1 |
20090254661 | Fullagar et al. | Oct 2009 | A1 |
20100312861 | Kolhi et al. | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
763380 | Nov 2003 | AU |
2202572 | Oct 1998 | CA |
2335661 | Sep 2001 | CA |
2335662 | Sep 2001 | CA |
2467998 | Apr 2006 | CA |
ZL98810853.7 | Aug 2004 | CN |
0 800 143 | Oct 1997 | EP |
0801487 | Oct 1997 | EP |
0 817 020 | Jan 1998 | EP |
0817020 | Jan 1998 | EP |
0817444 | Jan 1998 | EP |
0824236 | Feb 1998 | EP |
0865180 | Sep 1998 | EP |
1104555 | Jun 2001 | EP |
2 281 793 | Mar 1995 | GB |
2354350 | Mar 2001 | GB |
2353877 | Mar 2004 | GB |
140935 | Mar 2006 | IL |
5-130144 | May 1993 | JP |
05162529 | Jun 1993 | JP |
7066829 | Mar 1995 | JP |
08328583 | Sep 1996 | JP |
10-027148 | Jan 1998 | JP |
10-70571 | Mar 1998 | JP |
10-093552 | Apr 1998 | JP |
10-126445 | May 1998 | JP |
2000259539 | Sep 2000 | JP |
2001-053793 | Feb 2001 | JP |
2002522995 | Jul 2002 | JP |
3566626 | Jun 2004 | JP |
2005124165 | May 2005 | JP |
3762649 | Jan 2006 | JP |
1999-72167 | Sep 1999 | KR |
176482 | Aug 2003 | NI |
WO 9642041 | Dec 1996 | WO |
WO 9711429 | Mar 1997 | WO |
WO 9729423 | Aug 1997 | WO |
WO 9804985 | Feb 1998 | WO |
WO 9806033 | Feb 1998 | WO |
WO 99 09726 | Feb 1999 | WO |
WO 99 29083 | Jun 1999 | WO |
WO 0014633 | Mar 2000 | WO |
WO-0014633 | Mar 2000 | WO |
WO-0026806 | May 2000 | WO |
WO-0041091 | Jul 2000 | WO |
WO 00 52594 | Sep 2000 | WO |
WO-0052594 | Sep 2000 | WO |
WO-0052594 | Sep 2000 | WO |
WO 0062502 | Oct 2000 | WO |
WO-0078004 | Dec 2000 | WO |
WO 0135601 | May 2001 | WO |
WO-0139003 | May 2001 | WO |
WO 0152497 | Jul 2001 | WO |
Entry |
---|
“Local Area Network Server Replacement Procedure”, IBM Technical Disclosure Bulletin, vol. 38, No. 1, (Jan. 1995), 235-236. |
“Patent Abstracts of Japan, Method and Device for Repeating and Converting Information”, (Appln. No. JP1996 0328583) (Pub. No. JP10171727), Jun. 26, 1998. |
Aggarwal, A. et al., “Performance of Dynamic Replication Schemes for an Internet Hosting Service”. Technical Report, AT&T Labs, Oct. 1998. |
Awerbuch, B. et al., Distributed Paging for General Networks. In Proc. of the 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 574-583, Jan. 1996. |
Awerbuch, et al., Competitive Distributed File Allocation. in Proc. of the 25th Ann. ACM Symp. on Theory of Computing, pp. 164-173, May 1993. |
Baentsch, M, et al. “Enhancing the Web's Infrastructure: From Caching to Replication.” IEEE Internet Computing, 1(2):Mar. 18-27, 1997. |
Bartal, Y., et al., “Competitive Algorithms for Distributed Data Management”, 24th Annual ACM STOC, May 92, Victoria, B.C. Canada. |
Cate, V. “Alex: a global file system”, in Proc. Usenix Conf. on File Systems, May 1992, pp. 1-11. |
Communication (1 page) and European Search Report (with Annex) for Appln. No. EP 02799672.7, dated Apr. 17, 2008. |
Gadde, S., et al., “Reduce, reuse, recycle: An approach to building large internet caches,” in Workshop on Hot Topics in Operating Systems (HotOS), Apr. 1997, pp. 93-98. |
Krishnamurthy, B. et al., Study of piggyback cache validation for proxy caches in the World Wide Web, in: Symp. on Internet Technology and Systems, USENIX Association, Dec. 1997. |
Patent Abstracts of Japan, “Server System for Internet”, Pub. No. 10-027148, pub. date Jan. 27, 1998, Applicant: Hitachi, computer translation, 12 pgs. |
Patent Abstracts of Japan, “Communication Connection Method With a Plurality of Hosts having Common Identifier”, Appln. No. JP 08-20114, Pub. No. 10-093552, Applicant Nippon Telegraph & Telephone, published Apr. 1998. |
Patent Abstracts of Japan, “Domain Name Solving Method and Domain Name Solving System”, Appln. No. JP19990223763, Pub. No. 2001-053793, Applicant Nippon Telegraph & Telephone, published Feb. 23, 2001. |
