Distribution system monitoring

Information

  • Patent Grant
  • 11041839
  • Patent Number
    11,041,839
  • Date Filed
    Thursday, June 2, 2016
    8 years ago
  • Date Issued
    Tuesday, June 22, 2021
    3 years ago
Abstract
A method of sensing parameters in a fluid distribution system includes the steps of receiving, at a monitoring device, fluid parameter information from a sensor in a fluid distribution system; collecting, by the monitoring device, sampling data of the fluid parameter information from the sensor based on predetermined criteria; receiving, by the monitoring device, a request to collect transient data from the sensor; collecting, by the monitoring device, transient data of the fluid parameter information from the sensor based on predetermined criteria; and communicating the sampling data and the transient data to another device. An apparatus includes a monitoring device including a power source, an antenna, and a parameter sensing portion configured to monitor a parameter of a fluid distribution system; and a sensor array connected to the monitoring device
Description
BACKGROUND

A utility provider may install and maintain infrastructure to provide utility services to its customers. For example, a water utility provider may implement a fluid distribution system to distribute water to its customers. The fluid distribution system may be maintained, such as to maintain the integrity of the fluid distribution system and the quality of the fluid (e.g., water) within the fluid distribution system.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.



FIG. 1 illustrates a diagram of an environment to monitor a fluid distribution system according to examples of the present disclosure.



FIG. 2 illustrates a block diagram of a monitoring device to monitor a fluid distribution system, such as fluid distribution system of FIG. 1, according to examples of the present disclosure.



FIG. 3 illustrates a computer-readable storage medium storing instructions to monitor a fluid distribution system according to examples of the present disclosure;



FIG. 4 illustrates an assembled view of a monitoring assembly according to examples of the present disclosure.



FIG. 5 illustrates an inverted perspective view of a monitoring assembly according to examples of the present disclosure.



FIG. 6 illustrates a disassembled view of a monitoring assembly according to examples of the present disclosure.



FIG. 7 illustrates a circuit board of a parameter sensing portion having one sensor port according to examples of the present disclosure.



FIG. 8 illustrates another circuit board of a parameter sensing portion having five sensing ports according to examples of the present disclosure.



FIGS. 9-15C represent screenshots 900-1500C of a system for configuring and managing a monitoring device according to examples of the present disclosure.



FIG. 16 illustrates another assembled view of a monitoring assembly according to examples of the present disclosure.



FIG. 17 illustrates a partial cross-sectional side view of a monitoring assembly, according to examples of the present disclosure.



FIG. 18 illustrates a cutaway side view of a monitoring assembly, according to examples of the present disclosure.



FIG. 19 is a flow diagram illustrating a method for processing acoustic signals, according to examples of the present disclosure.



FIG. 20 is a block diagram of a parameter sensing system, according to examples of the present disclosure.



FIG. 21 is a block diagram illustrating a computer architecture for computing devices described herein as part of the parameter sensing system, according to examples of the present disclosure.





DETAILED DESCRIPTION

A utility provider may utilize a fluid distribution system to distribute fluids such as water or gas to its customers. To provide the fluid to its customers effectively, the utility provider may monitor the efficiency and integrity of the fluid distribution system. For example, the utility provider may monitor pressure, temperature, turbidity, pH, and chlorine, among other parameters, within the fluid distribution system.


Various implementations are described herein by referring to several examples of monitoring a fluid distribution system. The fluid monitoring system may monitor multiple aspects of the performance of a fluid distribution system and the quality of the fluid within the fluid distribution system, including at least pressure, pH, turbidity, temperature, chlorine, etc. It should be understood that, although the present disclosure discusses a multi-parameter fluid monitoring system, the fluid monitoring system may utilize a single parameter as well as multiple parameters.


In one example implementation according to aspects of the present disclosure, a method comprises receiving, at a monitoring device, fluid parameter information from a sensor in a fluid distribution system. The method further comprises collecting, by the monitoring device, sampling data of the fluid parameter information from the sensor based on predetermined criteria. The method further comprises receiving, by the monitoring device, a request to collect transient data from the sensor. The method further comprises collecting, by the monitoring device, transient data of the fluid parameter information from the sensor based on predetermined criteria. The method further comprises communicating the sampling data and the transient data to another device.


In another example implementation according to aspects of the present disclosure, an apparatus may comprise a monitoring device and a sensor array connected to the monitoring device. The monitoring device may comprise a power source, an antenna, and a parameter sensing portion configured to monitor a parameter of a fluid distribution system.


In another example implementation according to aspects of the present disclosure, a monitoring device may comprise a power source, an antenna, and a parameter sensing portion configured to monitor a pressure parameter, a temperature parameter, a turbidity parameter, a pH parameter, and a chlorine parameter of a fluid distribution system. The monitoring device may be configured to connect to a sensor array. The sensor array may comprise a pressure sensor, a temperature sensor, a turbidity sensor, a pH sensor, and a chlorine sensor.


In another example implementation according to aspects of the present disclosure, a system for sensing parameters in a fluid distribution system. The system may comprise a monitoring device, a sensor array connected to the monitoring device, and a computing system. The monitoring device may comprise a parameter sensing module configured to monitor a parameter of the fluid distribution system, a power source, and an antenna. The computing system may comprise a processing resource and a computer-readable storage medium. The computing system may be configured to receive configuration data defining a configuration profile for the monitoring device. The configuration profile may be relating to a parameter configuration of the monitoring device. The computing system may be further configured to communicate the configuration data to the monitoring device.


Other examples are described in the present disclosure. It should be understood that the features of the disclosed examples may be combined in various combinations. It should also be understood that certain features may be omitted while other features may be added.


The present disclosure enables monitoring a fluid distribution system. For example, a fluid distribution system may be monitored based on parameters such as pressure, temperature, turbidity, pH, and/or chlorine, among others. In examples, multiple parameters may be monitored by the same monitoring device, although a monitoring device may also monitor a single parameter in examples. These and other advantages will be apparent from the description that follows.



FIGS. 1-3 comprise particular components, modules, instructions, engines, etc. according to various examples as described herein. In different implementations, more, fewer, and/or other components, modules, instructions, engines, arrangements of components/modules/instructions/engines, etc. may be used according to the teachings described herein. In addition, various components, modules, engines, etc. described herein may be implemented as instructions stored on a computer-readable storage medium, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), embedded controllers, hardwired circuitry, etc.), or some combination or combinations of these.


Generally, FIGS. 1-3 relate to components, modules, and instructions of a computing system. It should be understood that the computing system may comprise any appropriate type of computing system and/or computing device, including for example smartphones, tablets, desktops, laptops, workstations, servers, smart monitors, smart televisions, digital signage, scientific instruments, retail point of sale devices, video walls, imaging devices, peripherals, networking equipment, wearable computing devices, or the like.



FIG. 1 illustrates a diagram of an environment 100 to monitor a fluid distribution system 110 according to examples of the present disclosure. In examples, monitoring device 130 monitors a parameter or parameters of a fluid distribution system 110. For example, the monitoring device 130 may monitor pressure, temperature, turbidity, pH, and/or chlorine within the fluid distribution system 110.


As illustrated, the environment 100 comprises a fluid distribution system 110, which may further comprise a pipe 110A. Although illustrated as the pipe 110A, it should be understood that the fluid distribution system 110 may be a plurality of pipes and other fluid distribution system components connected together to form the fluid distribution system 110, of which the pipe 110A is a portion.


Generally, fluid distribution system 110 may be used to distribute fluids such as water to customers of a utility provider, for example. The fluid distribution system 110 may comprise various and numerous components, such as pipes (e.g., pipe 110A), hydrants, valves, couplers, corporation stops, and the like, as well as suitable combinations thereof. In examples, the fluid distribution system 110 may be partially or wholly subterraneous, or portions of the fluid distribution system 110 may be subterraneous, while other portions of the fluid distribution system 110 may be non-subterraneous (i.e., above ground). For example, a pipe such as pipe 110A may be partially or wholly subterraneous while a hydrant or valve (not shown) connected to the pipe 110A may be partially or wholly non-subterraneous. In other examples, the pipe 110A may be partially subterraneous in that the pipe 110A has portions exposed, such as to connect testing and/or monitoring devices (e.g., monitoring device 130) to the pipe 110A.


The monitoring device 130 may utilize one or more sensors to monitor the fluid distribution system 110. For example, the monitoring device 130 may utilize a pressure sensor, a temperature sensor, a turbidity sensor, a pH sensor, and/or a chlorine senor. These sensors may be connected to a port or ports on the monitoring device. For example, as described herein, the monitoring device may comprise a port for each of the sensors.


The monitoring device may also comprise an antenna configured to enable the monitoring device to communicate with a computing system such as computing system 120. The computing system 120 may represent any of a variety of computing systems, such as a computing host of a utility provider, a collector node to collect data from the monitoring device 130, another monitoring device, or any other suitable computing system.


The monitoring device 130 may transmit the first and second acoustical signals respectively to the computing system 120 via a wired or wireless network or other communicative path illustrated in FIG. 1 as a dotted line. In examples, such as shown in FIG. 1, the monitoring device 130 and the computing system 120 may be communicatively coupleable to one another. In examples, the monitoring device 130 may comprise transceivers, which may communicate data between the monitoring device 130 and the computing system 120, which may comprise an interface (not shown) for transmitting and receiving the data. The transceivers may be any suitable device for sending, receiving, or sending and receiving data, such as a receiver, a transmitter, a transmitter-receiver, and/or a transceiver. It should be appreciated that any suitable communication technique may be implemented to transmit the data between the monitoring device 130 and the computing system 120. In examples, cellular technologies such as global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), short message service (SMS), or other suitable protocol may be utilized. Other techniques may also be utilized, including radio frequency, infrared, Bluetooth®, automated meter reading (AMR), automated meter infrastructure (AMI), or other wireless and/or wired communications techniques.


The dotted line of FIG. 1 illustrates communicative paths between and among the monitoring device 130 and the computing system 120. The path generally represents a network that may comprise hardware components and computers interconnected by communications channels that allow sharing of resources and information. The network may comprise one or more of a cable, wireless, fiber optic, or remote connection via a telecommunication link, an infrared link, a radio frequency link, or any other connectors or systems that provide electronic communication. The network may comprise, at least in part, an intranet, the internet, or a combination of both. The network may also comprise intermediate proxies, routers, switches, load balancers, and the like. The paths followed by the network between the devices as depicted in FIG. 1 represent the logical communication paths between the monitoring device 130 and the computing system 120, not necessarily the physical paths between and among the devices.


In examples, the monitoring device 130 may be of a three-piece construction. For example, the monitoring device 130 may comprise an antenna section, a power source section, and an electronics section.


In other examples, the monitoring device 130 may be of a four-piece construction. For example, the monitoring device 130 may comprise an antenna section, a first power source section, a second power source section, and an electronics section.


In an example, the monitoring device 130 may be enabled to monitor a fluid level within a fluid tank (not shown). A pressure sensor connected to or a part of the monitoring device 130 may be installed or otherwise inserted into a fluid tank. The monitoring device 130 may then be configured to measure the fluid level within the fluid tank by sensing the fluid level within the fluid tank. The fluid level may be returned as a tank level such as in feet, pounds per square inch (PSI), etc.


In an example, when fluid pressure is measured with a sensor, the measured pressure represents the pressure at the location it was measured. In some situations, it is advantageous to know true potential energy of the fluid. True potential energy is the measured pressure plus a known elevation of the fluid at the sensor. The elevation may be input by a customer or technician, may be based on a topology or elevation map, or may be known in some other way.


Although not shown in FIG. 1, it should be appreciated that the computing system 120 may comprise additional components. For example, the computing system 120 may comprise a processing resource 122 that represents generally any suitable type or form of processing unit or units capable of processing data or interpreting and executing instructions. The processing resource 122 may be one or more central processing units (CPUs), microprocessors, digital signal processors, and/or other hardware devices suitable for retrieval and execution of instructions. The instructions may be stored, for example, on a memory resource (not shown), such as computer-readable storage medium 360 of FIG. 3, which may comprise any electronic, magnetic, optical, or other physical storage device that store executable instructions. Thus, the memory resource may be, for example, random access memory (RAM), electrically-erasable programmable read-only memory (EEPROM), a storage drive, an optical disk, and any other suitable type of volatile or non-volatile memory that stores instructions to cause a programmable processor (i.e., processing resource) to perform the techniques described herein. In examples, the memory resource comprises a main memory, such as a RAM in which the instructions may be stored during runtime, and a secondary memory, such as a nonvolatile memory in which a copy of the instructions is stored.


Additionally, the computing system 120 may comprise engines for executing programmatic instructions. In examples, the engines may be a combination of hardware and programming. The programming may be processor executable instructions stored on a tangible memory, and the hardware may comprise processing resource, for example, for executing those instructions. Thus a memory resource (not shown) can be said to store program instructions that when executed by the processing resource implement the engines described herein. Other engines may also be utilized to comprise other features and functionality described in other examples herein.


