Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods

Information

  • Patent Grant
  • 9973968
  • Patent Number
    9,973,968
  • Date Filed
    Thursday, March 2, 2017
    7 years ago
  • Date Issued
    Tuesday, May 15, 2018
    6 years ago
Abstract
Distribution of management services in distributed antenna systems having a central unit and remote units configured to time-division multiplex (TDM) downlink and/or uplink management signals into time slots to form a TDM management frame signal. In this manner, collision will not occur between multiple management signals communicated over a common communications medium at the same time in the distributed antenna system. Collision detection and management mechanism can add design complexity, cost by requiring additional components, and require additional area on electronic boards. The TDM management frame signal may also be modulated at a carrier frequency before being combined with RF communications signals so that the combined signals are within a linear range of shared certain communications components to reduce cost and area.
Description
BACKGROUND
Field of the Disclosure

The technology of the disclosure relates to distributed antenna systems configured to provide communications signals over a communications medium to and from one or more remote units for communicating with client devices.


Technical Background

Distributed antenna systems (DASs) are effective when deployed inside buildings or other environments where client devices may not otherwise receive radio-frequency (RF) signals from a base station or other source. DASs can be used to provide coverage for applications such as public safety, cellular telephony, wireless local access networks (LANs), location tracking, and medical telemetry inside buildings and over campuses. A typical DAS establishes a number of radio-frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” The antenna coverage areas are formed by remotely distributed antenna units (RAUs), which are sometimes referred to as remote units (RUs). A number of remote units are arranged to create an array of relatively small antenna coverage areas, with each RAU typically accommodating a small number of wireless client device users. This arrangement thus provides a uniform high quality signal and high throughput for wireless users.


DASs may be configured to distribute management signals in addition to RF communications signals. Management signals allow the central unit and remote units to communicate additional information without disturbing the RF communications services. Management signals include instructions for system operations, calibration information, gain control, alarm information, fault information, etc. DASs may combine management signals with RF communications signals to be communicated over the same communications medium for point to multi-point communications. For example, the RF communications signals may be at higher frequencies than the management signals that are modulated at a lower frequency or left in baseband, such that the RF communications signals do not interfere with the management signals. However, for point to multi-point communications, collisions will occur between management signals communicated to different remote units over a common communications medium at the same time. “Back-off” collision detection and avoidance systems can be employed to wait for a defined period of time until the communications medium is clear of other management signals before asserting new management signals on the communications medium. However, throughput is reduced to half-duplex as a result. Collision detection and management mechanism may also add design complexity, cost by requiring additional components, and require additional area on electronic boards.


SUMMARY OF THE DETAILED DESCRIPTION

According to a first embodiment, a central unit for providing communications signals and management signals in a distributed antenna system is configured to receive a plurality of downlink management signals from at least one management controller. The central unit is also configured to time-division multiplex (TDM) the plurality of downlink management signals into time slots of a designated remote unit among a plurality of remote units to form a TDM downlink management frame signal. The central unit is also configured to receive downlink RF communication signals of at least one RF communications frequency band for at least one RF communications service, and to combine the TDM downlink management frame signal with the downlink RF communication signals. The central unit is also configured to send the combined TDM downlink management frame signal and the downlink RF communications signals to the plurality of remote units over a downlink communications link. The central unit may also be configured to receive a plurality of combined uplink RF communications signals and TDM uplink management frame signals over an uplink communications link from each of the plurality of remote units for the at least one RF communications service.


In another embodiment, a method for providing communications signals comprises receiving a plurality of downlink management signals from at least one management controller. The method also comprises TDM of the plurality of downlink management signals into time slots of a designated remote unit among a plurality of remote units to form a TDM downlink management frame signal, receiving downlink RF communication signals of at least one RF communications frequency band for at least one RF communications service, combining the TDM downlink management frame signal with the downlink RF communication signals, sending the combined TDM downlink management frame signal and the downlink RF communications signals to the plurality of remote units over a downlink communications link, and receiving a plurality of combined uplink RF communications signals and TDM uplink management frame signals over an uplink communications link from each of the plurality of remote units for the at least one RF communications service.


In another embodiment, a remote unit for providing communications signals and management signals in a distributed antenna system is configured to receive a plurality of uplink management signals from at least one management controller. The remote unit is also configured to time-division multiplex (TDM) the plurality of uplink management signals into individual time slots to form a TDM uplink management frame signal, receive uplink RF communication signals of at least one RF communications frequency band for at least one RF communications service, combine the TDM uplink management frame signal with the uplink RF communication signals, and to send the combined TDM uplink management frame signal and the uplink RF communications signals to a central unit over an uplink communications link. The remote unit may also be configured to receive a plurality of combined downlink RF communications signals and TDM downlink management frame signals over a downlink communications link from the central unit for the at least one RF communications service.


In another embodiment, a method of providing communications signals comprises receiving a plurality of uplink management signals from at least one management controller, time-division multiplexing (TDM) the plurality of uplink management signals into individual time slots to form a TDM uplink management frame signal, receiving uplink RF communication signals of at least one RF communications frequency band for at least one RF communications service, combining the TDM uplink management frame signal with the uplink RF communication signals, sending the combined TDM uplink management frame signal and the uplink RF communication signals to a central unit over an uplink communications link, and receiving a plurality of combined downlink RF communications signals and TDM downlink management frame signals.


The distributed antenna system also includes the plurality of remote units. Each of the remote units is configured to receive a plurality of uplink management signals from a management controller, to time-division multiplex (TDM) the plurality of uplink management signals into individual time slots to form a TDM uplink management frame signal, to receive uplink RF communication signals of at least one RF communications frequency band for RF communications services, to combine the TDM uplink management frame signal with the uplink RF communication signals, and to send the combined TDM uplink management frame signal and the uplink RF communications signals to the at least one central unit over an uplink communications link. The remote unit may be further configured to receive combined downlink RF communications signals and TDM downlink management frame signals over a downlink communications link from the central unit.