Rabinovich, M. et al., “Dynamic Replication on the Internet Work Project No. 3116-17-7006”, AT&T Labs Research, Mar. 5, 1998. |
Rabinovich, M. et al., RaDaR: A Scalable Architecture for a Global Web Hosting Service, WWW8, May 1999. |
SNMPV2 Working Group J Case SNMP Research et al: “Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2); rfc1907.txt” IETF Standard, Internet Engineering Task Force, IETF, CH, Jan. 1996. |
“Content Management Technology/Industry News,” Content Technologies Trends and Advice, Gilbane Report, News for Jun. 1999 [21 pages]. |
“Exporting Web Server Final Report,” http://www.cs.technion.ac.il/Labs/Lccn/projects/spring97/project4/final—report.html, Spring 1997 (downloaded Jul. 7, 2007). |
“Patent Abstracts of Japan, Electronic Mail Multiplexing System and Communication Control Method in the System” (Appln. No. JP19930162529), (Jun. 30, 1993) (Pub. No. JP 7066829). |
Adler, R. M., “Distributed Coordination Models for Client/Server Computing,” Computer 28, 4 (Apr. 1995), 14-22. |
Andresen et al., “SWEB: Towards a Scalable World Wide Web Server on Multicomputers”, Proc. IPPS, (Apr. 15, 1996), 850-856. |
Andresen, D., et al., Multiprocessor scheduling with client resources to improve the response time of WWW applications, Proc. 11th Int'l Conf. on Supercomputing (Austria, Jul. 1997). ICS '97. ACM Press, NY, NY, 92-99. |
Basturk, E., et al., “Using network layer anycast for load distribution in the Internet,” Tech. Rep., IBM T.J. Watson Research Center, Jul. 1997 (21 pgs.). |
Berners-Lee et al., RFC 1738—Uniform Resource Locators, Dec. 1994. |
Bestavros, A., “Speculative Data Dissemination and Service to Reduce Server Load, Network Traffic and Service Time in Distributed Information Systems”, In Proc. ICDE '96: The 1996 Int'l Conf. on Data Engineering, (Mar. 1996), 4 pages. |
Bestavros, et al., “Server-Initiated Document Dissemination for the WWW,” IEEE Data Engineering Bulletin 19(3):Sep. 3-11, 1996. |
Bhattacharjee et al., “Application-layer anycasting,” in Proc. IEEE INFOCOM '97, Apr. 1997. |
Braun, H., et al., “Web traffic characterization: an assessment of the impact of caching documents from NCSA's web server,” Comput. Netw. ISDN Syst. 28, 1-2 (Dec. 1995), 37-51. |
Brisco, T. P. RFC 1794: DNS support for load balancing, Apr. 1995. |
Carter et al., “Dynamic server selection using bandwidth probing in wide-area networks,” Tech. Rep. BU-CS-96-007, Comp. Sci. Dept., Boston University, Mar. 1996. |
Carter, J. Lawrence et al., “Universal Classes of Hash Functions”, Journal of Computer and System Sciences, vol. 18, No. 2, (Apr. 1979), 143-154. |
Chankhunthod, A. et al., “A Hierarchical Internet Object Cache”, Proc. of the 1996 USENIX Technical Conf., Jan. 1996, pp. 153-163. |
Cisco Systems, Inc., Cisco DistributedDirector 2500 Series Installation and Configuration Guide, pp. xix-xxii; 1-1 to 1-12; 6-1 to 6-18; 7-1 to 7-18; 8-1 to 8-24, Dec. 1997, downloaded Apr. 2007: http://www.cisco.com/univercd/cc/td/doc/product/iaabu/distrdir/dd2501/. |
Cisco Systems, Inc., Cisco DistributedDirector 4700-M Installation and Configuration Guide, pp. xix-xxii; 1-1 to 1-14; 7-1 to 7-18, 8-1 to 8-20; Dec. 1997, [downloaded Apr. 2007 from http://www.cisco.com/univercd/cc/td/doc/product/iaabu/distrdir/dd4700m/]. |
Cohen, J., et al., “Cache Array Routing Protocol v1.1”, Sep. 29, 1997; http://tools.ietf.org/id/draft-vinod-carp-v1-01.txt (Last-Modified: Wed, Oct. 1, 1997). |
Colajanni, M. and Yu, P. S. 1997. Adaptive TTL schemes for load balancing of distributed Web servers. SIGMETRICS Perform. Eval. Rev. 25, 2 (Sep. 1997), 36-42. |
