Information
-
Patent Grant
-
6755180
-
Patent Number
6,755,180
-
Date Filed
Monday, December 16, 200222 years ago
-
Date Issued
Tuesday, June 29, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 123 448
- 123 449
- 123 450
- 123 451
- 123 500
- 123 501
- 123 502
- 123 372
- 123 373
- 123 495
-
International Classifications
-
Abstract
A chamfering portion provided at an inlet corner of a port of an inside way-out in a governor shaft is effective to decrease energy loss of fuel flowing into the inside way-out to less than one half in comparison with that of a conventional art. A flow amount characteristic of the fuel into the inside way-out improves so that a hysteresis between a pump chamber pressure decrease characteristic on increasing a load (a retarding characteristic) and a pump chamber pressure increase characteristic on decreasing the load (an advancing characteristic) is lowered, resulting in securing a highly accurate control of fuel injection timing.
Description
CROSS REFERENCE TO RELATED APPLICATIONS
This application is based on and incorporates herein by reference Japanese Patent Application Nos. 2001-384578 filed on Dec. 18, 2001 and 2002-289913 filed on Oct. 2, 2002.
FIELD OF THE INVENTION
The present invention relates to a distribution type fuel infection pump and, in particular, a load timer which accurately controls fuel injection timing with a deduced hysteresis between an advancing and delaying timings.
BACKGROUND OF THE INVENTION
A conventional governor that defines performance of a load timer is explained. A governor shaft is provided with an inside way-out whose one end opens to outer circumference thereof and whose the other end communicates with a low fuel pressure side such as a fuel tank. A governor sleeve is provided with an outside way-out which penetrates from an outer surface thereof to an inner surface thereof in sliding contact with the governor shaft. When the governor sleeve advances (in a low load), the inside and outside way-outs communicate with each other. When the governor sleeve backs (in a high load), the communication between both the way-outs are shut off. The above conventional load timer has a characteristic that injection timing is retarded as the pump chamber is depressurized in the low load, as shown in
FIG. 2B
, and the injection timing is advanced as the pump chamber is pressurized in the high load.
Further, there is known a load timer that has a different characteristic. When the governor sleeve advances (in a low load), the communication between the inside and outside way-outs is shut off so that the pump chamber can be pressurized. When the governor sleeve backs (in a high load), both the way-outs communicate with each other so that the chamber can be depressurized. This structure provides an inverse advancing and retarding characteristic as shown by a solid line A and a dotted line J in FIG.
2
A. This characteristic improves an ignition characteristic by advancing injection timing in the low load and upgrades an exhaust characteristic by retarding the injection timing in the middle and high load. This inverse advancing and retarding characteristic is disclosed in JP-U-H4-1644.
Recently a social background has involved a stringent emission limit of a diesel engine, so a highly accurate fuel injection pump is desired. However, a fuel injection pump that has the inverse advancing and retarding characteristic (inverse characteristic load timer) exhibits a hysteresis between a retarding characteristic while the load increases (dotted line J shown in
FIG. 2A
) and an advancing characteristic while the load decreases (solid line B shown in
FIG. 2A
) . This hysteresis adversely affects on a highly accurate advancing and retarding control (injection timing control).
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a distribution type fuel injection pump in which an accuracy of fuel injection timing is enhanced by decreasing a hysteresis between a retarding characteristic while a load increases and an advancing characteristic while the load decreases.
To achieve the above and other objects, a distribution type fuel injection pump is provided with a governor as follows: The governor includes a governor shaft and a governor sleeve. An inner surface of the governor sleeve is slidably fitted to an outer circumference of the governor shaft. An inside way-out is provided in the governor shaft and includes a first shaft port, a second shaft port and an annular groove. The first shaft port is axially formed in a center of the governor shaft, and one end of the first shaft port communicates with a suction side of the pump, while the other end of the first shaft port is sealed. The annular groove formed in the outer circumference of the governor shaft faces the inner surface of the governor sleeve. The second shaft port extends in a radial direction of the governor shaft across the first shaft port and an inlet of the second shaft port opens to a bottom of the annular groove. An outside way-out is provided in the governor sleeve. One end of the outside way-out opens in the inner surface of the governor sleeve and faces the outer circumference of the governor shaft. And the other end of the outside way-out communicates with the pump chamber. When the governor sleeve advances, the communication between the inside and outside way-outs is shut off and the communication between the suction side of the pump and the pump chamber is shut off. The fuel pressure in the pump chamber is thereby increased. When the governor sleeve backs, both the way-outs communicate with each other and both of the suction side of the pump and the pump chamber are communicated with each other. The fuel pressure in the pump chamber is thereby decreased. And one of a chamfering portion formed by cutting off flatly a corner and a rounding portion formed by rounding a corner is provided in the inlet of the second shaft port that opens to the bottom of the annular groove.