The central units and remote units disclosed herein can be configured to support both RF communication services and digital data services. These communications services can be wired or wireless communications services that are typically communicated wirelessly, but may be provided over non-wireless medium (e.g., electrical conductor and/or optical fiber). The RF communication services and digital data services can be provided over any type of communications medium, including electrical conductors and optical fiber to wireless client devices, such as remote units for example. Examples of RF communications services are cellular services and radio communications services. Examples of digital data services include LAN using Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), telephony, WCDMA, and LTE, which can support voice and data. Digital data signals can be provided over separate communications media for providing RF communication services, or over a common communications medium with RF communications signals.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


The foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The drawings are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic diagram of an exemplary point to multi-point optical fiber-based distributed antenna system configured to distribute RF communications services and management services;



FIG. 2 is a schematic diagram of an exemplary central unit that can be employed in the optical fiber-based distributed antenna system in FIG. 3 for supporting distribution of RF communications services and management services to remote units in a point to multi-point configuration;



FIGS. 3A and 3B are exemplary timing diagrams of a management signal communicated in the distributed antenna system of FIG. 1 before and after being synchronized, respectively;



FIG. 4 is an exemplary multi-frame timing diagram of a synchronous, time-division multiplexed management frame signal communicated in the distributed antenna system of FIG. 1;



FIG. 5 is a schematic diagram of an exemplary remote unit that can be employed in the distributed antenna system in FIG. 1;



FIG. 6 is a schematic diagram illustrating more detail of an exemplary physical layer (PHY) circuit that may be employed in the central unit in FIG. 2 and the remote unit in FIG. 5; and



FIG. 7 is a schematic diagram of a generalized representation of an exemplary computer system that can be included in or interface with any of the RFIC chips provided in the exemplary distributed antenna systems and/or their components described herein.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


Before discussing details of the particular components of the distributed antenna system 10 with regard to FIGS. 2-6, a general overview of the distributed antenna system 10, or DAS 10, in FIG. 1 is first provided. In this regard, the distributed antenna system 10 in FIG. 1 includes a central unit 12. The central unit 12 is communicatively coupled to one or more remote units 14(1)-14(N) via an optical fiber communications medium 16. Thus, in this example, the distributed antenna system 10 is an optical fiber-based distributed antenna system. However, the present disclosure is not limited to an optical fiber-based distributed antenna system. Other communications mediums including twisted pair conductors (e.g., CAT 5/6/7 cable) and coaxial cables could be employed or employed in conjunction with optical fiber. The distributed antenna system 10 is configured to distribute RF communications signals and management signals. In this regard, with regard to distribution of RF communications signals, the central unit 12 is configured to receive downlink RF communications signals 18D from a RF communications network, such as through a base station 20 as an example. In this embodiment, the downlink RF communications signals 18D are downlink electrical RF communications signals 18D(E). The downlink electrical RF communications signals 18D(E) can be combined and converted to downlink optical RF communications signals 18D(O) by the central unit 12 in this embodiment. The downlink optical RF communications signals 18D(O) are split and distributed by the central unit 12 over at least one downlink optical fiber 16D to each of the remote units 14(1)-14(N) to provide one or more RF communications services to the client devices 22(1)-22(N) in wired and/or wireless communication with the remote units 14(1)-14(N).


With continuing reference to FIG. 1, the remote units 14(1)-14(N) are convert the downlink optical RF communications signals 18D(O) back to downlink electrical RF communications signals 18D(E), and communicate the downlink electrical RF communications signals 18D(E) to one or more client devices 22(1)-22(N) to provide the one more RF communications services to the client devices 22(1)-22(N). The remote units 14(1)-14(N) can be configured to communicate through wired or wireless communications to the client devices 22(1)-22(N). For example, if the remote units 14(1)-14(N) are configured to be directly coupled to one client device 22(1)-22(N) each, up to ‘N’ client devices 22(1)-22(N) may be connected to the remote units 14(1)-14(N) in the DAS 10.


The remote units 14(1)-14(N) are also configured to receive uplink RF communications signals 18U from the client devices 22(1)-22(N) to be distributed to the central unit 12 and the base station(s) 20. The uplink RF communications signals 18U are received from the client devices 22(1)-22(N) as uplink electrical RF communications signals 18U(E), which are combined and converted to uplink optical RF communications signals 18U(O). The remote units 14(1)-14(N) distribute the uplink signals 18U(O) over at least one uplink optical fiber 16U to the central unit 12. The central unit 12 receives and converts the uplink optical RF communications signals 18U(O) back to uplink electrical RF communications signals 18U(E). The central unit 12 provides the uplink electrical RF communications signals 18U(E) to the base station(s) 20 to support the one or more RF communications services from the client devices 22(1)-22(N).


With continuing reference to FIG. 1, note that one common downlink optical fiber 16D may be provided between the central unit 12 and the remote units 14(1)-14(N) to carry downlink communications signals in a point-to-multipoint communications configuration. Similarly, one common uplink optical fiber 16U may be provided between the central unit 12 and the remote units 14(1)-14(N) to carry uplink communications signals in a point-to-multipoint communications configuration. Bi-directional communications in the downlink and uplink directions are provided in this embodiment of the DAS 10 in FIG. 1 by providing separate downlink optical fiber(s) 16D and uplink optical fiber(s) 16U. Further, due to the point-to-multipoint configuration of the DAS 10 in FIG. 1, the embodiments disclosed provide TDM of management signals distributed in the DAS 10 to ensure that the management signals do not interfere with providing bi-directional, full-duplex communications. Alternatively, individual downlink optical fibers 16D may be provided between the central unit 12 and each remote unit 14(1)-14(N) to carry downlink communications signals in a point-to-point communications configuration. The individual uplink optical fibers 16U may be provided between the central unit 12 and each remote unit 14(1)-14(N) to uplink communications signals in a point-to-point communications configuration.