Crovella et al., Dynamic server selection in the Internet, 3rd IEEE Workshop on the Arch. and Implementation of High Performance Computer Sys. '95, pp. 158-162, Aug. 1995. |
Danzig, P. B., et al., “An analysis of wide-area name server traffic: a study of the Internet Domain Name System,” Conf. Proc. Communications Architectures & Protocols (Aug. 1992). D. Oran, Ed. SIGCOMM '92. ACM Press, New York, NY, 281-292. |
De Bra, P.M.E., et al., “Information Retrieval in the World Wide Web: Making Client-Based Searching Feasible”, Computer Networks and ISDN Systems, NL, North Holland Publishing, Amsterdam, vol. 27, No. 2, ISSN: 0169-7552, (Nov. 1, 1994), 183-192. |
Deering, S. E., et al, “Multicast routing in datagram internetworks and extended LANs,” ACM Trans. Comput. Syst. 8, 2 (May 1990), 85-110. |
Devine, R., “Design and Implementation of DDH: A Distributed Dynamic Hashing Algorithm”, In Proc. 4th Int'l Conf. on Foundations of Data Organizations and Algorithms, (Oct. 1993), 101-114. |
Doi, K. “Super Proxy Script—How to make distributed proxy servers by URL hashing,” Sharp Corp., http://naragw.sharp.co.jp/sps/, dates unknown (1996-2000), download Jul. 7, 2007. |
Feeley, M., et al., “Implementing Global Memory Management in a Workstation Cluster”, In Proc. 15th ACM Symp. on Operating Systems Principles, (Dec. 1995), 201-212. |
Floyd, S., et al., “A Reliable Multicast Framework for Light-Weight Sessions and Application Level Framing”, In Proc. of ACM SIGCOMM '95, 342-356, Aug. 1995. |
Fox, A., et al,, “Cluster-based scalable network services”, Proc. 16th ACM Symp. on Operating Systems Principles (Saint Malo, France, Oct. 5-8, 1997). W. M. Waite, Ed. SOSP '97. ACM Press, New York, NY, 78-91. |
Fredman, M., et al., “Storing a Sparse Table with 0(1) Worst Case Access Time”, J. ACM, vol. 31, No. 3, (Jul. 1984), 538-544. |
Goldszmidt, et al., “Load Distribution for Scalable Web Servers: Summer Olympics 1996—A Case Study,” In Proc. 8th IFIP/IEEE Int'l Workshop on Distributed Systems: Operations and Management, Sydney, Australia, Oct. 1997. |
Grigni, M., et al., “Tight Bounds on Minimum Broadcasts Networks”, SIAM J. Disc. Math. 4 (May 1991), 207-222. |
Gulbrandsen, A., et al., “A DNS RR for specifying the location of services (DNS SRV)”, Network Working Group, RFC 2052, Oct. 1996. |
Guyton et al., “Locating nearby copies of replicated Internet servers,” Proc. ACM SIGCOMM '95, pp. 288-298, Oct. 1995. |
Gwertzman, J., et al., “The Case for Geographical Push-Caching”, Proc. Workshop on Hot OS '95, (May 4, 1995), 51-55. |
Gwertzman, J., et al., “World-Wide Web Cache Consistency”, Proc. 1996 USENIX Tech. Conf., pp. 141-151, San Diego, CA, Jan. 1996. |
Jeffery, C., et al., “Proxy sharing proxy servers.” In Proc. IEEE etaCOM Conf., pp. 116-119, May 1996. |
Karger, D., et al., “Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web”, in Proc. 29th Annual ACM Symp. on Theory of Computing, (May 1997), 654-663. |
Kwan et al., NCSA's World Wide Web Server: Design and Performance, IEEE, pp. 68-74, Nov. 1995. |
Litwin, W., et al., “LH*—A Scalable, Distributed Data Structure”, ACM Trans. on Database Systems, vol. 21, No. 4, pp. 480-525, Dec. 1996. |
Luotonen et al., World-Wide Web Proxies, CERN, Apr. 1994 (modified May 24, 1994). |
Malpani, R., et al., “Making World Wide Web Caching Servers Cooperate”, in Proc. 4th Int'l. World Wide Web Conf. (Dec. 1995), 10 pages (downloaded from http://www.w3.org/Conferences/WWW4/Papers/59/ on Jul. 7, 2007). |
Mockapetris et al., “Development of the Domain Name System,” Proc. SIGCOMM '88 Computer Communications Review, vol. 18, No. 4, Aug. 1988. |
Mockapetris, P., RFC 1034: Domain Names—Concepts and Facilities, Nov. 1987. |