Alternatively or additionally, the computing system 120 may comprise dedicated hardware, such as one or more integrated circuits, Application Specific Integrated Circuits (ASICs), Application Specific Special Processors (ASSPs), Field Programmable Gate Arrays (FPGAs), or any combination of the foregoing examples of dedicated hardware, for performing the techniques described herein. In some implementations, multiple processing resources (or processing resources utilizing multiple processing cores) may be used, as appropriate, along with multiple memory resources and/or types of memory resources.


Additionally, the computing system 120 may comprise a display. The display may be or comprise a monitor, a touchscreen, a projection device, and/or a touch/sensory display device. The display may display text, images, and other appropriate graphical content. The computing system 120 may also comprise a network interface to communicatively couple the computing system 120 to the monitoring device 130 via the network and to other computing systems and/or computing devices. The computing system 120 may also comprise any suitable input and/or output device, such as a mouse, keyboard, printer, external disk drive, or the like.



FIG. 2 illustrates a block diagram of a monitoring device 230 to monitor a fluid distribution system, such as fluid distribution system 110 of FIG. 1, according to examples of the present disclosure. The computing system monitoring device 230 may comprise a parameter sensing module 232, a first power source 234a, and an antenna 236. A second power source 234b is illustrated and may be comprised in some examples or omitted in other examples.


In examples, the modules described herein may be a combination of hardware and programming instructions. The programming instructions may be processor executable instructions stored on a tangible memory resource such as a computer-readable storage medium or other memory resource, and the hardware may comprise a processing resource for executing those instructions. Thus the memory resource can be said to store program instructions that when executed by the processing resource implement the modules described herein.


Other modules may also be utilized as will be discussed further below in other examples. In different implementations, more, fewer, and/or other components, modules, instructions, and arrangements thereof may be used according to the teachings described herein. In addition, various components, modules, etc. described herein may be implemented as computer-executable instructions, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), and the like), or some combination or combinations of these.


The parameter sensing module 232 monitors conditions of the water distribution system, including a fluid within the water distribution system, using sensors that sense various parameters of the water distribution system's fluid including pressure, temperature, turbidity, pH, and chlorine levels. The parameter sensing module 232 may be a printed circuit board (PCB) or other electrical components configured to receive electronic signals, either via wires or wirelessly, from sensors such as pressure sensor 240, temperature sensor 242, turbidity sensor 244, pH sensor 246, and/or chlorine sensor 248. Additionally, the monitoring device 230 may be connected to a solenoid 250. The parameter sensing module 232 may operate the solenoid 250 to cause a flushing operation to be performed in the fluid distribution system. Examples of parameter sensing modules as PCBs are illustrated in FIGS. 7 and 8.


As shown in those figures, the parameter sensing module 232 may comprise a sensor port or ports for connecting a sensor to the parameter sensing module 232. In examples, the sensors may communicate with the parameter sensing module 232 wirelessly, such as using near field communication (NFC), Bluetooth®, radio frequency, infrared, or other suitable wireless techniques.


In examples, the parameter sensing module 232 comprises a processing resource, such as a central processing units (CPUs), microprocessors, digital signal processors, and/or other hardware devices suitable for retrieval and execution of instructions. The parameter sensing module 232 may also comprise suitable memory such as random access memory (RAM), electrically-erasable programmable read-only memory (EPPROM), a storage drive, an optical disk, and any other suitable type of volatile or non-volatile memory that stores instructions to cause a programmable processor (i.e., the processing resource) to perform the techniques described herein. The parameter sensing module 232 may comprise additional electrical components in other examples.


The parameter sensing module 232 is configured to receive data from connected sensors indicative of the parameters sensed by the sensors. The parameter sensing module 232 may log/store the data and/or transmit the data, in whole or in part, to a host computing system such as computing system 120 of FIG. 1. The parameter sensing module 232 may also transmit event notifications when certain parameter conditions are triggered, such as if a pressure level exceeds a threshold. The trigger events may also cause the parameter sensing module 232 to operate a solenoid (e.g., solenoid 250) to cause a flushing operation to be performed in the fluid distribution system.


Each sensor may have a configurable reading period (e.g., pressure every 15 seconds, chlorine every 2 minutes, etc.). In these cases, the sensors perform the appropriate reading at the defined time, which may be preconfigured and/or user customizable. In examples, a threshold can be set, such as for pressure, and if threshold for pressure is exceeded, a flushing operation may occur. Likewise, flushing may occur when any of the parameters is sensed as exceeding a high threshold, not meeting a low threshold, falling outside of a threshold range, and/or falling within a threshold range, depending on the desired settings.


In examples, the parameter sensing module 232 may be encased in a potting material such as epoxy or other suitable material to protect the parameter sensing module 232 from adverse elements, such as water, ice, dirt, dust, and the like.


The first power source 234a may be any suitable power source that supplies electric energy to the monitoring device 230 and/or its individual component modules, directly or indirectly. In examples, the first power source 234a may be a suitable battery, such as a lithium polymer battery.


In examples, a second power source 234b may be implemented. In some examples, the second power source 234b acts as a backup battery for the first power source 234a. In additional examples, the second power source 234b provides additional power to increase the overall usable life of the monitoring device 230 and/or to power additional devices connected to the monitoring device 230, such as a solenoid valve to alter the flow of a fluid through the fluid distribution system.


In examples, the first power source 234a and/or the second power source 234b may be changed, such as by a field technician or through a refurbishing process by the manufacturer of the monitoring device 230. The first power source 234a and/or the second power source 234b may be encased in a potting material such as epoxy or other suitable material to protect the first power source 234a and/or the second power source 234b from adverse elements, such as water, ice, dirt, dust, and the like.


In examples including the second power source 234b, voltage may be decreased for certain components such as the parameter sensing module 232 or increased for higher voltage components such as an attached solenoid 250. In an example, both power sources 234a and 234b may be 3.6 volts arranged in series to operate at 7.2 volts for a solenoid while the voltage is bucked down to 3.6v to operate the parameter sensing module 232, the antenna 236, etc. In examples, solar and/or fluid generating power options are available.


The antenna 236 enables the monitoring device 230 to communicate with other devices, such as computing system 120 of FIG. 1, or any other suitable device, such as another monitoring device (not shown). The communications may be one directional (the monitoring device 230 sends information but does not receive information or the monitoring device 230 receives information but does not send information) or bi-directional (the monitoring device 230 sends and receives information).


In examples, antenna 236 is contained within an assembly that causes the antenna 236 to be aligned the same direction with respect to the rest of the monitoring device 230 when the antenna is installed. This enables more predictable communication and behavior from the antenna 236. In examples, a global positioning system (GPS) antenna (not shown) may be integrated with or otherwise comprised in antenna 236. The GPS antenna may also be configured to align the same direction when the GPS antenna is installed. The antenna 236, optionally including the GPS antenna, may be encased in a potting material such as epoxy or other suitable material to protect antenna 236 from adverse elements, such as water, ice, dirt, dust, and the like.


In some examples, during the manufacture of the antenna, a hot melt technique may be implemented. In this example, hot glue is applied by potting the hot glue to hold the antenna in place, then potting over the glue and antenna. This provides a more efficient assembly process.


In examples, the sensor may be connected to the monitoring device 230 through a jumper. When the sensor is connected to the jumper, the power circuit is “closed” thereby causing the monitoring device 230 to power on. In this way, the jumper acts as a mechanical switch and “enables by connection” the monitoring device 230. When a sensor is connected, an initialization process begins and may comprise preforming the following: 1) boots up the monitoring device 230; 2) establishes a communicative connection to a nearby receiver through the antenna 236, 3) synchronizes with GPS, 4) transmits a GPS location to a host (e.g., the computing system 120 of FIG. 1). In this way, the monitoring device 230 is a self-identifying GPS locating device. While this process may be performed automatically, it may also be performed manually.



FIG. 3 illustrates a computer-readable storage medium 360 storing instructions 362 and 364 to monitor a fluid distribution system according to examples of the present disclosure. The computer-readable storage medium 360 is non-transitory in the sense that it does not encompass a transitory signal but instead is made up of one or more memory components configured to store the instructions 362 and 364. The computer-readable storage medium 360 may be representative of a memory resource and may store machine executable instructions 362 and 364, which are executable on a computing system such as computing system 120 of FIG. 1 as well as the computing system 320 of FIG. 3 in conjunction with processing resource 322.


In the example shown in FIG. 3, the instructions 362 and 364 may comprise configuration data receiving instructions 362 and communication instructions 364. The configuration data receiving instructions 362 enabling receiving configuration data defining a configuration profile for a monitoring device (e.g., monitoring device 130 of FIG. 1 and monitoring device 230 of FIG. 2), the configuration profile relating to a parameter configuration of the monitoring device. The communication instructions 364 enable communication of the configuration data to the monitoring device.



FIG. 4 illustrates an assembled view of a monitoring assembly 400 according to examples of the present disclosure. The monitoring device 430 may comprise a parameter sensing portion 432, a power supply portion 434, and an antenna portion 436. The monitoring device 430 may be constructed as an industrial product such that it can be installed in any environment. The monitoring device 430 may be contained in a case made of durable plastic, metal, or other suitable substance. For example, the case may be manufactured, in whole or in part, from a suitable plastic, such as acrylonitrile butadiene styrene (ABS) plastic or 30% glass filled high density polyethylene (HDPE) with carbon black to block ultra-violet (UV).


The case may be in multiple parts such that the individual components are contained in separate sections. This modular design enables easy assembly and serviceability. The case may comprise weep holes in the outer surface of the case to prevent freezing water from cracking/rupturing the case. In examples, the case may be keyed for easy assembly, and one size screw may be used for uniformity.


The case may also be manufactured to comprise a relief and bolt hole on a top portion. The relief and bolt hole provide the ability to use a crowbar or other suitable device to lift the monitoring device 430 from a flush mount installation. The relief and bolt hole also provide the ability to fasten the monitoring device 430 in place, such as with a bolt, to prevent the monitoring device 430 from moving.


In examples, the monitoring device 430 may be installed in a pit in a roadway, such that a surface of the monitoring device 430 sits flush with the surface of the roadway. This enables automobiles to pass the roadway without receiving interference from the monitoring device 430. The construction of the monitoring device 430 may enable the monitoring device 430 to withstand the pressure and force caused by automobiles, trucks, and other items from passing on top of the monitoring device 430 such that the monitoring device 430 remains unaffected. Additionally, the potting material such as epoxy or other suitable material encasing the individual components of the monitoring device 430 protects the individual components from adverse elements, such as water, ice, dirt, dust, and the like.



FIG. 5 illustrates another assembled view of a monitoring assembly 500, including monitoring device 530 according to examples of the present disclosure. The parameter sensing portion 532 is shown as having a sensor port 538 for connecting a sensor and a service port 539 for connecting a service device, such as for maintenance. In the example illustrated in FIG. 5, the sensor port 538 is recessed such that a connecting cable for a sensor may be attached without interfering with the flat nature of the design of the parameter sensing portion 532. In examples with the parameter sensing portion 532 making up the bottom of the monitoring device 530, this recession enables the monitoring device to be set on a flat surface without the sensor cable interfering. In examples, the service port 539 may be omitted and the monitoring device 530 may be serviced remotely via the communication techniques discussed herein.



FIG. 6 illustrates a disassembled view of a monitoring assembly 600 according to examples of the present disclosure. The monitoring device 630 comprises a parameter sensing portion 632, a power supply portion 634, and an antenna portion 636.


Although FIG. 5 illustrates a monitoring device 530 with one sensor port 538, additional sensor ports may be implemented. FIG. 7 illustrates a circuit board 700 of a parameter sensing portion (e.g., sensing portion 632) having one sensor port 738 according to examples of the present disclosure. FIG. 8 illustrates another circuit board 800 of a parameter sensing portion having five sensing ports 838a-e according to examples of the present disclosure. It should be understood that various other numbers of sensor ports may be implemented in various examples.



FIGS. 9-15C represent screenshots 900-1500C of a system for configuring and managing a monitoring device, such as monitoring device 130 of FIG. 1, monitoring device 230 of FIG. 2, and other monitoring devices as disclosed herein according to examples of the present disclosure. The system for configuring and managing the monitoring device (or monitoring devices) may be configured to execute on a computing system such as computing system 120 of FIG. 1 and/or computing system 320 of FIG. 3. The screenshots 900-1500C may be generated by the computing system when the computing system executes computer executable instructions configured to generate the screenshots.



FIGS. 9 and 10 illustrate screenshots 900 and 1000 respective of a map of multiple monitoring devices over a geographic area. The monitoring devices are illustrated by dots. A dot represents a multi-parameter monitoring device and a dot with P represents a pressure monitor (single parameter monitoring device). In examples, an indicia may be used to indicate the status of the monitoring devices. As illustrated, red, yellow, and green dots represent as follows: red=if any one parameter is critical; yellow=if any one parameter is warning (such as low or high); green=no parameters are warning or critical. FIG. 10 illustrates a screenshot 1000 showing additional details for each of the monitoring devices including the current readings for each sensor for each monitoring device.