As a further option, the downlink optical fiber 16D and uplink optical fiber 16U could be provided as a single optical fiber to carry both downlink and uplink signals. Time-division multiplexing of the downlink and uplink signals may be employed to allow the downlink and uplink signals to be communicated over a single optical fiber. Wave-division multiplexing (WDM), such as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety, may also be employed in this scenario to prevent collisions between downlink and uplink communications signals in the same or overlapping frequency bands. Further, U.S. patent application Ser. No. 12/892,424 also discloses distributed digital data communications signals in a distributed antenna system which may also be distributed in the DAS 10 either in conjunction with RF communications signals or not.


With reference back to FIG. 1, the central unit 12 of the DAS 10 is also configured to distribute management signals between one or more sources, such as between a management controller 26, and the remote units 14(1)-14(N). The management controller 26 may be a computer or console as non-limiting examples. For example, the management controller 26 may be configured to provide management signals to perform a variety of tasks or applications. Examples of management signals that may be distributed in the distributed antenna system 10 include configuration signals, control signals, gain control signals, monitoring signals, and configuration signals, fault signals, and alarm signals. The management signals are not for providing RF communications services between the base station(s) 20 and the client devices 22(1)-22(N). The management signals may be communicated according to any protocol desired, such as the Ethernet protocol.


The central unit 12 is configured to receive downlink management signals 24D from the management controller 26. The central unit 12 distributes the downlink management signals 24D to the remote units 14(1)-14(N) to be distributed to the client devices 22(1)-22(N) communicatively coupled to the remote units 14(1)-14(N). The management controller 26 provides downlink management signals 24D to be distributed by the central unit 12 to any number of remote units 14(1)-14(N). Thus, to prevent the downlink management signals 24D destined for different remote units 14(1)-14(N) from interfering with each other, the central unit 12 time-division multiplexes the downlink electrical management signals 24D(E) into individual time slots in a downlink TDM management frame signal to be distributed to the remote units 14(1)-14(N). The central unit 12 converts the downlink TDM electrical management signal to downlink TDM optical management signals 24D(O) to be distributed over the at least one downlink optical fiber 16D to the remote units 14(1)-14(N) and the client devices 22(1)-22(N) in this embodiment. The central unit 12 can be configured to either broadcast all downlink electrical management signals 24D(E) to all remote units 14(1)-14(N), or provide specific downlink electrical management signals 24D(E) to individual remote units 14(1)-14(N).


In this embodiment, as will be described in more detail below, the downlink TDM optical management signals 24D(O) are combined with the downlink optical RF communications signals 18D(O) in different frequency bands and distributed over the same downlink optical fiber 16D. The remote units 14(1)-14(N) are configured to receive and convert downlink TDM optical management signals 24D(O) to downlink TDM electrical management signals, which can then be parsed by each remote unit 14(1)-14(N) to receive a particular downlink electrical management signal 24D(E) destined for the remote unit 14(1)-14(N).


The remote units 14(1)-14(N) are also configured to create and provide uplink management signals 24U be distributed to the central unit 12 and the management controller 26. For example, it may be desired for the remote units 14(1)-14(N) to have the ability to provide the same type of management signals described above to the central unit 12, which are not related to RF communication services provided to the base station(s) 20. In this regard, uplink electrical management signals 24U(E) may be provided by the client devices 22(1)-22(N) to the remote units 14(1)-14(N). The remote units 14(1)-14(N) time-division multiple the uplink electrical management signals 24U(E) into individual time slots in an uplink TDM electrical management frame signal. Thus, the management signals received by the central unit 12 from different remote units (1)-14(N) do not interfere with each other. The remote units 14(1)-14(N) combine the received uplink TDM electrical management signals with uplink electrical RF communications signals 18U(E), and then configured to convert the combined uplink TDM electrical management signals and uplink electrical RF communications signals 18U(E) to combined uplink TDM optical management signals 24U(O) and uplink optical RF communications signals 18U(O) to be distributed over the at least one uplink optical fiber 16U to the central unit 12.


With continuing reference to FIG. 1, the central unit 12 is configured to convert the received combined uplink TDM optical management signals 24U(O) and uplink optical RF communications signal 18U(O) into combined uplink TDM electrical management signals 24U(E) and uplink electrical RF communications signal 18U(E). The central unit 12 then splits the uplink TDM electrical management signals 24U(E) from the uplink electrical RF communications signal 18U(E). The central unit 12 is configured to translate the uplink TDM electrical management signals 24U(E) into individual uplink electrical management signals 28U(E) from the different remote units 14(1)-14(N) and provide the uplink electrical management signals 28U(E) to the management controller(s) 26.


With continuing reference to FIG. 1, the remote units 14(1)-14(N) in the DAS 10 are communicatively coupled to the client devices 22(1)-22(N) by a separate electrical RF communications medium 30 and an electrical management communications medium 32. In this embodiment, the electrical RF communications medium 30 includes a separate downlink electrical RF communications medium 30D and an uplink electrical RF communications medium 30U. Alternatively, the downlink electrical RF communications medium 30D and uplink electrical RF communications medium 30D may be provided as a single electrical RF communications medium that carries both downlink and uplink RF communications signals. The electrical management communications medium 32 in FIG. 1 also includes a separate downlink electrical management communications medium 32D and an uplink electrical management communications medium 32U. Alternatively, the downlink electrical management communications medium 32D and the uplink electrical management communications medium 32U may be provided as a single management communications medium that carries both downlink and uplink management communications signals. The electrical management communications mediums 30, 32 may be coaxial cables, for example.