The above chamfering/rounding portion in the inlet of the second shaft port of the inside way-out decreases energy loss caused by fuel flowing into the inside way-out and improves a flow characteristic of the fuel. This improvement restrains a hysteresis between pump chamber pressure decrease while the load increases and pump chamber pressure increase while the load decreases. This thereby results in lowering a hysteresis between a retarding characteristic while the load increases and an advancing characteristic while the load decreases, and securing a highly accurate fuel infection timing control.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
FIG. 1A
is a sectional view of a governor of a fuel injection pump according to an embodiment of the present invention;
FIG. 1B
is a sectional view of a governor shaft of the governor according to the embodiment;
FIG. 2A
is a graph showing inverse advancing and retarding characteristics of a load timer according to the embodiment and a prior art;
FIG. 2B
is a graph showing an advancing and retarding characteristic of a load timer according to another prior art;
FIG. 3A
is a diagrammatic view showing an inlet structure of an inside way-out according to the prior art;
FIGS. 3B and 3C
are diagrammatic views showing inlet structures of an inside way-out according to the embodiment;
FIG. 4
is a sectional view showing a fuel injection pump according to the embodiment; and
FIG. 5
is a sectional view showing a timer apparatus of a fuel injection pump according to the embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
At first, referring to
FIG. 4
, a distribution type fuel injection pump
1
is explained. The injection pump
1
that feeds under pressure fuel to each engine cylinder of a diesel engine (not shown) is equipped with a drive shaft
2
rotatably-driven by the diesel engine. Around the middle of the drive shaft
2
, a vane type feed pump
3
is provided and rotatably-driven along with the rotation of the drive shaft
2
.
A drive gear
5
is provided in an anchor end of the drive shaft
2
and drives a governor
4
. The governor
4
is explained later. A roller ring
7
is disposed between the drive gear
5
and a cam plate
6
. The roller ring
7
is equipped with a plurality of cam rollers
8
opposed to cam wheel faces
6
a
of the cam plate
6
. The number of the cam wheel faces
6
a
is the same number of the engine cylinders of the diesel engine. The cam plate
6
is pushed upon the cam roller
8
by a spring
9
.
The cam plate
6
is equipped with a plunger
10
for fuel pressurization and is rotated together with the drive shaft
2
through a coupling
11
. The coupling
11
is formed by inserting a rotation transmission shaft
6
b
provided in the cam plate
6
into a coupling plate
5
a
provided in the drive shaft
2
. The cam plate
6
is rotated together with the drive shaft
2
. That is, the rotation power of the drive shaft
2
is transmitted to the cam plate
6
via the coupling plate
5
a
and the rotation transmission shaft
6
a
, so the cam plate
6
is rotated with mating with the cam roller
8
.
The cam plate
6
is rotated and reciprocates in the horizontal direction in
FIG. 4
by the number of the engine cylinders, so the plunger
10
is rotated and reciprocates also in the horizontal direction. That is, the plunger
10
advances (lifts up) during the process in which the cam wheel face
6
a
climbs up the cam roller
8
of the roller ring
7
. And it backs (lifts down) during the process in which the cam wheel face
6
a
climbs down the cam roller
8
.
A pump housing
12
is provided with a cylinder
13
where the plunger
10
is inserted. A high pressure chamber
14
is formed between the head of the plunger
10
and a head plug
13
a
that forms the bottom of the cylinder
13
. The plunger
10
is provided with suction grooves
15
a
whose piece number is the same as the engine cylinders. The suction grooves
15
a
are provided on the outer circumference of the plunger
10
on a side of the head thereof. The suction grooves
15
a
communicate with a pump chamber
16
via a suction port
15
formed in the pump housing
12
when the high pressure chamber
14
is depressurized according to backing of the plunger
10
. And fuel in the pump chamber
16
is introduced into the high pressure chamber
14
through the suction groove
15
a
. A distribution port
18
is formed within the plunger
10
on a side of the head thereof and used for pressurized fuel to be introduced into discharge ports
17
formed in the pump housing
12
. The discharge ports
17
in the same number of the engine cylinders open to an inside of the cylinder
13
at equal intervals.