FIG. 11 illustrates a screenshot 1100 of a table of the monitoring devices of FIGS. 9 and 10. The table comprises the sensor reads for each sensor connected to each of the monitoring devices. In the example of FIG. 11, device 0 through device 6 represent single parameter (pressure) monitoring devices, while V2 device represents a multi-parameter monitoring device measuring turbidity, temperature, pressure, pH, and chlorine values.



FIGS. 12A and 12B illustrate screenshots 1200A and 1200B of a configuration screen for a single parameter monitoring device. A map illustrates the geographic position of the monitoring device.


Additionally, various configuration options are available, including description, mode, status, auto GPS, latitude/longitude, elevation, uploads per day, and unit ID. The auto GPS enables a GPS in the monitoring device to automatically determine the longitude, latitude, and/or elevation of the pressure monitor. In examples, these values may be manually entered, as may the rest of the configuration options. To edit the monitoring device settings, click on edit, change the values accordingly, then click on Save. A brief description of the Settings fields are given below:


Description: Each monitoring device can be given a description name. The description can be used as a way to identify monitoring device without having to reference the monitoring device ID. Street addresses could be used as an example.


Mode: Selecting “Request Maintenance Mode” will set the monitoring device into maintenance mode after the next upload occurs by the monitoring device unit. This may take up to 24 hours. Once in maintenance mode, any configuration changes made to the unit will take affect within minutes in some examples.


Status: This field reports the current pressure range that the monitoring device is in (i.e., Normal, Warning, or Critical).


Latitude and Longitude: These fields are automatically filled when the monitoring device is initially installed if the monitoring device receives a strong GPS satellite signal.


Elevation: This field is entered in manually in some examples or may be entered automatically in others.


Uploads Per Day: This field indicates how many uploads should be performed by the monitoring device daily. For example, 12 would result in the monitoring device uploading every 2 hours, 6 would produce an upload every 4 hours, and so on. Note: The recommended Uploads Per Day interval is 1 (i.e. one upload per day).


Monitoring Device ID: This is the unique identifier for the monitoring device. In some examples, this field cannot be changed.



FIGS. 13A-13D illustrate screenshots 1300A-1300D of a configuration screen for a single parameter monitoring device. Like the configuration screen for the single parameter monitoring device, multiple configuration options are available. As also illustrated, thresholds may be set for critical high, high, low, and critical low values for pressure, temperature, pH, turbidity, and chlorine. The Pressure Sensor range allows users to be notified when pressure is entering or exiting a certain pressure range. Three ranges are used: Normal, Warning, and Critical (with high and low bounds for Warning and Critical). In examples, when two consecutive measurements are taken for any range, the pressure sensor automatically uploads the data and users registered to receive alerts are notified.


Additionally, a flush schedule indicates when a solenoid connected to the monitoring device may be activated to cause the fluid distribution system to perform a flushing operation. In the present example, flushing may occur when any of the following occur: if pressure is higher than 4 PSI; if temperature is higher than 4° F.; if temperature is lower than 3° F.; if chlorine is lower than 3 ppm; if acidity is higher than 3 pH; or if turbidity is higher than 5 nephelometric turbidity units (NTU).



FIGS. 14A-14C illustrate screenshots 1400A-1400C of a calendar of events and event setup options. The events may capture transient data readings of pressure, temperature, chlorine, acidity (pH), and turbidity for example, or may cause events to occur such as flushing of the fluid distribution system, connection of the monitoring device, and maintenance of the monitoring device. The capturing and processing of transient data is discussed further below, and as shown in FIG. 19.



FIGS. 15A-15C illustrate screenshots 1500A-1500C of graphs plotting the monitored parameters. In the case of FIG. 15A, device 0 through device 6 and V2 device are illustrated on the same graph over a one day period. FIG. 15B illustrates a graph of the same devices over a five day period. The graphs may be viewed over different periods, such as one day, two days, five days, week, two weeks, month, six months, year, and all time. FIG. 15C illustrates a graph of chlorine for V2 device, for example, over a one day period. Any parameter may be displayed individuality, and devices may be viewed individually or multiple devices may be displayed together. These graphs are merely examples.


The graphs may contain the collected data gathered by the monitoring devices belonging to a client's organization. Data can be viewed within a specified time frame, both, graphically and by downloading the data as a comma-separated values (CSV) or Microsoft Excel® open extensible markup language (XML) format spreadsheet (XLSX) file to be viewed in any spreadsheet program. The collected measurements are represented on the graph with the y axis being psi (or ppm for chlorine levels) and the x axis being the time that the measurement was taken. Each monitoring device belonging to the client's organization is represented by a different colored line, for example. The Legend button (located in the upper right section of the graph in FIG. 15A for example) displays the monitoring device to color-coding mapping currently being used. Clicking on Legend allows the user to select and de-select monitoring device to be displayed. Clicking on any of the lines within the graph may navigate to a page to view data collected by the individual monitoring device selected. In examples, Users can zoom in and out of the graph.



FIG. 16 is diagram of a monitoring assembly 1600, according to various examples of the present disclosure. As seen in FIG. 16, a monitoring device 1630 can be mounted within an enclosure 1620. Enclosure 1620 to houses equipment, such as monitoring device 1630, and may provide protection from vandalism or the environment. Enclosure 1620 is designed for extended life and performance of the monitoring device 1630. In some examples, enclosure 1620 may be UV and impact resistant polyethylene and provide lockable solutions for a wide range of utility applications. In some examples, enclosure 1620 may be a metal housing made of high-strength aluminum.



FIG. 17 is partially cutaway side view of a monitoring assembly 1700, according to various examples of the present disclosure. As seen in FIG. 17, the monitoring assembly 1700 comprises a monitoring device 1730 and a valve box 1710. To communicate data and receive orders, the monitoring device 1730 comprises an antenna portion 1736, such as antenna portion 436 and antenna portion 636, as discussed herein for FIGS. 4 and 6, respectively. The antenna portion 1736 is mounted to an adjustable top 1712. The adjustable top 1712 connects to the valve box 1710, forming an enclosure extending from a ground surface to the top of a pipe to protect the enclosed monitoring equipment. The adjustable top 1712 can be adjusted telescopically to vary the overall height of the monitoring assembly 1700, based on the depth of the pipe below ground level. Other sensors may be used with monitoring assembly, such as pressure, temperature, turbidity, pH, chlorine, and flow sensors.



FIG. 18 is a cutaway side view of a monitoring assembly 1800, according to various examples of the present disclosure. The monitoring assembly 1800 comprises an antenna portion 1836. The monitoring assembly 1800 also comprises a battery portion 1834 enclosing a battery pack 1810. Extending from a lower end of the battery portion 1834 is the sensing portion 1832 enclosing a circuit board 1840, such as circuit board 700 and circuit board 800, as discussed herein for FIGS. 7 and 8, respectively. In various examples, the antenna portion 1836 may comprise an auxiliary power input 1860. The auxiliary power input 1860 may be connected to the battery pack 1810 by a wire, so that the battery pack 1810 may be recharged by another power source, such as a portable battery pack. The auxiliary power input 1860 may comprise a waterproof connector to prevent corrosion over the life of the monitoring device 1830 and the auxiliary power input 1860.



FIG. 19 is a process flow diagram illustrating an embodiment of a method 1900 for capturing and processing transient data. In this embodiment, the method 1900 comprises the step of activating a monitoring device/assembly, as indicated in step 1902. The monitoring device/assembly may comprise the monitoring device 230 shown in FIG. 2, or in some examples, may comprise any of the monitoring devices described herein. In the example embodiment, activation may be accomplished by turning on the monitoring device 230 by a field engineer. In other examples the monitoring device 230 may be in a sleep mode, and step 1902 requires the computing system 320 to activate the monitoring device 230 with a software code.


The monitoring device 230 hardware is designed to handle and connect to a number of hardware resources based on configurable requirements. At step 1904, the monitoring device 230 continuously checks and determines when a new hardware resource, such as a sensor or a solenoid, is connected. According to some examples, the hardware resources of the monitoring assembly may comprise a pressure sensor, a temperature sensor, a turbidity sensor, a pH sensor, and a chlorine sensor, either all integrated into one sensor, or combined in separate sensors. The sensors may operate continually to provide the sampling and transient data.


The hardware resource is automatically enabled by the monitoring device 230 at step 1906. The monitoring device 230, at step 1910, updates its configuration status and begins to process sampling data from the hardware resource. The monitoring device 230 may communicate the hardware change during the next session initialization message. The computing system 320 connects to the monitoring device 230 at step 1912, and begins a session initialization message protocol. If the session initialization message indicates the change in hardware, the computing system, at step 1914, detects the new hardware resource, scans through the updated monitoring device 230 configuration and every hardware resource, and updates its status.


In some examples, the monitoring device 230 may have a sensor resource class for each physical sensor. The sensor resource class is a generic interface definition to handle multiple sensor types with a common interface. Sensor resources, as described herein, can handle sampling data and transient data. Sampling data may refer to sample parameters at relatively slow rate and keeps average, maximum and minimum of every hour. Sampling data may comprise several configurable parameters such as a sampling interval and period. The sampling interval may comprise a time span between samples, in seconds. The monitoring device 230 may drop samples and only keep the minimum and maximum for a period. A period is a period of time for minimum and maximum samples in seconds. In the example embodiment, the default is 3600 seconds.


Transient data may comprise samples processed at a high rate, and the monitoring device 230 or computing system 320 compresses the data. Transient data may comprise several configurable parameters such as transient interval and tolerance. Transient interval is an exponent for power of base 2 of time between samples in 1/4096 seconds. In the example embodiment, the default transient interval is 5 for a 1/128 second period. Tolerance is the minimum delta required for a sample to be recorded, recorded in raw analog-to-digital converter (ADC) conversion units. For an ADC, the most popular convention is to draw a straight line through the mid-points of the codes, or the code centers. If the sample is less than the delta from the straight line, it is dropped.


The computing system 320 may allow the parameters of the data, and the rates that the data is captured, to be changed based on predetermined criteria defined by the user. In some examples, sensor actions are used by the computing system to define the transient and sample data parameters. Sensor actions may comprise a start time and duration during which the monitoring device 230 will take transient measurements.


In the example embodiment, during the transient data process of step 1920, the monitoring device 230 does not keep the state of the data. Instead, it is the responsibility of the computing system 320 to keep the state of the data. After the monitoring device 230 responds with data, the data remains recoverable till the computing system 320 instructs the monitoring device 230 to permanently delete the data by a delete action. If the session unexpectedly ends after the samples of data are sent to the server but the monitoring device 230 does not get a request to delete the sent data, the monitoring device 230 will automatically recover the data.


In some examples there may be action resources which may handle scheduling of transient data monitoring of the corresponding sensor(s). These actions require the start time and the duration. The action is a sub-resource of multiple types of resources with a purpose of scheduled actions with or without duration. An example of an action with duration is flushing, which requires duration. An example of an instantaneous action is connection to the server because it does not have a duration requirement.


In another example embodiment, the computing system 320 may level load connect actions by choosing the least busy time for connection within the next hour of each “Wake Up” action, and schedule the exact time for the monitoring device 230. For example, the user may schedule an upload action at 9:00am. The computing system 320 scans actions of the monitoring device 230 that upload between 9:00am and 10:00am and builds a frequency chart. The computing system 320 chooses the least busy time within that hour and sets the action for that time, for example, 9:01:13am. The next time the monitoring device 230 connects, the computing system 320 posts the Wake Up action at 9:01:13am to the monitoring device 230.



FIG. 20 is a block diagram of a parameter sensing system 2000 according to various implementations of the present disclosure. The parameter sensing system 2000 comprises one or more user devices, such as user devices 2010, 2012, and 2014, and a parameter sensing server 2020. These and other systems are capable of interacting and communicating via one or more communication network(s) 2022. The user devices 2010, 2012, 2014 may comprise mobile devices such as smart phones, including iPhones, BlackBerries, and Android-based devices, application-enabled mobile phones, personal computers, etc. The communication network(s) 2022 may represent telephone lines, such as land line or public switched telephone network (PSTN) systems, mobile phone channels and systems, communication channels for exchanging data and information, such as a local area network (LAN), wide area network (WAN), and/or other data, communication, or telecommunication networks that collectively make up the Internet. In some examples, any communication network(s) 2022 that support the TCP/IP protocol may be utilized.



FIG. 21 is a block diagram illustrating an embodiment of a computer system 2100 utilized in the parameter sensing system 2000, according to various implementations of the present disclosure. The computer system 2100 may represent a user device 2010, 2012, 2014, the parameter sensing server 2020 shown in FIG. 20, or another computer system comprising the systems described herein or for performing the methods described herein. As shown in this embodiment, the computer system 2100 comprises a processing device 2110 and a memory device 2120. The memory device 2120 may comprise a client/web application 2122, a parameter sensing program 2124, a database 2126, and/or the like. The computer system 2100 further comprises input/output devices 2130 and interface devices 2140. The components of the computer system 2100 are interconnected and may communicate with each other via a computer bus interface 2150 or other suitable communication devices. The parameter sensing program 2124 may perform the same functions as the parameter sensing module 232, as described herein for FIG. 2, and vice versa.