Mockapetris, P., RFC 1035: Domain Names—Implementation and Specification, Nov. 1987. |
Mourad et al., “Scalable Web Server Architectures,” iscc, 2nd IEEE Symposium on Computers and Communications (ISCC '97), Jul. 1997, pp. 12-16. |
Nisan, N. 1990. Pseudorandom generators for space-bounded computations. In Proc. 22nd Annual ACM Symp. on theory of Computing (Baltimore, MD, U.S., May 13-17, 1990). H. Ortiz, Ed. STOC '90. ACM Press, New York, NY, 204-212. |
Oguchi et al., A Study of Caching Proxy Mechanisms Realized on Wide Area Distributed Networks, High Performance Distributed Computing, 5th Int'l Symp., pp. 443-449, Aug. 1996. |
Palmer, M., et al., “Fido: A Cache that Learns to Fetch”, In Proc. the 17th Int'l Conf. on Very Large Data Bases, (Sep. 1991), 255-264. |
Panigrahy, R., “Relieving Hot Spots on the World Wide Web”, Master's thesis, MIT EECS, Jun. 1997, pp. 1-66. |
Peleg, D., et al., “The Availability of Quorum Systems”, Information and Computation, 123, (Dec. 1995), 210-223. |
Petri S., et al., “Load Balancing and Fault Tolerance in Workstation Clusters. Migrating Groups of Communicating Processes.”, Operating Systems Review, vol. 29, No. 4, Oct. 1995, pp. 25-36. |
Plaxton, G. C., et al., “Fast Fault-Tolerant Concurrent Access to Shared Objects”, In Proc. 37th IEEE Symp. of Foundations of Computer Science, (Oct. 1996), 570-579. |
Postel, RFC 1591—Domain Name System Structure and Delegation, Mar. 1994. |
Rabin, M. O., 1989, “Efficient dispersal of information for security, load balancing, and fault tolerance,” J. ACM 36, 2 (Apr. 1989), 335-348. |
Ross, K.W., “Hash-Routing for Collections of Shared Web Caches”, IEEE Network Magazine, 11, 7:37-44, Nov.-Dec. 1997. |
Schemers, R., “Ibnamed—A load balancing name server written in Perl,” 1995 LISA IX—Sep. 17-22, 1995—Monterey, CA. |
Schuba, Christoph; “Addressing Weaknesses in the Domain Name System Protocol,” COAST Laboratory, Dept. of Computer Sciences, Purdue University; West Layfayette, IN; Aug. 1993, p. 1-87. |
Smith, “What can Archives offer the World Wide Web?”, Technical Report 11, University of Kent, Computing Laboratory, University of Kent, Canterbury, UK, Mar. 1994. |
Tarjan, Robert E., et al., “Storing a Sparse Table”, Commun.ACM, 22, 11, (Nov. 1979), 606-611. |
Thaler, D. G. and Ravishankar, C. V. 1998. Using name-based mappings to increase hit rates. IEEE/ACM Trans. Netw. 6, 1 (Feb. 1998), 1-14. |
Vitter, J. S., et al., “Optimal Prefetching via Data Compression,” Proc. 32nd Annual IEEE Symposium on Foundations of Computer Science (Oct. 1991). |
Vixie, Paul; “Name Server Operations Guide for BIND,” Internet Software Consortium; La Honda, CA; p. SMM:10-2-SMM:10-30 (undated, 1996). |
Wessels, Intelligent Caching for World-Wide Web Objects, Masters Thesis, University of Colorado, Jan. 1995 (also presented at INET '95 in Jun. '95). |
Yao, A. C. 1981. Should Tables Be Sorted?. J. ACM 28, 3 (Jul. 1981), 615-628. |
Carter et al., Server selection using dynamic path characterization in Wide-Area Networks, IEEE INFOCOM '97, Apr. 7-12, 1997 (pp. 1014-1021). |
Cormen, T. H., et al., “Introduction to Algorithms”, The MIT Press, Cambridge, Massachusetts, (1994), 219-243, 991-993. |
Fox, A., “A Framework for Separating Server Scalability and Availability from Internet Application Functionality,” PhD thesis, University of California, Berkeley, Dec. 1998. |
Korkea-aho, M. (Nov. 5, 1995). Scalability in Distributed Multimedia Systems, Technical report TKO-B128, Helsinki University of Technology. |
Office Action from Chinese Patent Office for application No. 02821371.8, Jan. 29, 2010, in Chinese with translation. |
