The embodiments of the invention disclosed herein relate to high-brightness sources of x-rays. Such high brightness sources may be useful for a variety of applications in which x-rays are employed, including manufacturing inspection, metrology, crystallography, spectroscopy, structure and composition analysis and medical imaging and diagnostic systems.
X-ray sources have been used for over a century. One common x-ray source design is the reflection x-ray source 80, an example of which illustrated in
Inside the tube 20, an emitter 11 connected through the lead 21 to the high voltage source 10 serves as a cathode and generates a beam of electrons 111. A target 100 supported by a target substrate 110 is electrically connected to the opposite high voltage lead 22 and target support 32, and therefore serves as an anode. The electrons 111 accelerate towards the target 100 and collide with it at high energy, with the energy of the electrons determined by the magnitude of the accelerating voltage. The collision of the electrons 111 into the target 100 induces several effects, including the generation of x-rays 888, some of which exit the vacuum tube 20 through a window 40 or aperture.
In some prior art embodiments, the target 100 and substrate 110 may be integrated or comprise a solid block of the same material, such as copper (Cu). Electron optics (electrostatic or electromagnetic lenses) may also be provided to guide and shape the path of the electrons, forming a more concentrated, focused beam at the target. Likewise, electron sources comprising multiple emitters may be provided to provide a larger, distributed source of electrons.
When the electrons collide with a target 100, they can interact in several ways. These are illustrated in
An equation commonly used to estimate the penetration depth for electrons into a material is Potts' Law [P. J. Potts, Electron Probe Microanalysis, Ch. 10 of A Handbook of Silicate Rock Analysis, Springer Netherlands, 1987, p. 336)], which states that the penetration depth x in microns is related to the 10% of the value of the electron energy E0 in keV raised to the 3/2 power, divided by the density of the material:
For less dense materials, such as a diamond substrate, the penetration depth is much larger than for a material with greater density, such as most elements used for x-ray generation.
There are several energy transfer mechanisms that can occur. Throughout the interaction volume 200, electron energy may simply be converted into heat. Some absorbed energy may excite the generation of secondary electrons, typically detected from a region 221 located near the surface, while some electrons may also be backscattered, which, due to their higher energy, can be detected from a somewhat larger region 231.
Throughout the interaction volume 200, including in the regions 221 and 231 near the surface and extending approximately 3 times deeper into the target 100, x-rays 888 are generated and radiated outward in all directions. A typical x-ray spectrum for radiation from the collision of 100 keV electrons with a tungsten target is illustrated in
Although x-rays may be radiated isotropically, as was illustrated in
As illustrated in
In principle, it may appear that a take-off angle of θ=0° would have the largest possible brightness. In practice, radiation at 0° occurs parallel to the surface of a solid metal target for conventional sources, and since the x-rays must propagate along a long length of the target material before emerging, most of the produced x-rays will be attenuated (reabsorbed) by the target material, reducing brightness. Thus a source with take-off angle of around 6° to 15° (depending on the source configuration, target material, and electron energy) is conventionally used.
Another way to increase the brightness of the x-ray source is to use a target material with a higher atomic number Z, as efficiency of x-ray production for bremsstrahlung radiation scales with increasingly higher Z. Furthermore, the x-ray radiating material should ideally have good thermal properties, such as a high melting point and high thermal conductivity, in order to allow higher electron power loading on the source to increase x-ray production. Table I lists several materials that are commonly used for x-ray targets, several additional potential target materials (notably useful for specific characteristic lines of interest), and some materials that may be used as substrates for target materials. Melting points, and thermal and electrical conductivities are presented for values near 300° K (27° C.). Most values are taken from the CRC Handbook of Chemistry and Physics, 90th ed. [CRC Press, Boca Raton, Fla., 2009]. Other values are taken from various references.
10−19
10−17
10−20
Other ways to increase the brightness of the x-ray source are: increasing the electron current density, either by increasing the overall current or by focusing the electron beam to a smaller spot using, for example, electron optics; or by increasing the electron energy by increasing the accelerating voltage.
However, these improvements have a limit, in that all can increase the amount of heat generated in the interaction volume. If too much heat is generated within the target, damage can occur. One prior art technology developed to improve thermal management and mitigate this damage is the rotating anode system, illustrated in
A top view of the target anode 500 is shown in more detail in
Another approach to mitigating heat is to use a target with a thin layer of target x-ray generating material deposited onto a substrate with high heat conduction. Because the interaction volume is thin, for electrons with energies up to 100 keV the target material itself need not be thicker than a few microns, and can be deposited onto a substrate, such as diamond, sapphire or graphite that conducts the heat away quickly. [Diamond mounted anodes for x-ray sources have been described by, for example, K. Upadhya et al. U.S. Pat. No. 4,972,449; B. Spitsyn et. al. U.S. Pat. No. 5,148,462; and M. Fryda et al., U.S. Pat. No. 6,850,598].