FIG. 2 is a schematic diagram of the central unit 12 in the distributed antenna system 10 in FIG. 1 to explain exemplary components provided therein in more detail. As illustrated in FIG. 2, in the downlink direction, a plurality of downlink electrical RF communications signals 18D(E)(1)-18D(E)(X) are received by the central unit 12, wherein ‘X’ signifies any number of signals. To convert the downlink electrical RF communications signals 18D(E)(1)-18D(E)(X) to optical RF communications signals, the laser diodes 34(1)-34(X) are provided. The laser diodes 34(1)-34(X) convert the downlink electrical RF communications signals 18D(E)(1)-18D(E)(X) into downlink optical RF communications signals 18D(O)(1)-18D(O)(X) to be communicated over the downlink optical fiber 16D. The downlink optical RF communications signals 18D(O)(1)-18D(O)(X) are split by optical splitters 36(1)-36(X), which are 1×4 splitters in this example, into ‘Y’ number of downlink optical RF communications channels 38D(1)-38D(Y). Each of the downlink optical RF communications channels 38D(1)-38D(Y) contains the downlink optical RF communications signals 18D(O)(1)-18D(O)(X). The downlink optical RF communications signals 18D(O)(1)-18D(O)(X) are split into the downlink optical RF communications channels 38D(1)-38D(Y) to provide each of the downlink optical RF communications signals 18D(O)(1)-18D(O)(X) to the remote units 14(1)-14(N).


A downlink electrical management signal 24D(E)(1), which is an Ethernet protocol management signal in this example, is received by the central unit 12 to be distributed to the remote units 14(1)-14(N). The downlink electrical management signal 24D(E)(1) is received in an Ethernet physical layer (PHY) circuit 40. The Ethernet PHY circuit 40 provides the downlink electrical management signal 24D(E)(1) to a media access controller 42 for processing before being distributed to the remote units 14(1)-14(N). The media access controller 42 translates and synchronizes the unsynchronized downlink electrical management signal 24D(E)(1) to a synchronized management signal. The media access controller 42 may be provided as a field programmable gate array (FPGA), ASIC, microprocessor or micro-controller, as non-limiting examples.


For example, FIGS. 3A and 3B are timing diagrams of an Ethernet protocol downlink electrical management signal 24D(E) before and after being synchronized, respectively. As illustrated in FIG. 3A, the downlink electrical management signal 24D(E) is provided as an Ethernet protocol signal, which may be a 10 Megabits per second (Mbps) signal as a non-limiting example. To create a synchronized downlink electrical management signal 24D(E) as provided in FIG. 3B, control symbols 43 are provided in the form of a time-divisional domain (TDD) receive symbol 43(1), a start symbol 43(2), a TDD transmit symbol 43(3), and an end symbol 43(4). Receive data 45(1) is inserted between start symbol 43(2) and the TDD transmit symbol 43(3). Transmit data 45(2) is inserted between the TDD transmit symbol 43(3) and the end symbol 43(4).


Referring back to FIG. 2, the media access controller 42 inserts the synchronized downlink electrical management signal 24D(E)(1) into a downlink electrical TDM management frame along with additional downlink control management signals 24D(E)(2), 24D(E)(3) from other sources, such as general purpose input-output (GPIO) fast signals (e.g., TDD, RS232) and GPIO slow signals, to provide a downlink electrical TDM management frame signal 44D(E). Downlink control signals may also include downlink configuration control management signals 24D(E)(4) as another example. FIG. 4 is an exemplary timing diagram of the downlink electrical TDM management frame signal 44D(E). As illustrated in FIG. 4, the synchronized downlink electrical management signals 24D(E) destined for particular remote units 14(1)-14(N) (shown in FIG. 1) are inserted into a time slot 47 corresponding to the remote unit 14(1)-14(N). For example, time slot 1 47(1) may correspond to remote unit 14(1). Time slot 2 47(2) may correspond to remote unit 14(2), and so on. Each time slot 47 can be split into several sub-slots 49(1)-49(Z), wherein one sub-slot 49 is used for transferring translated management packets, and the other sub-slots 49 are used for transferring other management control signals, such as additional downlink control management signals 24D(E)(2)-24D(E)(4). Each time slot 47 can be controlled to be fixed in size or variable in size depending on the bandwidth needs of the remote unit 14(1)-14(N) corresponding to the time slot 47. Also, some time slots 47 may not be required if there are not management signals for particular remote units 14(1)-14(N), which can allow this additional bandwidth to be used to vary the size of other used time slots 47. The remote units 14(1)-14(N) can parse the received downlink electrical TDM management frame signal 44D(E) to retrieve management signals for the particular remote unit 14(1)-14(N).


With reference back to FIG. 2, the downlink electrical TDM management frame signal 44D(E) is provided to a transceiver circuit 46 to be modulated by modulator 48 over an RF carrier frequency (e.g., between 2500-3000 MHz). In this manner, the transceiver circuit 46 may be configured to receive I-Q signals or single stream signal, as examples. Modulating the downlink electrical TDM management frame signal 44D(E) is optional. Modulating the downlink electrical TDM management frame signal 44D(E) may be desired to provide the downlink electrical TDM management frame signal 44D(E) in a frequency band (e.g., 2700-2900 MHz) that is different, but closer to the frequency band of the downlink electrical RF communications signals 18D(E)(1)-18D(E)(X) than a baseband or a lower modulation frequency to allow the same laser diodes 34(1)-34(X) to operate in their linear range to be used to convert the combined signal into an optical signal. This can save cost in avoiding dedicated laser diodes for converting downlink electrical TDM management frame signal 44D(E) and the downlink electrical RF communications signals 18D(E)(1)-18D(E)(X) into optical signals. In this regard, the modulated downlink electrical TDM management frame signal 50D(E) is split by splitter 52 and combined with the downlink electrical RF communications signals 18D(E)(1)-18D(E)(X). The corresponding plurality of combined downlink electrical RF communications signals 18D(E)(1)-18(E)(X) and downlink electrical TDM management frame signal 50D(E) are each provided to the corresponding laser diode 34(1)-34(X) to be converted into a plurality of combined downlink optical RF communications signals 18D(O)(1)-18D(O)(X) and downlink electrical TDM management frame signal 24D(O), respectively.