Office Action from Chinese Patent Office for application No. 02821371.8, Jan. 4, 2008, in Chinese with translation. |
Office Action from Chinese Patent Office for application No. 02821371.8, May 8, 2009, in Chinese with translation. |
Claims (amended) filed by applicant in Japanese Patent Application No. 2003-531370, Jan. 17, 2008 (English translation provided by foreign associate) [12 pgs.]. |
Claims (amended) filed by applicant in KIPO for Korean Patent Application No. KR 10 2004 7004613, Jul. 24, 2009 (English translation provided by foreign associate) [10 pgs.]. |
European Patent Application No. 02799672.7, file history as of Apr. 23, 2010 (downloaded from EPO). |
International Preliminary Examination Report (IPER), Form PCT/IPEA/409, for PCT/US02/30921, Oct. 2005 [5 pgs.]. |
International Search Report (ISR), Form PCT/ISA/210, for PCT/US02/30921, Jan. 28, 2004 [5 pgs.]. |
Japanese Patent Office (JPO) “Notice of Reasons for Rejection”, for Japanese Patent Application No. 2003-531370, Jul. 17, 2007, “Organized Translation” provided by foreign associate [2 pgs.]. |
Japanese Patent Publication JP 10-70571,Jun. 1997, International Business Machines Corporation, English translation provided with Office Action [34 pgs.]. |
Japanese Patent Publication JP 5-130144, Published May 25, 1993, Fujitsu Ltd., English translation provided with Office Action [9 pgs.]. |
Korean Intellectual Property Office (KIPO), Notice of Preliminary Rejection (Non-Final)) for Korean Patent Application No. KR 10 2004 7004613, Apr. 24, 2009, English translation (provided by foreign associate) [5 pgs.]. |
Office Action for Chinese (PRC) patent application No. 02821371.8, from the Patent Office of the People's Republic of China, dated Aug. 3, 2010 (non-official translation, 9 pgs., including 2 pg. summary). |
U.S. Appl. No. 12/978,537, filed Dec. 24, 2010, “Policy-Based Content Delivery Network Selection” by Stolorz et al. |
Chinese Examination Report dated Jan. 30, 2011, related Chinese Application No. 02821371.8. |
Chinese Reexamination Notification, dated Jul. 5, 2012, Appl. No. 02821371.8, 5 pgs. |
Chinese Reexamination Notification, dated Sep. 13, 2012, Chinese App. No. 02821371.8, including translation, 10 pgs. |
European Examination Report dated Sep. 6, 2012, EP Application No. 10178695.2, 4 pgs. |
European Examination Report, dated Jan. 17, 2014, Application No. 10178695.2, filed Sep. 30, 2002; 3 pgs. |
Chinese Reexamination Decision, dated Jun. 18, 2014, Application No. 02821371.8, filed Sep. 30, 2002; 7 pgs. |
European Examination Report, dated Mar. 25, 2014, Application No. 02799672.7, filed Sep. 30, 2002; 3 pgs. |
Decision on Petition, dated Nov. 13, 2013, in U.S. Appl. No. 12/978,537, filed Dec. 24, 2010; 3 pgs. |
European Examination Report, dated Nov. 4, 2014, Application No. 02799672.7, filed Sep. 30, 2002; 6 pgs. |
“Extended European Search Report dated Dec. 6, 2011”, App. No. 10178695.2, 7 pgs. |
Chinese Reexamination Notification, mailed Jan. 10, 2014, Application No. 02821371.8, filed Sep. 30, 2002; 12 pgs. |
European Search Report, dated Mar. 6, 2014, Application No. 10012965.9, filed Sep. 30, 2002; 13 pgs. |
Durham, D. et al., “The COPS (Common Open Policy Service) Protocol”, rfc2748.txt; XP015008531; http://www.sanface.com/txt2pdf.html Jan. 1, 2000 , 39 pgs. |
Stevens, Mark L. et al., “Policy-Based Management for IP Networks”, Bell Labs Technical Journal vol. 4, No. 4 Oct. 1, 1999 , pp. 75-94. |
Number | Date | Country | |
---|---|---|---|
20080147866 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60325177 | Sep 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10259497 | Sep 2002 | US |
Child | 11932162 | US |