The substrate may also comprise channels for a coolant, that remove heat from the substrate [see, for example, Paul E. Larson, U.S. Pat. No. 5,602,899]. Water-cooled anodes are used for a variety of x-ray sources, including rotating anode x-ray sources.
The substrate may in turn be mounted to a heat sink comprising copper or some other material chosen for its thermally conducting properties. The heat sink may also comprise channels for a coolant [see, for example, Edward J. Morton, U.S. Pat. No. 8,094,784]. In some cases, thermoelectric coolers or cryogenic systems have been used to provide further cooling to an x-ray target mounted onto a heat sink.
Although these techniques to mitigate heat in x-ray sources have been developed, there are still limits on the ultimate x-ray brightness that may be achieved, particularly when the source is to be coupled to an x-ray optical system that collects x-rays only in a limited angular range. There is therefore a need for an x-ray source that may be used to achieve higher x-ray brightness through the use of a higher electron current density into a predefined angular range, and is still compact enough to fit in a laboratory or table-top environment.
This disclosure presents x-ray sources that have the potential of being up to several orders of magnitude brighter than existing commercial x-ray technologies. The higher brightness is achieved in part through the use of novel configurations for x-ray targets used in generating x-rays from electron beam bombardment with specific design rules for the electron beam footprint and electron beam energy. The x-ray target configurations may comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with (such as embedded in or buried in) a substrate with high thermal conductivity, such that the heat is more efficiently drawn out of the x-ray generating material. This in turn allows bombardment of the x-ray generating material with higher electron power density, which leads to greater x-ray brightness.
A significant advantage to some embodiments is that the orientation of the microstructures allows the use of a take off angle at or near to zero degrees allowing the accumulation of x-rays from several microstructures for greater x-ray brightness.
Some embodiments of the invention comprise an additional cooling system to transport the heat away from the anode or anodes. Some embodiments of the invention additionally comprise rotating the anode or anodes comprising targets with microstructured patterns in order to further dissipate heat and increase the accumulated x-ray brightness.
Note: Elements shown in the drawings are meant to illustrate the functioning of embodiments of the invention, and have not necessarily been drawn in proportion or to scale.
1. A Basic Embodiment of the Invention.
Inside the chamber 20, an emitter 11 connected through the lead 21 to the negative terminal of a high voltage source 10 serves as a cathode and generates a beam of electrons 111. Any number of prior art techniques for electron beam generation may be used for the embodiments of the invention disclosed herein. Additional known techniques used for electron beam generation include heating for thermionic emission, Schottky emission (a combination of heating and field emission), or emitters comprising nanostructures such as carbon nanotubes). [For more on electron emission options for electron beam generation, see Shigehiko Yamamoto, “Fundamental physics of vacuum electron sources”, Reports on Progress in Physics vol. 69, pp. 181-232 (2006)].
As before, a target 1100 comprising a target substrate 1000 and regions 700 of x-ray generating material is electrically connected to the opposite high voltage lead 22 and target support 32, thus serving as an anode. The electrons 111 accelerate towards the target 1100 and collide with it at high energy. The collision of the electrons 111 into the target 1100 induces several effects, including the generation of x-rays, some of which exit the vacuum tube 20 and are transmitted through at least one window 40 and/or an aperture 840 in a screen 84.
In some embodiments of the invention, there may also be an electron beam control mechanism 70 such as an electrostatic lens system or other system of electron optics that is controlled and coordinated with the electron dose and voltage provided by the emitter 11 by a controller 10-1 through a lead 27. The electron beam 111 may therefore be scanned, focused, de-focused, or otherwise directed onto the target 1100.
As illustrated in
Targets such as those to be used in x-ray sources according to the invention disclosed herein have been described in detail in the co-pending US Patent Application entitled STRUCTURED TARGETS FOR X-RAY GENERATION (U.S. patent application Ser. No. 14/465,816, filed Aug. 21, 2014), which is hereby incorporated by reference in its entirety, along with the provisional Applications to which this co-pending Application claims benefit. Any of the target designs and configurations disclosed in the above referenced co-pending Application may be considered for use as a component in any or all of the x-ray sources disclosed herein.