With continuing reference to FIG. 2, the plurality of combined downlink optical RF communications signals 18D(O)(1)-18D(O)(X) and downlink optical TDM management frame signals 24D(O) are each provided to optical splitters 36(1)-36(X). The optical splitters 36(1)-36(X) split the combined downlink optical RF communications signals 18D(O)(1)-18D(O)(X) and downlink optical TDM management frame signals 24D(O) into multiple downlink optical RF communications channels 38D(1)-38D(Y) to be distributed over the downlink optical fiber 16D to the remote units 14(1)-14(N). In this manner, each of the remote units 14(1)-14(N) receive the downlink optical RF communications signals 18D(O)(1)-18D(O)(X) and downlink optical TDM management frame signals 24D(O). FIG. 5, described in more detail below, discusses the processing of the received downlink optical RF communications signals 18D(O)(1)-18D(O)(X) and downlink optical TDM management frame signals 24D(O) by the remote units 14(1)-14(N).


In the uplink direction, each combined pair of uplink optical RF communications signals 18U(O)(1)-18U(O)(N) and uplink optical TDM management frame signals 24U(O)(1)-24U(O)(N) are received by the central unit 12 over separate channels 54U(1)-54U(N) from the remote units 14(1)-14(N). Each combined pair of uplink optical RF communications signals 18U(O)(1)-18U(O)(N) and uplink optical TDM management frame signals 24U(O)(1)-24U(O)(N) is provided to separate photodiodes 56(1)-56(N). The photodiodes 56(1)-56(N) convert each of the combined pairs of uplink optical RF communications signals 18U(O)(1)-18U(O)(N) and uplink optical TDM management frame signals 24U(O)(1)-24U(O)(N), into combined pairs of uplink electrical RF communications signals 18U(E)(1)-18U(E)(N) and uplink electrical TDM management frame signals 24U(E)(1)-24U(E)(N). The combined pairs of uplink electrical RF communications signals 18U(E)(1)-18U(E)(N) and uplink electrical TDM management frame signals 24U(E)(1)-24U(E)(N) are split by splitters 58(1)-58(N) to split the uplink electrical RF communications signals 18U(E)(1)-18U(E)(N) from the uplink electrical TDM management frame signals 24U(E)(1)-24U(E)(N). Then, each of the uplink electrical RF communications signals 18U(E)(1)-18U(E)(N) is combined by combiners 60(1)-60(X) to provide combined uplink electrical RF communications signals 18U(E)(1)-18U(E)(X) to be delivered to the base station(s) 20.


Each of the uplink electrical TDM management frame signals 24U(E)(1)-24U(E)(N) are combined by combiners 62(1)-62(X) to provide a combined uplink electrical TDM management frame signal 24U(E). The combined uplink electrical TDM management frame signal 24U(E) is provided to a demodulator 64 in the transceiver 46. The demodulator 64 demodulates the combined uplink electrical TDM management frame signal 24U(E) from its RF carrier and delivers the demodulated uplink electrical TDM management frame signal 24U(E) to the media access controller 42. The media access controller 42 translates the demodulated uplink electrical TDM management frame signal 24U(E) to a standard, desired protocol (e.g., Ethernet protocol) and also retrieves other control signals included therein, such as GPIO fast signals 28U(E)(2) and GPIO slow signals 28U(E)(3). The central unit 12 includes a references oscillator 68 that provides a reference signal 70 to be used by the media access controller 42 to translate the downlink electrical TDM management frame signal 24D(E) and demodulated uplink electrical TDM management frame signal 24U(E).



FIG. 5 is a schematic diagram of a remote unit 14 in the DAS 10 in FIG. 1 to explain certain components therein in more detail. Only one remote unit 14 is illustrated in FIG. 5, but note that the remote unit 14 in FIG. 5 can be provided as any of the remote units 14(1)-14(N) in the DAS 10 of FIG. 1. As illustrated in FIG. 3, in the uplink direction, an uplink electrical RF communications signal 18U(E) is received by the remote unit 14. To convert the uplink electrical RF communications signal 18U(E) to an optical RF communications signal, a laser diode 72 is provided. The laser diode 72 converts the uplink electrical RF communications signal 18U(E) into an uplink optical RF communications signal 18U(O) to be communicated over the uplink optical fiber 16U to the central unit 12.


With continuing reference to FIG. 5, an uplink electrical management signal 24U(E)(1), which is an Ethernet protocol management signal in this example, is received by the remote unit 14 to be distributed to the central unit 12. The uplink electrical management signal 24U(E)(1) is received in an Ethernet physical layer (PHY) circuit 74. The Ethernet PHY circuit 74 provides the uplink electrical management signal 24U(E)(1) to a media access controller 76 for processing before being distributed to the central unit 12. The media access controller 76 translates and synchronizes the unsynchronized uplink electrical management signal 24U(E)(1) to a synchronized protocol. The media access controller 76 inserts the synchronized uplink electrical management signal 24U(E)(1) into an uplink electrical TDM management frame along with additional uplink control management signals 24U(E)(2), 24U(E)(3) from other sources, such as general purpose input-output (GPIO) fast signals (e.g., TDD, RS232) and GPIO slow signals, to provide an uplink electrical TDM management frame signal 78U(E). The media access controller 76 may be provided as a field programmable gate array (FPGA), ASIC, microprocessor or micro-controller, as non-limiting examples.