A delivery valve
20
is disposed in each exit of the discharge port
17
. The delivery valve
20
is used for preventing reversed flow of the fuel fed under pressure to a fuel press-filling pipe (not shown) from the discharge port
17
. When pressure of the fuel press-fed into the discharge port
17
reaches a specified value, the delivery valve
20
opens and introduces it into the fuel press-filling pipe.
The pump housing
12
is also equipped with an inlet (not shown) communicating with a fuel tank (not shown) . The inlet is connected with a suction side of the feed pump
3
via an introduction port
23
which corresponds to a low fuel pressure side. The introduction port
23
also communicates with an inner pressure chamber
25
of a timer apparatus
24
to be described later.
The pump chamber
16
is formed within the pump housing
12
and supplied with the fuel from the feed pump
3
. The pump chamber
16
stores the fuel that is sucked into the above high pressure chamber
14
. And it fills up the fuel into sliding mechanically-contact portions of the plunger
10
, the cylinder
13
and so on.
The feed pump
3
is rotatably-driven by the drive shaft
2
and sucks the fuel from the fuel tank through the inlet into an introduction port
23
. The sucked fuel is then fed under pressure into a delivery port (not shown) and fed to the pump chamber
16
.
In the suction process in which the plunger
10
backs and the high pressure chamber
14
is depressurized, one of the suction grooves
15
a
communicates with the pump chamber
16
via the suction port
15
. And the fuel in the pump chamber
16
is sucked into the high pressure chamber
14
. In the pressurizing process, the plunger
10
advances and the high pressure chamber
14
is pressurized. In this process, the fuel pressurized in the high pressure chamber
14
is fed into a fuel injection nozzle (not shown) through the discharge port
17
, the delivery valve
20
and the fuel press-filling pipe (not shown). When the pressure of the fed fuel reaches a nozzle opening pressure, the fuel injection nozzle injects the fuel into the engine cylinder.
A spill electromagnetic valve
31
is disposed in the middle of the suction port
15
. It regulates a flow amount of the fuel fed from the high pressure chamber
14
to the discharge port
17
by opening the suction port
15
and spilling a part of the fuel into the pump chamber
16
. The valve
31
is a normally open valve. When current is not supplied (current-off), the valve
31
opens the suction port
15
so that the fuel pressurized in the high pressure chamber
14
can be spilt into the pump chamber
16
via the suction port
15
. On the other hand, when the current is supplied to the valve
31
(current-on), the valve
31
closes the suction port
15
so that the fuel spilt into the pump chamber
16
can be shut off.
The valve
31
thus controls opening and closing of the suction port
15
by the current on/off control to regulate the spilling fuel from the high pressure chamber
14
to the pump chamber
16
. When the valve
31
opens in the pressurizing process of the plunger
10
, the high pressure chamber
14
is depressurized to terminate the fuel injection. Namely, even if the plunger
10
advances, the high pressure chamber
14
is not pressurized as for as the valve
31
opens. The fuel injection is thereby not performed. The timing of opening the valve
31
is controlled while the plunger
10
advances, so timing of the fuel injection is controlled and an amount of the fuel injection to the cylinder is controlled.
A spill port
32
is formed in the plunger
10
. One end of the spill port
32
is connected with the distribution port
18
and the fuel pressurized in the high pressure chamber
14
is spilt into the pump chamber
16
through the spill port
32
. The other end of the spill port
32
opens within the pump chamber
16
and a ring shaped spill ring
33
is joined around the plunger
10
to open/close the spill port
32
. In addition, the spill ring
33
is slidably fitted to the outer circumference of the plunger
10
and is set at a position corresponding to a rotation point of a control lever
34
, as described later. When the spill port
32
is moved rightward in
FIG. 4
, an amount of the fuel injection increases. When it is moved leftward, the amount decreases. That is, when the spill port
32
is exposed from the spill ring
33
, the fuel injection terminates.
The position of the spill ring
33
is set to correspond to the rotation point of the control lever
34
of a lever assembly
35
. The lever assemble
35
includes a guide lever
36
whose rotating position is set relatively to the pump housing
12
, a tension lever
38
and the control lever
34
. The tension lever
38
is equipped rotatably about a supporting axis
37
of the guide lever
36
.
The control lever
34
contacts the tension lever
38
via a start spring
39
. The start spring
39
is bent except for engine start timing, so the control lever
34
is rotated about the supporting axis
37
together with the tension lever
38
. The lower end of the control lever
34
is mated with the spill ring
33
. When the control lever
34
is rotated counterclockwise in
FIG. 4
, the spill ring
33
is moved rightward and the amount of the fuel injection increases. When the control lever
34
is rotated clockwise in
FIG. 4
, the spill ring
33
is moved leftward and the amount of the fuel injection decreases.