In some examples, each component of the computer system 2100 as shown may comprise multiple components on multiple computer systems of a network. For example, the computer system 2100 may comprise servers, such as application servers, file servers, database servers, web servers, etc., for performing various functions described herein. The servers of the computer system 2100 may for example be physically separate computer servers or virtual servers in a VMware ESXi 4.0 virtual environment, among other implementations.


The processing device 2110 may be one or more general-purpose or specific-purpose processors, microcontrollers, or microprocessors for controlling the operations and functions of the parameter sensing server 1210. In some implementations, the processing device 2110 may comprise a plurality of processors, computers, servers, or other processing elements for performing different functions within the computer system 2100.


The memory device 2120 may comprise one or more internally fixed storage units, removable storage units, and/or remotely accessible storage units, each including a tangible storage medium. The various storage units may comprise any combination of volatile memory and non-volatile memory. For example, volatile memory may comprise random access memory (RAM), dynamic RAM (DRAM), etc. Non-volatile memory may comprise read only memory (ROM), electrically erasable programmable ROM (EEPROM), flash memory, etc. The storage units may be configured to store any combination of information, data, instructions, software code, etc. The client/web application 2122, the parameter sensing program 2124, the database 2126, and/or the like may be stored in one or more memory devices 2120 and run on the same or different computer systems and/or servers.


In addition to the memory device 2120, the computer system 2100 may comprise other computer-readable media storing information, data, instructions, software code, etc. It will be appreciated by those skilled in the art that computer-readable media can be any available media that may be accessed by the computer system 2100, including computer-readable storage media and communications media. Communications media comprises transitory signals. Computer-readable storage media comprises volatile and non-volatile, removable and non-removable storage media implemented in any method or technology for the non-transitory storage of information. For example, computer-readable storage media comprises, but is not limited to, RAM, ROM, erasable programmable ROM (“EPROM”), electrically-erasable programmable ROM (“EEPROM”), FLASH memory or other solid-state memory technology, compact disc ROM (“CD-ROM”), digital versatile disk (“DVD”), high definition DVD (“HD-DVD”), BLU-RAY or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices and the like. According to some examples, the computer system 2100 may comprise computer-readable media storing computer-executable instructions that cause the computer system to perform aspects of the method 1900 described herein in regards to FIG. 19.


The input/output devices 2130 may comprise various input mechanisms and output mechanisms. For example, input mechanisms may comprise various data entry devices, such as keyboards, keypads, buttons, switches, touch pads, touch screens, cursor control devices, computer mice, stylus-receptive components, voice-activated mechanisms, microphones, cameras, infrared sensors, or other data entry devices. Output mechanisms may comprise various data output devices, such as computer monitors, display screens, touch screens, audio output devices, speakers, alarms, notification devices, lights, light emitting diodes, liquid crystal displays, printers, or other data output devices. The input/output devices 2130 may also comprise interaction devices configured to receive input and provide output, such as dongles, touch screen devices, and other input/output devices, to enable input and/or output communication.


The interface devices 2140 may comprise various devices for interfacing the computer system 2100 with one or more types of servers, computer systems and communication systems, such as a network interface adaptor as is known in the art. The interface devices 2140 may comprise devices for communicating between the parameter sensing server 2020 and the user devices 2010, 2012, or 2014 over the communication network(s) 2022, for example. In some examples, the interface devices 2140 may comprise a network interface adapter or other hardware or software interface elements known in the art.


The client/web application 2122 may comprise a user application for facilitating the monitoring device(s) and the data captured from the one or more sensors, as described herein. In some examples, the client/web application 2122 may execute directly on a user device 2010, 2012, 2014 and interface with the parameter sensing server 2020 over the communication network(s) 2022. The client/web application 2212 may further represent a web-based application executing on the parameter sensing server 2020 or other web server and delivered to a web browser executing on the user devices 2010, 2012, 2014 over the communication network(s) 2022. The client/web application 2122 may be implemented in hardware, software, or any combination of the two on the user devices 2010, 2012, 2014, the parameter sensing server 2020, and/or other computing systems in the parameter sensing system 2000.


The parameter sensing program 2124 may comprise any suitable instructions for processing the sample and transient data from the one or more sensors connected to any one of the monitoring device(s) or monitoring assemblies described herein. For example, the parameter sensing program 2124 may receive any data from resource hardware of the parameter sensing system 2000 including at least pressure, pH, turbidity, temperature, chlorine, etc., as well as other fluid measurements known in the art, such as oxidation reduction potential (ORP), conductivity, resistivity, flow rate, etc. The parameter sensing program 2124 may be omitted from the parameter sensing server 2020 in some examples or placed in a separate processing system according to other examples. The parameter sensing program 2124 may be implemented in hardware, software, or any combination of the two on the user devices 2010, 2012, 2014, the parameter sensing server 2020, and/or other computing systems in the parameter sensing system 2000.


Other examples may comprise additional options or may omit certain options shown herein. One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain examples comprise, while other examples do not comprise, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular examples or that one or more particular examples necessarily comprise logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are comprised or are to be performed in any particular embodiment.


It should be emphasized that the above-described examples are merely possible examples of implementations and set forth for a clear understanding of the present disclosure. Many variations and modifications may be made to the above-described examples without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all appropriate combinations and sub-combinations of all elements, features, and aspects discussed above. All such appropriate modifications and variations are intended to be included within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.

Claims
  • 1. An apparatus comprising: a sensor array disposed in a fluid distribution system, the sensor array comprising a pressure sensor, a temperature sensor, a turbidity sensor, a pH sensor, and a chlorine sensor;a monitoring device comprising an antenna contained within a first housing section,a power source contained within a second housing section, the second housing section defining a lower end and an opposed upper end removably attached to the first housing section, anda parameter sensing portion configured to receive an electronic signal from at least one sensor in the sensor array and to monitor a parameter of the fluid distribution system sensed by the at least one sensor, the parameter sensing portion comprising a printed circuit board and a plurality of sensor ports mounted to the printed circuit board, one sensor port per each sensor in the sensor array, and a service port configured to connect to a service device, the printed circuit board contained within a third housing section, the third housing section removably attached at a proximal end to the lower end of the second housing section; anda computing system communicating with the monitoring device, the computing system configured to detect a second sensor in the fluid distribution system;wherein the first housing section, the second housing section, and the third housing section each define a separate module that as removably attached together form a case configured for modular disassembly;wherein the third housing section defines a distal end opposite the proximal end, and a recessed surface through which each sensor port in the plurality of sensor ports protrudes, the recessed surface recessed with respect to the distal end.
  • 2. The apparatus of claim 1, further comprising an auxiliary power input operably connected to the power source.
  • 3. The apparatus of claim 2, wherein the auxiliary power input comprises a waterproof connector attached to a top of the monitoring device.
  • 4. The apparatus of claim 2, wherein the auxiliary power input is mounted on a planar upper surface of the first housing section.
  • 5. The apparatus of claim 2, wherein the auxiliary power input is connected by a wire to the power source in the second housing section.
  • 6. The apparatus of claim 2, wherein the auxiliary power input is configured to connect to an external power source to recharge the power source in the second housing section.
  • 7. The apparatus of claim 1, further comprising a telescopic enclosure housing the monitoring device, the telescopic enclosure extending from a top of a pipe in the fluid distribution system to a ground level.
  • 8. The apparatus of claim 1, wherein the parameter sensing portion is further configured to operate a solenoid to cause a flushing operation to be performed in the fluid distribution system.
  • 9. The apparatus of claim 1, wherein the monitoring device is installed in a pit in a roadway.
  • 10. The apparatus of claim 1, wherein the circuit board is encased in potting material.
  • 11. The apparatus of claim 1, wherein the power source is a battery pack encased in potting material.
  • 12. The apparatus of claim 1, wherein the first housing section defines a contact surface; wherein the second housing section defines a lower end and an opposed first flange;wherein the contact surface and the first flange are configured to receive a first fastener, the first fastener configured to removably attach the second housing section to the first housing section;wherein the third housing section defines a second flange; andwherein the lower end of the second housing section and the second flange of the third housing section are configured to receive a second fastener, the second fastener configured to removably attach the third housing section to the second housing section.
  • 13. The apparatus of claim 12, wherein the first fastener is a first screw and the second fastener is a second screw.
  • 14. The apparatus of claim 12, wherein the first housing section defines a cavity, and wherein the first flange of the second housing section is received in the cavity.
  • 15. A monitoring device configured to connect to a sensor array disposed in a fluid distribution system, the sensor array comprising a pressure sensor, a temperature sensor, a turbidity sensor, a pH sensor, and a chlorine sensor, the monitoring device comprising: an antenna contained within a first housing section;a power source contained within a second housing section, the second housing section defining a lower end and an opposed upper end removably attached to the first housing section;a solenoid; anda parameter sensing portion configured to monitor a pressure parameter, a temperature parameter, a turbidity parameter, a pH parameter, and a chlorine parameter of a fluid distribution system, the parameter sensing portion comprising a printed circuit board and a plurality of sensor ports mounted to the printed circuit board, one sensor port per each sensor in the sensor array, and a service port configured to connect to a service device, the parameter sensing portion further configured to operate the solenoid to cause a flushing operation to be performed in the fluid distribution system when a parameter condition is triggered, the parameter sensing portion printed circuit board contained within a third housing section, the third housing section removably attached at a proximal end to the lower end of the second housing section;wherein the first housing section, the second housing section, and the third housing section each define a separate module that as removably attached together form a case configured for modular disassembly;wherein the third housing section defines a distal end opposite the proximal end, and a recessed surface through which each sensor port in the plurality of sensor ports protrudes, the recessed surface recessed with respect to the distal end.
  • 16. A system for sensing parameters in a fluid distribution system, the system comprising: a monitoring device configured to connect to a sensor array disposed in the fluid distribution system, the sensor array comprising a pressure sensor, a temperature sensor, a turbidity sensor, a pH sensor, and a chlorine sensor, the monitoring device, the monitoring device comprising an antenna contained within a first housing section, a power source contained within a second housing section, the second housing section defining a lower end and an opposed upper end removably attached to the first housing section, anda parameter sensing module configured to receive an electronic signal from at least one sensor in the sensor array and to monitor a parameter of the fluid distribution system sensed by the at least one sensor, the parameter sensing module comprising a printed circuit board and a plurality of sensor ports mounted to the printed circuit board, one sensor port per each sensor in the sensor array, and a service port configured to connect to a service device, the printed circuit board contained within a third housing section, the third housing section removably attached at a proximal end to the lower end of the second housing section; anda computing system comprising a processing resource and a non-transitory computer-readable storage medium, the computing system configured to receive configuration data defining a configuration profile for the monitoring device, the configuration profile relating to a parameter configuration of the monitoring device,communicate the configuration data to the monitoring device, anddetect a second sensor in the fluid distribution system;wherein the first housing section, the second housing section, and the third housing section each define a separate module that as removably attached together form a case configured for modular disassembly;wherein the third housing section defines a distal end opposite the proximal end, and a recessed surface through which each sensor port in the plurality of sensor ports protrudes, the recessed surface recessed with respect to the distal end.
  • 17. The system of claim 16, further comprising a telescopic enclosure housing the monitoring device, the telescopic enclosure extending from a top of a pipe in the fluid distribution system to a ground level.
  • 18. The system of claim 16, wherein the parameter sensing module is further configured to operate a solenoid to cause a flushing operation to be performed in the fluid distribution system.
  • 19. The system of claim 16, wherein the first housing section defines a contact surface; wherein the second housing section defines a lower end and an opposed first flange;wherein the contact surface and the first flange are configured to receive a first fastener, the first fastener configured to removably attach the second housing section to the first housing section;wherein the third housing section defines a second flange; andwherein the lower end of the second housing section and the second flange of the third housing section are configured to receive a second fastener, the second fastener configured to removably attach the third housing section to the second housing section.
REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/171,897, filed Jun. 5, 2015, which is hereby specifically incorporated by reference herein in its entirety.