With continuing reference to FIG. 5, the uplink electrical TDM management frame signal 78U(E) is provided to a transceiver circuit 80 to be modulated by modulator 82 over an RF carrier frequency (e.g., 2500-3000 MHz). The transceiver circuit 80 may be configured to receive I-Q signals or single stream signal, as examples. Modulating the uplink electrical TDM management frame signal 78U(E) is optional. Modulating the uplink electrical TDM management frame signal 78U(E) may be desired to provide the uplink electrical TDM management frame signal 78U(E) to be closer in frequency band to the uplink electrical RF communications signal 18U(E) (e.g., within 2700-2900 MHz) than baseband or a low frequency carrier to allow the laser diode 72 to operate in its linear range to convert the combined signal into an optical signal. In this regard, the modulated uplink electrical TDM management frame signal 84U(E) is combined with the uplink electrical RF communications signal 18U(E) by combiner 86. The combined uplink electrical RF communications signal 18U(E) and uplink electrical TDM management frame signal 78U(E) is provided to the laser diode 72 to be converted into a combined uplink optical RF communications signals 18U(O) and uplink optical TDM management frame signal 24U(O). The combined uplink optical RF communications signals 18U(O) and uplink optical TDM management frame signal 24U(O) is communicated over the uplink optical fiber 16U to the central unit 12.


In the downlink direction, a combined downlink optical RF communications signal 18D(O) and downlink optical TDM management frame signal 24D(O) is received by the remote unit 14 from the central unit 12. The combined downlink optical RF communications signal 18D(O) and downlink optical TDM management frame signal 24D(O) is provided to a photodiode 88. The photodiode 88 converts the combined downlink optical RF communications signal 18D(O) and downlink optical TDM management frame signal 24D(O), into a combined downlink electrical RF communications signal 18D(E) and downlink electrical TDM management frame signal 89D(E). The combined downlink electrical RF communications signal 18D(E) and downlink electrical TDM management frame signal 89D(E) are split by splitter 90 to split the downlink electrical RF communications signal 18D(E) from the downlink electrical TDM management frame signal 89D(E). The downlink electrical RF communications signal 18D(E) is delivered to the client device(s) 22.


The downlink electrical TDM management frame signal 89D(E) is provided to a demodulator 92 in the transceiver circuit 80. The demodulator 92 demodulates the downlink electrical TDM management frame signal 89D(E) from its RF carrier and delivers the demodulated downlink electrical TDM management frame signal 24D(E) to the media access controller 76. The media access controller 76 translates the demodulated uplink electrical TDM management frame signal 24D(E) to a standard, desired protocol (e.g., Ethernet protocol) and also retrieves other control signals included therein, such as GPIO fast signals 24U(E)(2) and GPIO slow signals 24U(E)(3). The remote unit 14 includes a reference oscillator 94 that provides a reference signal 96 to be used by the media access controller 76 to translate the demodulated downlink electrical TDM management frame signal 24D(E) and uplink electrical TDM management frame signal 24U(E).



FIG. 6 is a schematic diagram illustrating more exemplary detail of the exemplary media access controllers 42, 76 employed in the central unit 12 in FIG. 2 and the remote unit 14 in FIG. 5. A first in, first out (FIFO) buffer 100 is provided to store management signals received and transmitted. A Manchester encoder 102 is provided to encode the downlink electrical TDM management frame signal 44D(E) and the uplink electrical TDM management frame signal 78U(E). A Manchester decoder 104 is provided to decode the modulated downlink electrical TDM management frame signal 50D(E) and the downlink electrical TDM management frame signal 89D(E) into individual electrical management signals 106. The electrical management signals 106 are provided to the FIFO buffer 100. Control signals 108 embedded in the modulated downlink electrical TDM management frame signal 50D(E) and the downlink electrical TDM management frame signal 89D(E) are provided to a main control module 110 that controls the injection and extraction of timing, control, and signaling symbols when translating and de-translating management signals. The main control module 110 also controls the timing of the latching of signals in and out of the FIFO buffer 100 according to control signals 112.


The media access controllers 42, 76 also include a digital phase locked loop (PLL) circuit 114. The PLL circuit 114 phase locks the reference signals 70, 96 by sending control voltage signals 116 to the oscillators 68, 94. The reference signals 70, 96 are used by the management control module 110 to control the translation (e.g., sampling) of the management signals, as discussed above. The management control module 110 provides a clock recovery signal 118 extracted from management signals to the phase detector 120. The phase detector 120 compares the reference signals 70, 96 to output a phase difference signal 122 to a digital-to-analog converter 124 and low pass filter 126 to generate the control voltage signal 116 to control the oscillators 68, 94 to phase control the reference signals 70, 96 according to the clock recovery signal 118.


Note that downlink optical fiber 16D and uplink optical fiber 16U could be provided as a single optical fiber to carry combined downlink optical RF communications signals 18D(O)(1)-18D(O)(X), downlink electrical TDM management frame signal 24D(O), uplink TDM optical management signals 24U(O), and uplink optical RF communications signals 18U(O). Time-division multiplexing of the downlink and uplink signals may be employed to allow these downlink and uplink signals to be communicated over a single optical fiber. Wave-division multiplexing (WDM), such as discussed in U.S. patent application Ser. No. 12/892,424, incorporated herein by reference in its entirety, may also be employed in this scenario to prevent collisions between downlink and uplink communications signals in the same or overlapping frequency bands.


The RF communications services supported by the distributed antenna systems disclosed in this application, such as the DAS 10 may include, but are not limited to, US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink), EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink), medical telemetry frequencies, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc.


Any of the DAS components disclosed herein can include a computer system. In this regard, FIG. 7 is a schematic diagram representation of additional detail regarding an exemplary form of a computer system 130 that is adapted to execute instructions from a computer-readable medium to perform power management functions and can be included in a distributed antenna system component(s). The computer system 130 includes a set of instructions for causing the distributed antenna system component(s) to provide its designed functionality. The DAS component(s) may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. The DAS component(s) may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single device is illustrated, the term “device” shall also include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The DAS component(s) may be a circuit or circuits included in an electronic board card, such as a printed circuit board (PCB) as an example, a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer. The exemplary computer system 130 in this embodiment includes a processing device or processor 132, a main memory 134 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 136 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via the data bus 138. Alternatively, the processing device 132 may be connected to the main memory 134 and/or static memory 136 directly or via some other connectivity means. The processing device 132 may be a controller, and the main memory 134 or static memory 136 may be any type of memory.