An adjusting lever
40
(accelerator lever) is provided in the pump housing
12
via an axis
41
. It is freely rotated to give operation force to the tension lever
38
. An eccentric pin
42
is provided in one end of the axis
41
that protrudes within the pump chamber
16
. A control spring
43
is located between the eccentric pin
42
and the tension lever
38
to draw the tension lever
38
counterclockwise in FIG.
4
. The tension of the control spring
43
increases as the adjusting lever
40
is turned to the fuel increasing side, and decreases as the adjusting lever
40
is turned to the fuel decreasing side.
The control lever
34
is operated by a governor
4
in use of centrifugal force. The governor
4
includes a governor shaft
45
, a governor sleeve
46
and a fly weight
47
. The governor shaft
45
is fixed to the pump housing
12
to protrude within the pump chamber
16
. The governor sleeve
46
is slidably fitted to the outer circumference of the governor shaft
45
. One end of the governor sleeve
46
contacts the control lever
34
and the other end contacts the fly weight
47
via a washer
48
. The governor sleeve
46
advances axially (rightward in
FIG. 4
) as the fly weight
47
opens, while it backs axially (leftward in
FIG. 4
) as the fly weight
47
closes. The fly weight
47
is rotatably-driven by a driven gear
49
driven by the drive gear
5
rotatable together with the drive shaft
2
. The fly weight
47
opens and closes due to centrifugal force of its rotation.
As explained above, rotating positions of the control lever
34
and the tension lever
38
are determined by balancing of biasing forces between the control spring
43
and the governor sleeve
46
. A position of the spill ring
33
is then determined and the fuel injection amount is regulated.
Namely, under the state in which the tension of the control spring
43
is maintained in a certain value, when rotating velocity of the drive shaft
2
is increased, the fly weight
47
opens by the strengthened centrifugal force and the governor sleeve
46
advances. The control lever
34
is turned clockwise in
FIG. 4
against the control spring
43
and the spill spring
33
moves leftward in FIG.
4
. The fuel injection amount is thereby decreased. By contrast, when rotating velocity of the drive shaft
2
is decreased, the fly weight
47
closes by the weakened centrifugal force and the control spring
43
turns the control lever
34
counterclockwise in FIG.
4
. Accordingly, the spill spring
33
moves rightward in FIG.
4
and the fuel infection amount is thereby increased.
On the other hand, under the state in which the rotating velocity of the drive shaft
2
is maintained at a certain value, when the adjusting lever
40
turns to the fuel increasing side, the tension of the control spring
43
is increased. So, the control lever
34
turns counterclockwise in
FIG. 4
, the spill ring
33
moves rightward and the fuel injection amount is thereby increased. Here, the governor sleeve
46
backs along with the turn of the control lever
34
and the fly weight
47
closes in correspondence with backing of the governor sleeve
46
. In contrast, when the adjusting lever
40
turns to the fuel decreasing side, the tension of the control spring
43
is decreased. The biasing force of the governor sleeve
46
thereby becomes relatively stronger than that of the control lever
34
. The control lever
34
turns clockwise, the spill ring
33
moves leftward and the fuel injection amount is thereby decreased.
The timer apparatus
24
is provided in the bottom of the pump housing
12
and is used for regulating to advance or delay the fuel injection timing according to the pressure within the pump chamber
16
. The timer apparatus
24
changes an angular position of the roller ring
7
relative to the drive shaft
2
in the turning direction thereof. And the timer apparatus
24
thereby changes the timing when the cam wheel face
6
a
climbs up and down the cam roller
8
, namely the timing of advancing and backing of the plunger
2
.
As shown in
FIG. 5
, the timer apparatus
24
includes a timer housing
50
and a timer piston
51
that is joined to move axially within the timer housing
50
. The timer piston
51
is connected with the roller ring
7
via a slide pin
52
. One end of the timer piston
51
forms the inner pressure chamber
25
to which the fuel discharge pressure of the feed pump
3
is applied. The other end forms a pressurizing chamber
54
to which the fuel pressure of the pump chamber
16
is applied via an orifice
53
that prevents pulse beat of the fuel.