US Referenced Citations (462)
Number Name Date Kind
1661265 Olbricht Mar 1928 A
1788618 Cover Jan 1931 A
1901772 Pfau Mar 1933 A
2099479 Heinkel Nov 1937 A
2336450 Voorhess et al. Dec 1943 A
2524031 Arps Oct 1950 A
2828762 Swank Apr 1958 A
2931383 Handley Apr 1960 A
3047079 Wepsala, Jr. Jul 1962 A
3077937 Tirapolsky et al. Feb 1963 A
3084515 Dougherty Apr 1963 A
3128998 Sibley Apr 1964 A
3391735 Schramm et al. Jul 1968 A
3404738 Lindquist Oct 1968 A
3602603 Fukasu et al. Aug 1971 A
3705385 Batz Dec 1972 A
4039784 Quarton Aug 1977 A
4093997 Germer Jun 1978 A
4120031 Kincheloe et al. Oct 1978 A
4126338 Coel et al. Nov 1978 A
4149676 Wieck Apr 1979 A
4282413 Simons Aug 1981 A
4291375 Wolf Sep 1981 A
4388690 Lumsden Jun 1983 A
4414633 Churchill Nov 1983 A
4442492 Karlsson et al. Apr 1984 A
4465970 Dimassimo et al. Aug 1984 A
4491186 Alder Jan 1985 A
4516213 Gidden May 1985 A
4542469 Brandberry et al. Sep 1985 A
4591988 Klima et al. May 1986 A
4674279 Ali et al. Jun 1987 A
4705060 Goulbourne Nov 1987 A
4707852 Jahr et al. Nov 1987 A
4727900 Dooling et al. Mar 1988 A
4792946 Mayo Dec 1988 A
4803632 Frew et al. Feb 1989 A
4833618 Verma et al. May 1989 A
4868566 Strobel et al. Sep 1989 A
4881070 Burrowes et al. Nov 1989 A
4940976 Gastouniotis et al. Jul 1990 A
4945344 Farrell Jul 1990 A
4989830 Ratnik Feb 1991 A
5006240 Steffero, Sr. Apr 1991 A
5056107 Johnson et al. Oct 1991 A
5075792 Brown et al. Dec 1991 A
5079715 Venkataraman et al. Jan 1992 A
5095705 Daly Mar 1992 A
5121344 Laage et al. Jun 1992 A
5239575 White et al. Aug 1993 A
5298894 Cerny et al. Mar 1994 A
5327925 Ortel Jul 1994 A
5381136 Powers et al. Jan 1995 A
5434911 Gray et al. Jul 1995 A
5438329 Gastouniotis et al. Aug 1995 A
5451938 Brennan, Jr. Sep 1995 A
5459459 Lee, Jr. Oct 1995 A
5481259 Bane Jan 1996 A
5493287 Bane Feb 1996 A
5525898 Lee et al. Jun 1996 A
5553094 Johnson et al. Sep 1996 A
5588462 McHugh Dec 1996 A
5590179 Shincovich et al. Dec 1996 A
5594740 Ladue Jan 1997 A
5617084 Sears Apr 1997 A
5631554 Briese et al. May 1997 A
5634488 Martin, Jr. Jun 1997 A
5646863 Morton Jul 1997 A
5654692 Baxter, Jr. et al. Aug 1997 A
5673252 Johnson et al. Sep 1997 A
5708195 Kurisu et al. Jan 1998 A
5714931 Petite Feb 1998 A
5748104 Argyroudis et al. May 1998 A
5751797 Saadeh May 1998 A
5754101 Tsunetomi et al. May 1998 A
5757357 Grande et al. May 1998 A
5801643 Williams et al. Sep 1998 A
5815086 Ivie et al. Sep 1998 A
5852658 Knight et al. Dec 1998 A
5877703 Bloss et al. Mar 1999 A
5892758 Argyroudis Apr 1999 A
5901738 Miller May 1999 A
5907491 Canada et al. May 1999 A
5924051 Provost et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926531 Petite Jul 1999 A
5940009 Loy et al. Aug 1999 A
5963146 Johnson et al. Oct 1999 A
5971011 Price Oct 1999 A
5993739 Lyon Nov 1999 A
5994892 Turino et al. Nov 1999 A
6006212 Schleich et al. Dec 1999 A
6028522 Petite Feb 2000 A
6031455 Grube et al. Feb 2000 A
6036401 Morina Mar 2000 A
6044062 Brownrigg et al. Mar 2000 A
6058374 Guthrie et al. May 2000 A
6060994 Chen May 2000 A
6078269 Markwell Jun 2000 A
6081204 Lavoie et al. Jun 2000 A
6163276 Irving et al. Dec 2000 A
6172616 Johnson et al. Jan 2001 B1
6194902 Kuo Feb 2001 B1
6195018 Ragle et al. Feb 2001 B1
6218953 Petite Apr 2001 B1
6233327 Petite May 2001 B1
6246677 Nap et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6288641 Casais Sep 2001 B1
6317051 Cohen Nov 2001 B1
6333975 Brunn et al. Dec 2001 B1
6356205 Salvo et al. Mar 2002 B1
6373399 Johnson et al. Apr 2002 B1
6392538 Shere May 2002 B1
6424270 Ali Jul 2002 B1
6430268 Petite Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6453247 Hunaidi Sep 2002 B1
6456197 Lauritsen et al. Sep 2002 B1
6470903 Reyman Oct 2002 B2
6487457 Hull et al. Nov 2002 B1
6493377 Schilling et al. Dec 2002 B2
6512463 Campbell et al. Jan 2003 B1
6528957 Luchaco Mar 2003 B1
6538577 Ehrke et al. Mar 2003 B1
6560543 Wolfe et al. May 2003 B2
6564159 Lavoie et al. May 2003 B1
6577961 Hubbard et al. Jun 2003 B1
6618578 Petite Sep 2003 B1
6624750 Marman et al. Sep 2003 B1
6628207 Hemminger et al. Sep 2003 B1
6628764 Petite Sep 2003 B1
6633781 Lee et al. Oct 2003 B1
6653945 Johnson et al. Nov 2003 B2
6657552 Belski et al. Dec 2003 B2
6675071 Griffin, Jr. et al. Jan 2004 B1
6675834 Lai Jan 2004 B1
6677861 Henry et al. Jan 2004 B1
6710721 Holowick Mar 2004 B1
6747557 Petite et al. Jun 2004 B1
6798352 Holowick Sep 2004 B2
6816072 Zoratti Nov 2004 B2
6830061 Adams et al. Dec 2004 B2
6836737 Petite et al. Dec 2004 B2
6847300 Yee et al. Jan 2005 B2
6876100 Yumita Apr 2005 B2
6891477 Aronstam May 2005 B2
6891838 Petite et al. May 2005 B1
6912472 Mizushina et al. Jun 2005 B2
6914533 Petite Jul 2005 B2
6914893 Petite Jul 2005 B2
6931445 Davis Aug 2005 B2
6946972 Mueller et al. Sep 2005 B2
6954701 Wolfe Oct 2005 B2
6954814 Leach Oct 2005 B1
6963808 Addink et al. Nov 2005 B1
6963817 Ito et al. Nov 2005 B2
6970808 Abhulimen et al. Nov 2005 B2
6972677 Coulthard Dec 2005 B2
6978210 Suter et al. Dec 2005 B1
6980079 Shintani et al. Dec 2005 B1
6998724 Johansen et al. Feb 2006 B2
7002481 Crane et al. Feb 2006 B1
7008239 Ju Mar 2006 B1
7009530 Zigdon et al. Mar 2006 B2
7012546 Zigdon et al. Mar 2006 B1
7020701 Gelvin et al. Mar 2006 B1
7042368 Patterson et al. May 2006 B2
7053767 Petite et al. May 2006 B2
7054271 Brownrigg May 2006 B2
7061924 Durrant et al. Jun 2006 B1
7072945 Nieminen et al. Jul 2006 B1
7079810 Petite et al. Jul 2006 B2
7088239 Basinger et al. Aug 2006 B2
7089125 Sonderegger Aug 2006 B2
7103511 Petite Sep 2006 B2
7117051 Landry et al. Oct 2006 B2
7124184 Chung et al. Oct 2006 B2
7137550 Petite Nov 2006 B1
7142107 Kates Nov 2006 B2
7201180 Ephrat et al. Apr 2007 B2
7219553 Worthington May 2007 B1
7248181 Patterson et al. Jul 2007 B2
7252431 Caramanna Aug 2007 B1
7253536 Fujimoto et al. Aug 2007 B2
7256704 Yoon et al. Aug 2007 B2
7263073 Petite et al. Aug 2007 B2
7290450 Brown et al. Nov 2007 B2
7292143 Drake et al. Nov 2007 B2
7295128 Petite Nov 2007 B2
7301456 Han Nov 2007 B2
7310590 Bansal et al. Dec 2007 B1
7315257 Patterson et al. Jan 2008 B2
7330796 Addink et al. Feb 2008 B2
7342504 Crane et al. Mar 2008 B2
7353280 Chiles et al. Apr 2008 B2
7356614 Kim et al. Apr 2008 B2
7363031 Aisa Apr 2008 B1
7397907 Petite Jul 2008 B2
7412882 Lazar et al. Aug 2008 B2
7417557 Osterloh et al. Aug 2008 B2
7423985 Hill Sep 2008 B1
7424527 Petite Sep 2008 B2
7443313 Davis et al. Oct 2008 B2
7444401 Keyghobad Oct 2008 B1
7453373 Cumeralto et al. Nov 2008 B2
7468661 Petite et al. Dec 2008 B2
7478108 Townsend et al. Jan 2009 B2
7480501 Petite Jan 2009 B2
7497957 Bernard Mar 2009 B2
7523016 Surdulescu et al. Apr 2009 B1
7526539 Hsu Apr 2009 B1
7550746 Tokhtuev Jun 2009 B2
7650425 Davis Jan 2010 B2
7696940 MacDonald Apr 2010 B1
7697492 Petite Apr 2010 B2
7739378 Petite Jun 2010 B2
7752309 Keyghobad et al. Jul 2010 B2
7756086 Petite Jul 2010 B2
7767093 Frank Aug 2010 B2
7783738 Keyghobad et al. Aug 2010 B2
7792946 Keyghobad et al. Sep 2010 B2
7870080 Budike, Jr. Jan 2011 B2
7880641 Parris Feb 2011 B2
7920983 Peleg Apr 2011 B1
7980317 Preta et al. Jul 2011 B1
8082945 White Dec 2011 B1
8109131 Winter Feb 2012 B2
8140667 Keyghobad et al. Mar 2012 B2
8249042 Sparr et al. Aug 2012 B2
8341106 Scolnicov et al. Dec 2012 B1
8351409 Albert et al. Jan 2013 B2
8360720 Schlabach et al. Jan 2013 B2
8407333 Keyghobad et al. Mar 2013 B2
8423637 Vaswani et al. Apr 2013 B2
8549131 Keyghobad Oct 2013 B2
8583386 Armon et al. Nov 2013 B2
8615374 Discenzo Dec 2013 B1
8823509 Hyland et al. Sep 2014 B2
8931505 Hyland et al. Jan 2015 B2
9053519 Scolnicov et al. Jun 2015 B2
9104189 Berges Gonzalez et al. Aug 2015 B2
9134204 Mohajer Sep 2015 B2
9202362 Hyland et al. Dec 2015 B2
9441988 Armon et al. Sep 2016 B2
9568391 Linford et al. Feb 2017 B2
9568392 Peleg et al. Feb 2017 B2
9583386 Kolics et al. Feb 2017 B2
9588094 Wolfe Mar 2017 B2
9604858 Kamen Mar 2017 B2
9749792 Klicpera Aug 2017 B2
9760097 Masias et al. Sep 2017 B2
9777457 Mosley Oct 2017 B2
9799204 Hyland Oct 2017 B2
9822519 Hall et al. Nov 2017 B2
9863425 Kallesoe et al. Jan 2018 B2
9934670 Hyland et al. Apr 2018 B2
9952605 Griffin, Jr. et al. Apr 2018 B2
10030818 Hoskins et al. Jul 2018 B2
10180414 Clark et al. Jan 2019 B2
10193778 Vaswani et al. Jan 2019 B2
10203315 Clark et al. Feb 2019 B2
10242414 Scolnicov et al. Mar 2019 B2
10262518 Hyland et al. Apr 2019 B2
10402044 Rose et al. Sep 2019 B2
10410501 Klicpera Sep 2019 B2
10489038 Klicpera Nov 2019 B2
10564802 Rose et al. Feb 2020 B2
10571358 Campan et al. Feb 2020 B2
10837858 Seddiq et al. Nov 2020 B2
20010010032 Ehlers et al. Jul 2001 A1
20010013488 Fukunaga et al. Aug 2001 A1
20010024163 Petite Sep 2001 A1
20010048030 Sharood et al. Dec 2001 A1
20020002425 Dossey Jan 2002 A1
20020013679 Petite Jan 2002 A1
20020019725 Petite Feb 2002 A1
20020031101 Petite Mar 2002 A1
20020043969 Duncan Apr 2002 A1
20020062392 Nishikawa et al. May 2002 A1
20020067717 Raschke et al. Jun 2002 A1
20020073183 Yoon et al. Jun 2002 A1
20020077777 Wolfe et al. Jun 2002 A1
20020089802 Beckwith Jul 2002 A1
20020105346 Banks Aug 2002 A1
20020130069 Moskoff Sep 2002 A1
20020130768 Che et al. Sep 2002 A1
20020149487 Haines Oct 2002 A1
20020169643 Petite et al. Nov 2002 A1
20020190956 Klein et al. Dec 2002 A1
20030009515 Lee et al. Jan 2003 A1
20030018733 Yoon et al. Jan 2003 A1
20030018776 Yoon et al. Jan 2003 A1
20030036810 Petite Feb 2003 A1
20030046377 Daum et al. Mar 2003 A1
20030074109 Jeong et al. Apr 2003 A1
20030093484 Petite May 2003 A1
20030107485 Zoratti Jun 2003 A1
20030174070 Garrod et al. Sep 2003 A1
20040006513 Wolfe Jan 2004 A1
20040010561 Kim Jan 2004 A1
20040054747 Breh Mar 2004 A1
20040064217 Addink Apr 2004 A1
20010138840 Wolfe Jul 2004
20040129312 Cuzzo et al. Jul 2004 A1
20040138840 Wolfe Jul 2004 A1
20040139210 Lee et al. Jul 2004 A1
20040154965 Baum Aug 2004 A1
20040158333 Ha et al. Aug 2004 A1
20040159149 Williams et al. Aug 2004 A1
20040183687 Petite et al. Sep 2004 A1
20040199340 Kersey et al. Oct 2004 A1
20040212510 Aronstam Oct 2004 A1
20040237545 Tanaka et al. Dec 2004 A1
20050009192 Page Jan 2005 A1
20050072214 Cooper Apr 2005 A1
20050084418 Hill et al. Apr 2005 A1
20050096753 Arling May 2005 A1
20050104747 Silic et al. May 2005 A1
20050120778 Von Herzen et al. Jun 2005 A1
20050159823 Hayes Jul 2005 A1
20050195768 Petite et al. Sep 2005 A1
20050195775 Petite et al. Sep 2005 A1
20050201379 Zhang et al. Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050203647 Landry et al. Sep 2005 A1
20050247114 Kahn Nov 2005 A1
20050251366 Kahn et al. Nov 2005 A1
20050251367 Kahn et al. Nov 2005 A1
20050279169 Lander Dec 2005 A1