The processing device 132 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 132 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 132 is configured to execute processing logic in instructions 301 for performing the operations and steps discussed herein.


The computer system 130 may further include a network interface device 140. The computer system 130 also may or may not include an input 142 to receive input and selections to be communicated to the computer system 130 when executing instructions. The computer system 130 also may or may not include an output 144, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).


The computer system 130 may or may not include a data storage device that includes instructions 146 stored in a computer-readable medium 148. The instructions 146 may also reside, completely or at least partially, within the main memory 134 and/or within the processing device 132 during execution thereof by the computer system 130, the main memory 134 and the processing device 132 also constituting computer-readable medium. The instructions 146 may further be transmitted or received over a network 150 via the network interface device 140.


While the computer-readable medium 148 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic medium, and carrier wave signals.


The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.


The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage medium, optical storage medium, flash memory devices, etc.).


The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. Storage media may be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station as discrete components in a remote station, base station, or server.


As used herein, the terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers.

Claims
  • 1. A remote unit for providing communications signals and management signals in a wireless communications system, the unit comprising: at least one media access controller, wherein the unit is configured to: receive at the media access controller a plurality of uplink management signals from at least one management controller;time-division multiplex (TDM) the plurality of uplink management signals into individual time slots to form a TDM uplink management frame signal;receive uplink radio frequency (RF) communication signals of at least one RF communications frequency band for at least one RF communications service;combine the TDM uplink management frame signal with the uplink RF communication signals; andsend the combined TDM uplink management frame signal and the uplink RF communications signals to a central unit over an uplink communications link,wherein at least a portion of the uplink communications link is comprised of at least one uplink optical fiber and at least one electrical-to-optical converter configured to convert the combined TDM uplink management frame signal and the uplink RF communications signals into a combined TDM uplink optical management frame signal and uplink optical RF communications signals.
  • 2. The remote unit of claim 1, wherein each of the plurality of uplink management signals includes at least one of a configuration management signal, a gain control signal, a status signal, an alarm signal, and a fault signal.
  • 3. The remote unit of claim 2, further configured to synchronize the plurality of uplink management signals.
  • 4. The remote unit of claim 3, further configured to receive a plurality of combined downlink RF communications signals and TDM downlink management frame signals over a downlink communications link from the central unit for the at least one RF communications service.
  • 5. The remote unit of claim 4, further comprising a splitter configured to split each of the plurality of combined downlink RF communications signals and TDM downlink management frame signals into a plurality of downlink RF communications signals and a plurality of TDM downlink management frame signals.
  • 6. The remote unit of claim 4, wherein the individual time slots of the TDM uplink management frame signal are fixed sized.
  • 7. The remote unit of claim 4, wherein the individual time slots of the TDM uplink management frame signal are variable sized.
  • 8. The remote unit of claim 4, wherein the TDM uplink management frame signal is comprised of signals having a protocol selected from the group consisting of Ethernet, universal asynchronous receiver-transmitter (UART), and general purpose input-output (GPIO).
  • 9. The remote unit of claim 4, further configured to modulate the TDM uplink management frame signal in a management services frequency band different from the at least one RF communications frequency band.
  • 10. The remote unit of claim 9, wherein the management services frequency band is above 2500 MegaHertz (MHz), the remote unit comprising a transceiver configured to modulate the TDM uplink management frame signal at the management services frequency band.
  • 11. A method of providing communications signals and management signals from a remote unit in a wireless communications system, the method comprising: receiving a plurality of uplink management signals from at least one management controller;time-division multiplexing (TDM) the plurality of uplink management signals into individual time slots to form a TDM uplink management frame signal;receiving uplink RF communication signals of at least one RF communications frequency band for at least one RF communications service;modulating the TDM uplink management frame signal in a management services frequency band different from the at least one RF communications frequency band;combining the TDM uplink management frame signal with the uplink RF communication signals;sending the combined TDM uplink management frame signal and the uplink RF communication signals over an uplink communications link;synchronizing the plurality of uplink management signals; andwherein at least a portion of the uplink communications link is comprised of optical fiber, further comprising converting the combined TDM uplink management frame signal and the uplink RF communication signals into a combined TDM uplink optical management frame signal and uplink optical RF communications signals.
  • 12. The method of claim 11, further comprising receiving a plurality of combined downlink RF communications signals and TDM downlink management frame signals over a downlink communications link from a central unit for the at least one RF communications service.
  • 13. The method of claim 12, wherein time-division multiplexing the plurality of uplink management signals comprises time-division multiplexing the plurality of uplink management signals into individual fixed time slots to form the TDM uplink management frame signal.
  • 14. The method of claim 12, wherein time-division multiplexing the plurality of uplink management signals comprises time-division multiplexing the plurality of uplink management signals into individual variable time slots to form the TDM uplink management frame signal.
  • 15. The method of claim 11, further comprising: splitting each of the plurality of combined downlink RF communications signals and TDM downlink management frame signals into a plurality of downlink RF communications signals and a plurality of TDM downlink management frame signals; andproviding the plurality of downlink RF communications signals to at least one client device.
  • 16. A method of providing communications signals and management signals from a remote unit in a wireless communications system, the method comprising: receiving a plurality of uplink management signals from at least one management controller;time-division multiplexing (TDM) the plurality of uplink management signals into individual time slots to form a TDM uplink management frame signal;receiving uplink RF communication signals of at least one RF communications frequency band for at least one RF communications service;combining the TDM uplink management frame signal with the uplink RF communication signals;sending the combined TDM uplink management frame signal and the uplink RF communication signals to a central unit over an uplink communications link;synchronizing the plurality of uplink management signals;splitting each of a plurality of combined downlink RF communications signals and TDM downlink management frame signals into a plurality of downlink RF communications signals and a plurality of TDM downlink management frame signals; anddemodulating the plurality of TDM downlink management frame signals to provide a plurality of demodulated TDM downlink management frame signals.
  • 17. The method of claim 16, further comprising: translating the combined demodulated TDM downlink management frame signals into individual downlink management signals; andproviding the individual downlink management signals.
  • 18. The method of claim 17, further comprising providing the plurality of downlink RF communications signals to at least one client device.
PRIORITY APPLICATION

This application is a continuation U.S. application Ser. No. 14/599,710, filed Jan. 19, 2015, which is a continuation of International Application No. PCT/IL13/050671, filed on Aug. 7, 2013, which claims the benefit of priority to U.S. Provisional Application No. 61/680,421, filed on Aug. 7, 2012, all of which being incorporated herein by reference.