In the inner pressure chamber
25
of the timer apparatus
24
, the fuel pressurized by the feed pump
3
is introduced and a timer spring
55
is provided. The timer spring
55
biases the timer piston
51
toward the pressurizing chamber
54
. The position of the timer piston
51
is determined by balancing among the fuel pressure introduced into the inner pressure chamber
25
, the biasing force of the timer spring
55
and the pressure of the pressurizing chamber
54
. The position of the roller ring
7
is determined by determining the position of the timer piston
51
and the timing of advancing and backing of the plunger
10
is thereby determined.
In particular, in the timer apparatus
24
, when the pressure of the pump chamber
16
is high, the timer piston
51
moves in the direction to the inner pressure chamber
25
against biasing force of the timer spring
55
to turn the roller ring
7
so that the fuel injection timing can advance. In contrast, when the pressure of the pump chamber
16
is low, the timer piston
51
moves in the direction to the pressurizing chamber
25
due to the biasing force of the timer spring
55
to turn in reverse the roller ring
7
so that the fuel injection timing can retard.
In the fuel injection pump
1
, an inverse characteristic load timer is provided using the above timer apparatus
24
. This characteristic exhibits that the timing retards while the engine load is high and the timing advances while the engine load is low. To attain the inverse characteristic load timer, an inside way-out
56
and an outside way-out
57
are provided in the governor shaft
45
and governor sleeve
46
of the governor
45
.
Referring to
FIGS. 1A and 1B
, the inside and outside way-outs
56
,
57
are explained. The inside way-out
56
formed in the governor shaft
45
includes a first shaft port
58
, a second shaft port
59
and an annular groove
60
. The first shaft port
58
is formed in the center of the governor shaft
45
. The second shaft port
59
extends in a radial direction of the governor shaft
45
across the first shaft port
58
. The port inlet of the second shaft port
59
opens in the bottom of the annular groove
60
. The end of the first shaft port
58
is sealed by a plug
61
. The other anchor end is connected with the introduction port
23
through a low pressure port
62
formed in the pump housing
12
. The introduction port
23
is located at the suction side of the feed pump
3
that corresponds to a low pressure fuel side.
The outside way-out
57
is formed in the governor sleeve
46
to face the governor shaft
45
. The outside way-out
57
includes a sleeve port
63
that penetrates through the governor sleeve
46
, and an annular groove
64
that is formed in an inside circumference of the governor sleeve
46
. The sleeve port
63
opens in the bottom of the annular groove
64
. The outside way-out
57
is arranged to communicate with the inside way-out
56
when the governor sleeve
46
backs and not to communicate with the inside way-out
56
when the governor sleeve
46
advances.
An operation of the inverse characteristic load timer is explained under the state in which an engine rotation velocity is maintained at a certain value. When the adjusting lever
40
turns to the fuel increasing side with increasing engine load, the tension of the control spring
43
increases and the control lever
34
turns counterclockwise in FIG.
4
. Then the governor sleeve
46
backs and makes the fly weight
47
close with the turning of the control lever
34
. As the inside and outside way-outs
56
,
57
communicate with each other as shown in
FIG. 1A
, the fuel of the pump chamber
16
is introduced to the introduction port
23
(low pressure fuel side) that is at the suction side of the feed pump
3
via the inside and outside way-outs
56
,
57
. As a result, the pump chamber
16
is depressurized and the timer apparatus
24
retards the fuel injection timing.
In contrast, when the adjusting lever
40
turns to the fuel decreasing side with decreasing engine load, the tension of the control spring
43
decreases. The force of the fly weight
47
for advancing the governor sleeve
46
thereby relatively increases and the control lever
34
turns clockwise in FIG.
4
. Then, the governor sleeve
46
advances and the communication between the inside and outside way-outs
56
,
57
is shut off. Therefore, the fuel of the pump chamber
16
flowing to the introduction port
23
via the inside and outside way-outs
56
,
57
is shot off. As a result, the pump chamber
16
is pressurized and the timer apparatus
24
advances the fuel injection timing.
The above operation provides an advancing and retarding characteristic shown in
FIG. 2A
, in which the timing is advanced at the fuel injection amount decreasing side (low load side) and retarded at the fuel injection amount increasing side (high load side).
In the fuel injection pump
1
having the inverse characteristic load timer according to the present embodiment, switching between advancing and retarding timings is performed in a high rotation range. The switching is therefore executed in the state in which the discharge fuel pressure of the feed pump
3
driven by the drive shaft
2
is high, i.e., the fuel pressure of the pump chamber
16
is high.