20060028355 Patterson et al. Feb 2006 A1
20060031040 Wolfe Feb 2006 A1
20060041655 Holloway et al. Feb 2006 A1
20060272830 Fima Feb 2006 A1
20060046664 Paradiso et al. Mar 2006 A1
20060059977 Kates Mar 2006 A1
20060098576 Brownrigg et al. May 2006 A1
20060122736 Alexanian Jun 2006 A1
20060158347 Roche et al. Jul 2006 A1
20060174707 Zhang Aug 2006 A1
20060181414 Bandy et al. Aug 2006 A1
20060197345 Kuroki et al. Sep 2006 A1
20060201550 Blyth et al. Sep 2006 A1
20060218266 Matsumoto et al. Sep 2006 A1
20060248961 Shachar Nov 2006 A1
20060273896 Kates Dec 2006 A1
20070035315 Hilleary Feb 2007 A1
20070050157 Kahn et al. Mar 2007 A1
20070052540 Hall et al. Mar 2007 A1
20070059986 Rockwell Mar 2007 A1
20070063866 Webb Mar 2007 A1
20070090059 Plummer Apr 2007 A1
20070163965 Wolfe Jul 2007 A1
20070219728 Papageorgiou et al. Sep 2007 A1
20070293990 Alexanain Dec 2007 A1
20070298779 Wolman et al. Dec 2007 A1
20080023077 Weisz Jan 2008 A1
20080030319 McKeena et al. Feb 2008 A1
20080095403 Benhammou Apr 2008 A1
20080109090 Esmaili et al. May 2008 A1
20080109175 Michalak May 2008 A1
20080122641 Amidi May 2008 A1
20080136191 Baarman et al. Jun 2008 A1
20080149180 Parris Jun 2008 A1
20080155064 Kosuge Jun 2008 A1
20080186898 Petite Aug 2008 A1
20080195329 Prince et al. Aug 2008 A1
20080289402 Chowdhury Nov 2008 A1
20080291054 Groft Nov 2008 A1
20090040057 Keyghobad Feb 2009 A1
20090044628 Lotscher Feb 2009 A1
20090066524 Yukawa et al. Mar 2009 A1
20090068947 Petite Mar 2009 A1
20090084734 Yencho Apr 2009 A1
20090099701 Li et al. Apr 2009 A1
20090121860 Kimmel et al. May 2009 A1
20090123340 Knudsen et al. May 2009 A1
20090125241 Frank May 2009 A1
20090157521 Moren Jun 2009 A1
20090204265 Hackett Aug 2009 A1
20090215424 Petite Aug 2009 A1
20090243840 Petite et al. Oct 2009 A1
20090260697 Mevius et al. Oct 2009 A1
20090271045 Savelle Oct 2009 A1
20090281677 Botich et al. Nov 2009 A1
20090287838 Keyghobad et al. Nov 2009 A1
20090287966 Keyghobad Nov 2009 A1
20090301571 Ruhs Dec 2009 A1
20090309755 Williamson Dec 2009 A1
20090319853 Keyghobad Dec 2009 A1
20100017465 Brownrigg et al. Jan 2010 A1
20100039984 Brownrigg Feb 2010 A1
20100085211 Wang et al. Apr 2010 A1
20100105146 Meeusen Apr 2010 A1
20100156632 Hyland et al. Jun 2010 A1
20100193430 Whiteman Aug 2010 A1
20100194582 Petite Aug 2010 A1
20100204924 Wolfe et al. Aug 2010 A1
20100214120 Means Aug 2010 A1
20100250054 Petite Sep 2010 A1
20100265909 Petite et al. Oct 2010 A1
20100295672 Hyland et al. Nov 2010 A1
20100312881 Davis et al. Dec 2010 A1
20100313958 Patel et al. Dec 2010 A1
20100332149 Scholpp Dec 2010 A1
20110030482 Meeusen et al. Feb 2011 A1
20110044276 Albert et al. Feb 2011 A1
20110059462 Lim Mar 2011 A1
20110079402 Darby et al. Apr 2011 A1
20110093123 Alexanian Apr 2011 A1
20110111700 Hackett May 2011 A1
20110125412 Salzer et al. May 2011 A1
20110132484 Teach et al. Jun 2011 A1
20110178644 Picton Jul 2011 A1
20110190947 Savelle, Jr. et al. Aug 2011 A1
20110215945 Peleg et al. Sep 2011 A1
20110233935 Baarman et al. Sep 2011 A1
20110257788 Wiemers Oct 2011 A1
20110307203 Higgins Dec 2011 A1
20110308638 Hyland Dec 2011 A1
20120007744 Pal et al. Jan 2012 A1
20120016823 Paillet et al. Jan 2012 A1
20120025997 Liu et al. Feb 2012 A1
20120038170 Stuart et al. Feb 2012 A1
20120048386 Clark Mar 2012 A1
20120106518 Albert et al. May 2012 A1
20120116827 Susumago May 2012 A1
20120118397 Novotny et al. May 2012 A1
20120121386 Dahlhaug May 2012 A1
20120132445 Mallon et al. May 2012 A1
20120191868 Keyghobad Jul 2012 A1
20120206258 Ramesh Aug 2012 A1
20120271686 Silverman Oct 2012 A1
20120298208 Taylor et al. Nov 2012 A1
20120298381 Taylor Nov 2012 A1
20120311170 Keyghobad et al. Dec 2012 A1
20130029683 Kim et al. Jan 2013 A1
20130036800 Mohajer Feb 2013 A1
20130041601 Dintakurti et al. Feb 2013 A1
20130118239 Forstmeier May 2013 A1
20130168327 Clark Jul 2013 A1
20130170417 Thomas et al. Jul 2013 A1
20130211797 Scolnicov Aug 2013 A1
20130317659 Thomas et al. Nov 2013 A1
20130332090 Scolnicov et al. Dec 2013 A1
20130341934 Kawanishi Dec 2013 A1
20140026644 Patel et al. Jan 2014 A1
20140262998 Wagner et al. Jun 2014 A1
20140224026 Linford et al. Aug 2014 A1
20140278246 Clark et al. Sep 2014 A1
20140340238 Hyland Nov 2014 A1
20150198057 Hanna Jul 2015 A1
20150308627 Hoskins Oct 2015 A1
20150327449 Bartlett Nov 2015 A1
20160049067 Hyland Feb 2016 A1
20160163177 Klicpera Jun 2016 A1
20170059543 Clark Mar 2017 A1
20170367578 Melodia et al. Dec 2017 A1
20180174424 Hyland et al. Jun 2018 A1
20180372706 Clark et al. Dec 2018 A1
20180372707 Clark et al. Dec 2018 A1
20180372708 Clark et al. Dec 2018 A1
Foreign Referenced Citations (62)
Number Date Country
2009308949 May 2010 AU
2010249499 May 2015 AU
2014259545 Nov 2015 AU
2015202223 Sep 2016 AU
2014235054 Feb 2018 AU
2018200410 Jan 2019 AU
2018253559 Nov 2020 AU
2634759 Dec 2009 CA
2650174 Jul 2012 CA
2741843 May 2018 CA
2772545 Dec 2018 CA
2978661 Apr 2021 CA
1185838 Jun 1998 CN
1458405 Nov 2003 CN
2630512 Aug 2004 CN
101871834 Oct 2010 CN
102095837 Jun 2011 CN
204828756 Dec 2015 CN
4124154 Jan 1993 DE
19757581 Jul 1998 DE
202006017758 Feb 2007 DE
1901253 Mar 2008 EP
2433440 Jul 2018 EP
2350992 Jan 2019 EP
3422319 Jan 2019 EP
3422320 Jan 2019 EP
2305333 Apr 1997 GB
2401406 Nov 2004 GB
2507184 Apr 2014 GB
62-295674 Dec 1987 JP
05-253316 Oct 1993 JP
06-223279 Aug 1994 JP
6300606 Oct 1994 JP
H0731989 Feb 1995 JP
07-116285 May 1995 JP
07231363 Aug 1995 JP
2008128079 May 1996 JP
11-046254 Feb 1999 JP
2000285356 Oct 2000 JP
2001200952 Jul 2001 JP
2001254662 Sep 2001 JP
2002352361 Dec 2002 JP
2003172243 Jun 2003 JP
2006285645 Oct 2006 JP
2008198044 Aug 2008 JP
2012507090 Mar 2012 JP
2012527706 Nov 2012 JP
2013200031 Oct 2013 JP
20110092242 Aug 2011 KR
9810299 Mar 1998 WO
9810394 Mar 1998 WO
03067021 Aug 2003 WO
2008087911 Jul 2008 WO
2009012254 Jan 2009 WO
2009100476 Aug 2009 WO
2010051287 May 2010 WO
2010099348 Sep 2010 WO
2010135587 Nov 2010 WO
2012069688 May 2012 WO
2012099588 Jul 2012 WO
2014151384 Sep 2014 WO
2016197096 Dec 2016 WO
Non-Patent Literature Citations (204)
Entry
US 10,101,311 B2, 10/2018, Clark et al. (withdrawn)
Vonroll Hydro—Hydrojournal, pp. 1-16, May 2008.
English Translation: Vonroll Hydro—Hyrdojournal, Technology with a Future for Shut-off Systems—p. 4, VonRoll Hydro (shop) GmbH—New Concepts for Apprentice Training—p. 12, May 2008.
Von Roll Hydro—Hydrojournal, pp. 1-16, Nov. 2008.
English Translation: Von Roll Hydro—Hyrdojournal,VonRoll Hydroalert—Provides a Warning in the Event of Any Tampering with the Water Supply, p. 3, Nov. 2008.
Keyghobad, Seyamak; Examiner Interview Summary Record for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Feb. 5, 2008; 2 pages.
Keyghobad, Seyamak; Non-Final Rejection for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Oct. 26, 2007; 35 pages.
Keyghobad, Seyamak; Requirement for Restriction/ Election for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Feb. 27, 2006; 17 pages.
Keyghobad, Seyamak; Non-Final Rejection for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated May 18, 2006; 13 pages.
Keyghobad, Seyamak; Non-Final Rejection or U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Jun. 6, 2007; 32 pages.
Keyghobad, Seyamak; Certificate of Correction for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Mar. 31, 2009; 1 page.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Jul. 14, 2008; 4 pages.
Gifford, Paul; PCT Application entitled: Distribution System Monitoring, having serial No. PCT/US16/36007, filed Jun. 6, 2016, 53 pgs.
Gifford, Paul; U.S. Provisional Patent Application entitled: Distribution System Monitoring having U.S. Appl. No. 62/171,897, filed Jun. 5, 2015, 42 pgs.
Hyland, Gregory E.; Non-final Office Action for Continuation U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, dated Jan. 25, 2017, 137 pgs.
Hyland, Gregory E.; Non-final Office Action for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Feb. 2, 2017, 40 pgs.
Clark, Kenneth A.; Non-final Office Action for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Feb. 22, 2017, 95 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; dated Mar. 22, 2010; 8 pages.
Keyghobad, Seyamak; Examiner Interview Summary Record for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; dated Dec. 7, 2009; 3 pages.
Keyghobad, Seyamak; Non-Final Rejection for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; dated Sep. 14, 2009; 8 pages.
Keyghobad,Seyamak; Non-Final Rejection for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008; dated May 1, 2009; 5 pages.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; dated Jul. 19, 2010; 8 pages.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; dated Jun. 28, 2010; 10 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; dated Jun. 24, 2010; 10 pgs.
Keyghobad,Seyamak; Non-Final Rejection for U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; dated Dec. 23, 2009; 8 pgs.
Young et al. “Real-Time Intranet-Controlled Virtual Instrument Multiple-Circuit Power Monitoring,” IEEE Transactions on Instrumentation and Measurement, Jun. 2000. vol. 49, No. 3, p. 570. [Accessed Dec. 29, 2011] http://ieeexplore.ieee.org/xpls/abs_all.jsp, 6 pgs.
De Almeida et al. “Advanced Monitoring Technologies for the Evaluation of Demand-Side Management Programs,” IEEE Transactions on Power Systems, Aug. 1994. vol. 9, No. 3. [Accessed Dec. 29, 2011] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=336086, 7 pgs.
Dolezilek. “Microprocessor Based Relay Information Improves the Power System,” Rural Electric Power Conference, May 1999. p. B5/1-B5/9. [Accessed Dec. 29, 2011] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=768685, 9 pgs.
Gehami et al. “Electronic Control System | Salient Feature in Substation,” Transmission & Distrubition, Mar. 1991. vol. 43, No. 3, p. 48. [Accessed Dec. 29, 2011—ProQuest].
Horlent. “New Metering and Reading Techniques Based on a Modular Design Concept,” 10th International Conference on Electricity Distribution, May 1989. vol. 5, p. 455-459. [Accessed Dec. 29, 2011—IEEExplore].
“In Brief,” Land Mobile Radio News, Jan. 16, 1998. vol. 52, No. 3, p. 1. [Accessed Dec. 29, 2011—ProQuest] http://proquest.umi.com/pqdweb?did=25435781&sid=1&Fmt=3&clientId=31810&RQT=309&VName%20=PQD.
“Landis & Gyr Utilities: Service Partnership Helps Utilities Use Available Resources More Effectively,” www.landisgyr.com/utilities/e/fr_press1_e.htm (archived Feb. 6, 1998) http://web.archive.org/web/19980206060801/http://www.landisgyr.com/utilities.
Tamarkin. “Automated Meter Reading”, Sep.-Oct. 1992, vol. 50, No. 5/ [Accessed Dec. 29, 2011] http://www.usclcorp.com/news/Automatic.