US Referenced Citations (814)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebolt Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green, Sr. et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai et al. Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers Feb 1999 A
5867763 Dean et al. Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6088381 Myers, Jr. Jul 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6549772 Chavez Apr 2003 B1
6556551 Schwartz Apr 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright et al. Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Kamik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Troll Dec 2004 B1
6842433 West et al. Jan 2005 B2
6847856 Bohannon Jan 2005 B1
6850510 Kubler Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius et al. May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7844182 Mostert et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8135102 Wiwel et al. Mar 2012 B2
8165100 Sabat et al. Apr 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox et al. Jul 2012 B2
8238463 Arslan et al. Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346278 Wala et al. Jan 2013 B2
8428201 McHann, Jr. et al. Apr 2013 B1
8428510 Stratford et al. Apr 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8929288 Stewart et al. Jan 2015 B2
9621293 Hazani et al. Apr 2017 B2
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020009070 Lindsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood Smith et al. Jun 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050059437 Son Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070009266 Bothwell Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel et al. Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080144543 Hunton et al. Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II et al. Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090316609 Singh Dec 2009 A1
20090316611 Stratford Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100041341 Stratford Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat, Jr. et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182217 Schmid et al. Jul 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200328 In De Betou et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120052892 Braithwaite Mar 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130070816 Aoki et al. Mar 2013 A1
20130071112 Melester et al. Mar 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130095870 Phillips et al. Apr 2013 A1
20130107763 Uyehara et al. May 2013 A1
20130165067 DeVries et al. Jun 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130252651 Zavadsky et al. Sep 2013 A1
20130260705 Stratford Oct 2013 A1
20130272170 Chatterjee et al. Oct 2013 A1
20140016583 Smith Jan 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
20150131632 Hazani et al. May 2015 A1
20160088623 Ben-Shlomo et al. Mar 2016 A1
20160173265 Dadoun et al. Jun 2016 A1
20170094679 Lupescu et al. Mar 2017 A1
Foreign Referenced Citations (122)
Number Date Country
645192 Oct 1992 AU
731180 Mar 1998 AU
2065090 Feb 1998 CA
2242707 Jan 1999 CA
101389148 Mar 2009 CN
101547447 Sep 2009 CN
201869169 Jun 2011 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0461583 Mar 1997 EP
851618 Jul 1998 EP
0687400 Nov 1998 EP
0993124 Apr 2000 EP
1037411 Sep 2000 EP
1179895 Feb 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1530316 May 2005 EP
1511203 Mar 2006 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1227605 Jan 2008 EP
1942598 Jul 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
1056226 Apr 2009 EP
1357683 May 2009 EP
2276298 Jan 2011 EP
1570626 Nov 2013 EP
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
H4189036 Jul 1992 JP
05260018 Oct 1993 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2002353813 Dec 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
20010055088 Jul 2001 KR
9603823 Feb 1996 WO
9810600 Mar 1998 WO
00042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
2006077569 Jul 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008076248 Jun 2008 WO
2008116014 Sep 2008 WO
2009012614 Jan 2009 WO
2006046088 May 2009 WO
2010090999 Aug 2010 WO
2010132739 Nov 2010 WO
2011023592 Mar 2011 WO
2011100095 Aug 2011 WO
2011139939 Nov 2011 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2012151650 Nov 2012 WO
2013122915 Aug 2013 WO
2015029021 Mar 2015 WO
Non-Patent Literature Citations (57)
Entry
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
International Preliminary Report on Patentability for PCT/IL2013/050671 dated Feb. 10, 2015, 6 pages.
International Search Report for PCT/IL2013/050671 dated Jan. 30, 2014, 3 pages.
Author Unknown, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 12),” Technical Specification 36.211, Version 12.7.0, 3GPP Organizational Partners, Sep. 2015, 136 pages.
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 14/599,710, dated Jan. 23, 2017, 9 pages.
Non-final Office Action for U.S. Appl. No. 14/599,710, dated Jun. 20, 2016, 14 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages.
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Nireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Patent Cooperation Treaty, International Search Report for PCT/IL2013/050671, dated Jan. 30, 2014, 3 pages.
International Search Report for PCT/IL2014/050758, dated Nov. 19, 2014, 4 pages.
International Preliminary Report on Patentability for PCT/IL2014/050758, dated Mar. 10, 2016, 8 pages.
Final Office Action for U.S. Appl. No. 14/962,338, dated Oct. 16, 2017, 24 pages.
Non-Final Office Action for U.S. Appl. No. 15/049,663, dated Aug. 7, 2017, 20 pages.
International Search Report and Written Opinion for PCT/IL2014/050526, dated Sep. 2, 2014, 12 pages.
Non-Final Office Action for U.S. Appl. No. 14/962,338, dated May 30, 2017, 24 pages.
Related Publications (1)
Number Date Country
20170181031 A1 Jun 2017 US
Provisional Applications (1)
Number Date Country
61680421 Aug 2012 US
Continuations (2)
Number Date Country
Parent 14599710 Jan 2015 US
Child 15447580 US
Parent PCT/IL2013/050671 Aug 2013 US
Child 14599710 US