It means that when the advancing timing is changed to the retarding timing, the fuel pressure of the pump chamber
16
is high. The fuel therefore passes through the inside and outside way-outs in higher flow velocity in comparison with the state in which the fuel pressure of the pump chamber
16
is low.
The switchings from the advancing timing to the retarding timing and from the retarding timing to the advancing timing are executed when flow velocity of the fuel passing through both of the inside and outside way-outs communicating with each other is high. As shown in
FIG. 2A
, there exists a hysteresis between a characteristic diagram for switching from the advancing timing to the retarding timing according to increase of the load and a characteristic diagram for switching from the retarding timing to the advancing timing according to decrease of the load. The hysteresis is larger as the fuel velocity of the fuel passing through the inside and outside way-outs more increases.
In the present embodiment, a chamfering/rounding portion
65
is formed in the port inlet of the second shaft port
59
that opens to the annular groove
60
as shown in FIG.
1
B. The chamfering/rounding portion
65
is formed by cutting off in flat or rounding the corner thereof.
A loss coefficient is 0.5 in the state where no chamfering/rounding portion is formed in the port inlet of the second shaft port
59
as shown in FIG.
3
A. In contrast, the loss coefficient is decreased by 50% to 0.25 with cutting off in flat the corner shown in FIG.
3
B and decreased remarkably to 0.06 (at smaller round) to 0.005 (at larger round) with rounding the corners.
As explained above, forming the chamfering/rounding portion
65
in the port inlet of the inside way-out
56
enables the loss coefficient to be decreased. The energy loss generated from the fuel flowing in the inside way-out
56
is smaller in comparison to that in the prior art and the flow characteristic of the fuel flowing into the inside way-out
56
is enhanced.
Enhancement of the flow characteristic results in lowering the hysteresis between the depressurization of the pump chamber
16
while the load increases and the pressurization of the pump chamber
16
while the load decreases.
In particular, referring to
FIG. 2A
, a dotted line J shows a retarding characteristic with increasing the load without any chamfering/rounding in the port inlet of the inside way-out
56
in a prior art. A solid line B shows an advancing characteristic with decreasing the load. With chamfering/rounding in the port inlet, the retarding characteristic is shown in a dot/slash line A. Thereby, a hysteresis between the line A and the solid line B showing the advancing characteristic with decreasing the load is smaller compared with the hysteresis between the lines J and B. The smaller hysteresis achieves the fuel injection pump
1
to be controlled by highly accurate fuel injection timing.
The above embodiment is explained as being applied to a fuel injection pump
1
that is equipped with a high-compensating device
66
as shown in FIG.
4
. Here, the high-compensating device
66
is capable of automatically decreasing a full load fuel injection amount with decreasing air pressure. However, the invention can be applied to a fuel injection pump without the high-compensation device
66
.
Claims
- 1. A distribution type fuel injection pump includinga pump chamber, a feed pump that feeds fuel to the pump chamber, a timer apparatus that advances and retards fuel injection timing according to increase and decrease of fuel pressure in the pump chamber, and a governor having a fly weight, a governor shaft, a governor sleeve whose inner surface is slidably fitted to an outer circumference of the governor shaft, and a fluid passage formed in the governor shaft and the governor sleeve, through which communication between a suction side of the pump and the pump chamber is allowed or interrupted according to back and forth axial movement of the governor sleeve relative to the governor shaft based on closing and opening of the fly weight, the fluid passage comprising: an inside way-out including a first shaft port axially extending in a center of the governor shaft, one end of the first shaft port communicating with the suction side of the pump and the other end of the first shaft port being sealed, an annular groove formed on the outer circumference of the governor shaft to face the inner surface of the governor sleeve, and a second shaft port extending in a radial direction of the governor shaft from the first shaft port to a bottom of the annular groove, a corner of the second shaft port opening to the bottom of the annular groove being provided with one of a chamfering portion formed by cutting off flatly the corner and a rounding portion formed by rounding the corner; and an outside way-out whose one end opens to the inner surface of the governor sleeve to face the outer circumference of the governor shaft and whose the other end opens to an outer surface of the governor sleeve to communicate with the pump chamber, wherein, according to the back and forth axial movement of the governor sleeve, the fuel pressure in the pump chamber increases when the communication between the inside and outside way-outs is shut off and decreases when the inside and outside way-outs communicate with each other.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2001-384578 |
Dec 2001 |
JP |
|
2002-289913 |
Oct 2002 |
JP |
|
US Referenced Citations (6)
Foreign Referenced Citations (1)
Number |
Date |
Country |
4-1644 |
Jan 1992 |
JP |