ANSI; “Protocol Specification for ANSI Type 2 Optical Port”, American National Standard, ANSI C.12.18-2006, 11 pgs.
Federal Communications Commission; “Understanding the FCC Regulations for Low-Power, Non-Licensed Transmitters”, Office of Engineering and Technology; Oct. 1993; 34 pgs.
Semtech; “TN1200.4, Calculating Radiated Power and Field Strength for Conducted Power Measurements”, Semtech Corporation, Camarillo, CA, 2007, 9 pgs.
RFM; “HX 2000 Datasheet: 916.5 MHz: Hybrid Transmitter”, RF Monolithics, Inc., Dallas, TX, USA, 1998; 2 pgs.
General Electric; “GEH-5081 kV Meter Product Manual”, Nov. 1997, 137 pgs.
General Electric; “kV RSX—R5232/RS485 Communications Options: Instructions Manual”; Mar. 1999, 33 pgs.
Orfield; “Badger® ORION® System Helps Lemmon, South Dakota Reduce Read Time, Billing Cycles”, Badger Connect Publication, 2004, 2 pgs.
AMCO; “Pit Water-Meter Transponder (PWT)”; AMCO Automated Systems, LLC; PDB-14611; Sep. 2002; 2 pgs.
AMCO; “Short-Range Programmer (SRP) VRT”; AMCO Automated Systems, LLC; PDB-14555.1; Sep. 2002; 2 pgs.
AMCO; Remote Water-Meter Transponder (RWT); AMCO Automated Systems, LLC; PDB-14610; Sep. 2002; 2 pgs.
Article entitled: “Remote Meter Reading”, http://www.meter.co.uk/RMR.html; accessed on Jul. 30, 2012, 2 pgs.
Hyland, Gregory E.; Decision of Rejection for Japanese serial No. 2011-533427, filed Oct. 27, 2009, dated Sep. 16, 2014, 4 pgs.
Article entitled: “OET Exhibits List”, https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhibits&RequestTimeout=500&calledFromFrame=N&application_id=194044&fcc_id=; Feb. 20, 2001, 2 pgs.
Patterson, Tim; Request for Ex Parte Reexamination under U.S. Appl. No. 90/012,468, filed Sep. 6, 2012; 52 pgs.
Patterson, Tim; Request for Ex Parte Reexamination under U.S. Appl. No. 90/012,449, filed Aug. 23, 2012; 51 pgs.
Radix Corporation; “Automatic Meter Reading”, 2 pgs.
Trace; “Pit Water-Meter Transponder”; User Guide; Jan. 2003 16 pgs.
Hyland; European Search Report for serial No. EP09824079.9, filed Oct. 27, 2009, dated May 8, 2012; 38 pages.
Hyland, Gregory; Australian Patent Examination Report for serial No. 2009308949, filed Oct. 27, 2009, dated Nov. 12, 2013, 3 pgs.
Hyland, Gregory E.;Japanese Office Action for serial No. 2011-533427, filed Oct. 27, 2009, dated Apr. 30, 2013, 15 pgs.
Hyland, Gregory E.; Japanese Office Action for serial No. 2011-533427, filed Oct. 27, 2009, dated Feb. 4, 2014, 50 pgs.
Hyland, Gregory E.; Applicant Initiated Interview Summary for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Feb. 18, 2014, 4 pgs.
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Dec. 17, 2013, 54 pgs.
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Apr. 10, 2013, 80 pgs.
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Sep. 22, 2014, 49 pgs.
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Nov. 11, 2015, 1 pg.
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Oct. 18, 2012; 44 pgs.
Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Apr. 8, 2014, 43 pgs.
Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Sep. 6, 2013; 53 pgs.
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Apr. 16, 2015, 47 pgs.
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 12/606,957, filed Oct. 27, 2009, dated Jul. 27, 2015, 19 pgs.
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 12/606,957, filed Oct. 13, 2015, dated Oct. 13, 2015, 4 pgs.
Hyland, Gregory E.; U.S. Continuation Application entitled: Infrastructure Monitoring System and Method having U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, 28 pgs.
Gregory E.; Final Office Action for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated Feb. 11, 2014; 44 pgs.
Gregory E.; Final Office Action for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated May 29, 2013, 71 pgs.
Gregory E.; Issue Notification for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated Aug. 13, 2014. 1 pg.
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated Sep. 10, 2012, 35 pgs.
Gregory E.; Non-Final Office Action for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated Sep. 24, 2013; 37 pgs.
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated Apr. 23, 2014, 20 pgs.
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 12/784,300, filed May 20, 2010, dated Aug. 1, 2014, 4 pgs.
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Aug. 23, 2016, 41 pgs.
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Feb. 17, 2016, 98 pgs.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002, dated Oct. 8, 2008; 1 pg.
Keyghobad, Seyamak; Requirement for Restriction/ Election for U.S. Appl. No. 10/298,300, filed Nov. 18, 2002; dated Feb. 9, 2006; 11 pages.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/243,452, filed Oct. 1, 2008 dated Jun. 16, 2010; 1 pg.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, dated Feb. 29, 2012; 1 pg.
Keyghobad, Seyamak; Non Final Rejection for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, dated Mar. 21, 2011; 10 pgs.
Keyghobad, Seyamak; Non Final Rejection for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, dated Oct. 4, 2010; 14 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,867, filed Jun. 24, 2006, dated Sep. 7, 2011; 6 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,867, filed Jun. 24, 2009, dated Nov. 2, 2011; 17 pgs.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; dated Aug. 18, 2010; 1 pg.
Keyghobad, Seyamak; Non-final office action for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009; dated Dec. 23, 2009; 17 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 12/490,925, filed Jun. 24, 2009, dated Aug. 2, 2010, 8 pgs.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 12/490,957, filed Jun. 24, 2009; dated Aug. 4, 2010; 1 pg.
Keyghobad, Seyamak; Non-final Office Action for U.S. Appl. No. 13/372,408, filed Feb. 23, 2012; dated May 25, 2012; 17 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012, dated Jul. 27, 2012; 11 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012; dated Nov. 1, 2012; 18 pgs.
Keyghobad, Seyamak; Supplemental Notice of Allowance for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012; dated Aug. 2, 2012; 7 pgs.
Keyghobad, Seyamak, Issue Notification for U.S. Appl. No. 13/590,954, filed Aug. 21, 2012, dated Sep. 11, 2013, 1 pg.
Keyghobad, Seyamak; Issue Notification for U.S. Appl. No. 13/372,408, filed Feb. 13, 2012, dated Mar. 6, 2013, 1 pg.
Keyghobad, Seyamak; Non-Final Office Action for U.S. Appl. No. 13/590,954, filed Aug. 21, 2012, dated Dec. 13, 2012; 39 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 13/590,954, filed Aug. 21, 2012, dated Mar. 21, 2013, 22 pgs.
Keyghobad, Seyamak; Notice of Allowance for U.S. Appl. No. 13/590,954, filed Aug. 21, 2012, dated Jul. 9, 2013, 21 pgs.
Hyland; International Preliminary Report on Patentability for serial No. PCT/US2009/062247, filed Oct. 27, 2009, dated May 3, 2011, 7 pgs.
Hyland; International Search Report for serial No. PCT/US2009/062247, filed on Oct. 27, 2009, dated Dec. 18, 2009, 2 pgs.
Hyland, Gregory E.; Canadian Office Action for serial No. 2,741,843, filed Oct. 27, 2009, dated Dec. 8, 2015, 5 pgs.
Hyland, Gregory E.; Canadian Office Action for serial No. 2,741,843, filed Oct. 27, 2009, dated Jul. 22, 2016, 5 pgs.
Hyland, Gregory; Mexico Office Action for serial No. MX/a/2011/004330, filed Apr. 25, 2011, dated Oct. 3, 2013, 6 pgs.
Hyland, Gregory; Mexico Office Action for serial No. MX/a/2011/004330, filed Apr. 25, 2011, dated Jul. 18, 2013, 6 pgs.
Hyland, Gregory;Mexico Office Action for serial No. MX/a/2011/004330, filed Apr. 25, 2011, dated Mar. 21, 2013, 7 pgs.
Hyland; European Examination Report for serial No. EP09824079.9, filed Oct. 27, 2009, dated Nov. 13, 2015; 6 pgs.
Hyland, Gregory E.; Final Office Action for Continuation U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, dated Jul. 18, 2017, 51 pgs.
Hyland, Gregory E.; Notice of Allowability for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Jul. 18, 2017, 6 pgs.
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,772,545, filed May 20, 2010, dated Jun. 22, 2017, 3 pgs.
Clark, Kenneth A.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Jul. 19, 2017, 7 pgs.
Clark, Kenneth A.; Office Action for Mexico Application No. MX/a/2015/011793, filed Mar. 13, 2014, dated Feb. 20, 2017, 7 pgs.
Hyland, Gregory E.; European Search Report for serial No. EP2433440, filed Nov. 18, 2011, dated Apr. 10, 2017, 6 pgs.
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Jun. 15, 2017, 17 pgs.
Hyland, Gregory E.; Canadian Office Action for Serial No. 2,741,843, filed Oct. 27, 2009, dated Apr. 25, 2017, 7 pgs.
Clark, Kenneth A.; Final Office Action for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Jun. 28, 2017, 41 pgs.
Clark, Kenneth A.; Office Action for Mexico Application No. MX/a/2015/011793, filed Mar. 13, 2014, dated Jun. 20, 2017, 8 pgs.
Clark, Kenneth A.; Office Action for Australian Application No. 2014235054, filed Mar. 13, 2014, dated Jun. 2, 2017, 3 pgs.
Hyland, Gregory E.; Office Action for Canadian application No. 2,772,545, filed May 10, 2010, dated Jul. 27, 2016, 4 pgs.
Clark, Kenneth A.; Restriction Requirement for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Oct. 4, 2016, 7 pgs.
Gifford, Paul; International Search Report and Written Opinion for PCT Application No. PCT/US16/36007, filed Jun. 6, 2016, dated Oct. 6, 2016, 12 pgs.
Article entitled: “Datamatic, Badger Connect for AMR Solutions”, http://www.datamatic.com/badger_partnership.html; accessed on Jul. 27, 2012, 1 pg.
Hyland, Gregory E.; Australian Examination Report for serial No. 2014259545, filed Oct. 27, 2009, dated Jun. 10, 2015; 2 pgs.
Hyland; International Search Report and Written Opinion for serial No. PCT/US2010/035666, filed May 20, 2010, dated Jul. 16, 2010, 7 pgs.
Hyland; International Preliminary Report on Patentability for serial No. PCT/US2010/035666, filed May 20, 2010, dated Nov. 22, 2011, 6 pgs.
Hyland, Gregory E.; Mexico Office Action for serial No. MX/A/2011/012383, filed May 20, 2010, dated Oct. 8, 2012, 3 pgs.
Hyland, Gregory E.; Mexico Office Action for serial No. MX/A/2011/012383, filed May 20, 2010, dated May 9, 2013, 8 pgs.
Hyland, Gregory E.; Mexico Office Action for serial No. MX/A/2011/012383, filed May 20, 2010, dated Sep. 3, 2013, 10 pgs.
Hyland, Gregory E.; Mexico Final Office Action for serial No. MX/A/2011/012383, filed May 20, 2010, dated Jan. 9, 2014, 9 pgs.
European Search Report for serial No. EP2433440, filed Nov. 18, 2011, dated Nov. 28, 2012, 6 pgs.
Hyland, Gregory E.; Australian Patent Examination report for serial No. 2010249499, filed Nov. 17, 2011, dated Jun. 16, 2014, 5 pgs.
Hyland, Gregory E.; Australian Patent Examination report for serial No. 2010249499, filed Nov. 17, 2011, dated Nov. 21, 2014, 5 pgs.
Hyland, Gregory; Japanese Office Action for serial No. 2012-512048, filed May 20, 2010, dated Oct. 22, 2013, 51 pgs.
Hyland, Gregory; Decision of Rejection for Japanese serial No. 2012-512048, filed May 20, 2010, dated Apr. 22, 2014, 10 pgs.
Hyland, Gregory; Mexico Office Action for serial No. MX/a/2012/015236, filed Dec. 19, 2012, dated Jun. 13, 2013, 4 pgs.
Hyland, Gregory; Mexico Office Action for serial No. MX/a/2012/015236, filed Dec. 19, 2012, dated Oct. 3, 2013, 8 pgs.
Hyland, Gregory; Mexico Office Action for serial No. MX/a/2012/015236, filed Dec. 19, 2012, dated Dec. 3, 2013, received by foreign associate on Jan. 9, 2014, 4 pgs.
Hyland, Gregory E.; Australian Patent Examination report for serial No. 2015202223, filed May 20, 2010, dated Nov. 4, 2015, 4 pgs.
Hyland; U.S. Provisional Patent Application entitled: Water Supply Infrastructure Monitoring System and Method, having U.S. Appl. No. 61/108,770, filed Oct. 27, 2008, 11 pgs.
Hyland; U.S. Provisional Patent Application entitled: Water Supply Infrastructure Monitoring System and Method, having U.S. Appl. No. 61/180,600, filed May 22, 2009, 14 pgs.
Clark, Kenneth A.; U.S. Patent Application entitled: Systems for Measuring Priorities of Water in a Water Distribution System, U.S. Appl. No. 14/209,257, filed Mar. 13, 2014; 60 pgs.
Clark, Kenneth A.; U.S. Provisional Patent Application entitled: Systems for Measuring Properties of Water in a Water Distribution System , U.S. Appl. No. 61/794,616, filed Mar. 15, 2013; 49 pgs.
Clark, Kenneth A.; International Search Report and Written Opinion for serial No. PCT/US2014/025617, filed Mar. 13, 2014, dated Aug. 27, 2014, 48 pgs.
Huang, et al.; “The Mahalanobis-Taguchi system—Neural network algorithm for data mining in dynamic environments”, Extern Systems with Appklications (online), 2009 [retrieved on Aug. 13, 2014], vol. 36, pp. 5475-5480.
Clark, Kenneth A.; International Preliminary Report on Patentability for PCT/US2014/025617, filed Mar. 13, 2014, dated Sep. 24, 2015, 12 pgs.
Clark, Kenneth A.; Extended European Search Report for serial No. 14771115.4, filed Mar. 13, 2014, dated Sep. 14, 2016, 8 pgs.
Stoianov, et al.; Article entitled: “Sensor Networks for Monitoring Water Supply and Sewer Systems: Lessons from Boston”, Water Distribution Systems Analysis Symposium 2006; , Aug. 27-30, 2006, 17 pgs.
Perelman, et al.; Article entitled: “Event Detection in Water Distribution Systems from Multivariate Water Quality Time Series”, Environmental Science & Technology, vol. 46, No. 15, Aug. 7, 2012, 8 pgs.
Palau, et al.; Article entitled: “Using Multivariate Principal Component Analysis of Injected Water Flows to Detect Anomalous Behaviors in a Water Supply System. A case Study.”, Water Science and Technology: Water Supply, vol. 4, No. 3, Jun. 30, 2004, 12 pgs.
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, dated Nov. 30, 2017, 22 pgs.
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, dated Dec. 28, 2017, 6 pgs.
Hyland, Gregory; Corrected Notice of Allowability for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Sep. 26, 2017, 4 pgs.
Hyland, Gregory; Issue Notification for U.S. Appl. No. 14/450,452, filed Aug. 4, 2014, dated Oct. 4, 2017, 1 pg.
Clark, Kenneth A.; Non-Final Office Action for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Oct. 16, 2017, 33 pgs.
Clark, Kenneth A.; Non-Final Office Action for U.S. Appl. No. 15/347,849, filed Nov. 10, 2016, dated Nov. 3, 2017, 84 pgs.
Gifford, Paul;International Preliminary Report on Patentability for PCT Application No. PCT/US16/36007, filed Jun. 6, 2016, dated Dec. 14, 2017, 9 pgs.
Vonroll Hydro—Hydrojournal, pp. 1-16 and translation, May 2008, 20 pgs.
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, dated Mar. 14, 2018, 1 pg.
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 14/928,725, filed Oct. 30, 2015, dated Feb. 27, 2018, 6 pgs.
Clark, Kenneth A.; Final Office Action for U.S. Appl. No. 15/347,849, filed Nov. 10, 2016, dated Jun. 1, 2018, 29 pgs.
Wikipedia; Article entitled: “Water turbine”, located at (https://en.wikipedia.org/wiki/Water_turbine), 11 pgs.
Clark, Kenneth A.; Notice of Allowance for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Jun. 27, 2018, 26 pgs.
Clark, Kenneth A.; Examination Report for Australian application No. 2018200410, filed Mar. 13, 2014, dated Jun. 28, 2018, 4 pgs.
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/895,062, filed Feb. 13, 2018, dated Oct. 25, 2018, 72 pgs.
Clark, Kenneth A.; Issue Notification for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Sep. 26, 2018, 1 pg.
Clark, Kenneth A.; Notice of Allowance for U.S. Appl. No. 15/347,849, filed Nov. 10, 2016, dated Sep. 18, 2018, 20 pgs.
Hyland, Gregory E.; Extended European Search Report for serial No. 18214263.8, filed Oct. 27, 2009, dated Sep. 2, 2019, 11 pgs.
Clark, Kenneth A.; Non-Final Office Action for U.S. Appl. No. 16/118,914, filed Aug. 31, 2018, dated Sep. 9, 2019, 107 pgs.
Whittle, et al.; Article entitled: “WaterWise©SG: A Testbed for Continuous Monitoring of the Water Distribution System in Singapore”, Water Distribution Analysis 2010—WDSA2010, Tucson, AZ, USA, Sep. 12-15, 2010; 16 pgs.
Clark, Kenneth A.; Examination Report for Australian patent application No. 2018253559, filed Mar. 13, 2014, dated Jul. 8, 2019, 3 pgs.
Gifford, Paul S.; European Search Report for serial No. 16804634.0, filed Jun. 6, 2016, dated Jul. 25, 2019, 21 pgs.
Shafiee, et al.; Article entitled: “Integrating Evolutionary Computation and Sociotechnical Simulation for Flushing Contaminated Water Distribution Systems”, Genetic and Evolutionary Computation, ACM, Jul. 1, 2012, pp. 315-322 (8 pgs).
Hyland, Gregory E.; Corrected Notice of Allowance for U.S. Appl. No. 15/895,062, filed Feb. 13, 2018, dated Mar. 6, 2019, 7 pgs.
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 15/895,062, filed Feb. 13, 2018, dated Mar. 27, 2019, 1 pg.
Gifford, Paul S.; European Search Report for serial No. 16804634.0, filed Jun. 6, 2016, dated Mar. 11, 2019, 19 pgs.
Whittle, et al; Article entitled: “WaterWise@SG: A Testbed for Continuous Monitoring of the Water Distribution System in Singapore”, Water Distribution Analysis 2010, Dec. 21, 2011, 16, pgs.
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 15/895,062, filed Feb. 13, 2018, dated Dec. 26, 2018, 11 pgs.
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,997,878, filed Oct. 27, 2009, dated Dec. 10, 2018, 4 pgs.
Icelandic Building Research Institute, et al.; “Monitoring corrosion in district heating systems”, Nordic Innovation, Project No. 00071, Final Report, pp. 1-254, May 2004 (May 2004).
Hyland, Gregory E.; Extended European Search Report for serial No. 18184468.9, filed May 20, 2010, dated Dec. 3, 2018, 9 pgs.
Hyland, Gregory E.; Extended European Search Report for serial No. 18184481.2, filed May 20, 2010, dated Dec. 3, 2018, 9 pgs.
Clark, Kenneth A.; Issue Notification for U.S. Appl. No. 14/209,257, filed Mar. 13, 2014, dated Dec. 22, 2018, 1 pg.
Clark, Kenneth A.; Issue Notification for U.S. Appl. No. 15/347,849, filed Nov. 10, 2016, dated Jan. 23, 2019, 1 pg.
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,997,878, filed Oct. 27, 2009, dated Sep. 27, 2019, 5 pgs.
Clark, Kenneth A.; Non-Final Office Action for U.S. Appl. No. 16/118,907, filed Aug. 31, 2018, dated Oct. 11, 2019, 104 pgs.
Clark, Kenneth A.; Non-Final Office Action for U.S. Appl. No. 16/118,664, filed Aug. 31, 2018, dated Oct. 1, 2019, 95 pgs.
dictionary.com; definition of “turbine”, accessed on Sep. 3, 2019, 1 pg.
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,997,878, filed Oct. 27, 2009, dated Apr. 2, 2020 7 pgs.
Clark, Kenneth A.; Final Office action for U.S. Appl. No. 16/118,907, filed Aug. 31, 2018, dated Apr. 16, 2020, 35 pgs.
Clark, Kenneth A.; Final Office Action for U.S. Appl. No. 16/118,664, filed Aug. 31, 2018, dated Apr. 7, 2020, 23 pgs.
Clark, Kenneth A.; Office Action for Canadian application No. 2,900,965, filed Mar. 13, 2014, dated Jun. 12, 2020, 4 pgs.
Clark, Kenneth A.; Examination Report for Australian patent application No. 2018253559, filed Mar. 13, 2014, dated Apr. 28, 2020, 3 pgs.
Gifford, Paul S.; Office Action for Canadian patent application No. 2,987,661, filed Jun. 6, 2016, dated Apr. 21, 2020, 3 pgs.
Clark, Kenneth A.; Final Office Action for U.S. Appl. No. 16/118,914, filed Aug. 31, 2018, dated Mar. 23, 2020, 52 pgs.
Clark, Kenneth A.; Examination Report for Australian patent application No. 2018253559, filed Mar. 13, 2014, dated Jan. 17, 2020, 3 pgs.
Clark, Kenneth A.; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/118,664, filed Mar. 31, 2018, dated Dec. 26, 2019, 6 pgs.
Gifford, Paul S.; Office Action for Canadian patent application No. 2,987,661, filed Jun. 6, 2016, dated Nov. 26, 2019, 4 pgs.
Gifford, Paul S.; Office Action for Canadian patent application No. 2,987,661, filed Jun. 6, 2016, dated Aug. 17, 2020, 3 pgs.
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,997,878, filed Oct. 27, 2009, dated Nov. 25, 2020, 7 pgs.
Clark, Kenneth A.; Office Action for Canadian application No. 2,900,965, filed Mar. 13, 2014, dated Oct. 27, 2020, 4 pgs.
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,997,878, filed Oct. 27, 2009, dated Jul. 16, 2020, 7 pgs.
Hunaidi, et al., “A new System for locating leaks in urban water distribution pipes”, International Journal of Management of Environmental Quality, Jan. 31, 2006, pp. 450-466, Retrieved from the internet: <http://web.mit.edu/parmstr/Public/NRCan/nrcc48357.pdf>, 19 pgs.
Hyland, Gregory E.; Office Action for European serial No. 18214263.8, filed Oct. 27, 2009, dated Jul. 14, 2020, 5 pgs.
Clark, Kenneth A.; Office Action for European serial No. 14771115.4, filed Mar. 13, 2014, dated Sep. 9, 2020, 4 pgs.
Clark, Kenneth A.; Non-Final Office Action for U.S. Appl. No. 16/118,914, filed Aug. 31, 2018, dated Mar. 4, 2021, 55 pages.
Hyland, Gregory E.; Office Action for European application No. 18214263.8, filed Oct. 27, 2009, dated Mar. 1, 2021, 7 pgs.
Clark, Kenneth A.; Requirement for Restriction/Election for U.S. Appl. No. 16/118,664, filed Aug. 31, 2018, dated Apr. 27, 2021, 29 pgs.
Related Publications (1)
Number Date Country
20160356755 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62171897 Jun 2015 US