A target 1100 according to the invention may be inserted as the target in a reflecting x-ray source geometry (e.g.
It should be noted that the word “microstructure” in this Application will only be used for structures comprising materials selected for their x-ray generating properties. It should also be noted that, although the word “microstructure” is used, x-ray generating structures with dimensions smaller than the micrometer scale, or even as small as nano-scale dimensions (i.e. greater than 10 nm) may also be described by the word “microstructures” as used herein.
The microstructures may be placed in any number of relative positions throughout the substrate 1000. In some embodiments, as illustrated in
As discussed in Eqn. 1 above, the depth of penetration can be estimated by Potts' Law. Using this formula, Table II illustrates some of the estimated penetration depths for some common x-ray target materials.
For the illustration in
The majority of characteristic Cu K x-rays are generated within depth DM. The electron interactions below that depth are less efficient at generating characteristic Cu K-line x-rays but will contribute to heat generation. It is therefore preferable in some embodiments to set a maximum thickness for the microstructures in the target in order to optimize local thermal gradients. Some embodiments of the invention limit the depth of the microstructured x-ray generating material in the target to between one third and two thirds of the electron penetration depth of the x-ray generating material at the incident electron energy, while others may similarly limit based on the electron penetration depth with respect to the substrate material. For similar reasons, selecting the depth DM to be less than the electron penetration depth is also generally preferred for efficient generation of bremsstrahlung radiation.
Note: Other choices for the dimensions of the x-ray generating material may also be used. In targets as used in some embodiments of the invention, the depth of the x-ray generating material may be selected to be 50% of the electron penetration depth of either the x-ray generating material or the substrate material. In other embodiments, the depth DM for the microstructures may be selected related to the “continuous slowing down approximation” (CSDA) range for electrons in the material. Other depths may be specified depending on the x-ray spectrum desired and the properties of the selected x-ray generating material.
Note: In other targets as may be used in some embodiments of the invention, a particular ratio between the depth and the lateral dimensions (such as width WM and length LM) of the x-ray generating material may also be specified. For example, if the depth is selected to be a particular dimension DM, then the lateral dimensions WM and/or LM may be selected to be no more than 5×DM, giving a maximum ratio of 5. In other targets as may be used in some embodiments of the invention, the lateral dimensions WM and/or LM may be selected to be no more than 2×DM. It should also be noted that the depth DM and lateral dimensions WM and LM (for width and length of the x-ray generating microstructure) may be defined relative to the axis of incident electrons, with respect to the x-ray emission path, and/or with respect to the orientation of the surface normal of the x-ray generating material. For electrons incident at an angle, care must be taken to make sure the appropriate projections for electron penetration depth at an angle are used.
It should be noted that, although the illustration of
It should also be noted that materials are relatively transparent to their own characteristic x-rays, so that
Up to this point, targets that are arranged in planar configurations have been presented. These are generally easier to implement, since equipment and process recipes for deposition, etching and other planar processing steps are well known from processing devices for microelectromechanical systems (MEMS) applications using planar diamond, and from processing silicon wafers for the semiconductor industry.
However, in some embodiments, a target with a surface with additional properties in three dimensions (3-D) may be desired. As discussed previously, when the electron beam is larger than the electron penetration depth, the apparent x-ray source size and area is at minimum (and brightness maximized) when viewed at a zero degree (0°) take-off angle.
The distance through which an x-ray beam will be reduced in intensity by 1/e is called the x-ray attenuation length, designated by μL, and therefore, a configuration in which the generated x-rays pass through as little additional material as possible, with the distance selected to be related to the x-ray attenuation length, may be desired.
An illustration of a portion of a target as may be used in some embodiments of the invention is presented in
The surface normal in the region of the microstructures 711-717 is designated by n, and the orthogonal length and width dimensions are defined to be in the plane perpendicular to the normal of said predetermined surface, while the depth dimension into the target is defined as parallel to the surface normal. The thickness DM of the microstructures 711-717 in the depth direction is selected to be between one third and two thirds of the electron penetration depth of the x-ray generating material at the incident electron energy for optimal thermal performance. The width WM of the microstructures 711-717 is selected to obtain a desired source size in the corresponding direction. As illustrated, WM≈DM. As discussed previously, WM could also be substantially smaller or larger, depending on the shape and size of the source spot desired.
As illustrated, the length of each of the microstructures 711-717 is LM≈WM/10, and the length of the separation between each pair of microstructures is a distance LGap≈2 LM, making the total length of the region 710 comprising x-ray generating material LTot=7×LM+6×LGap≈19×LM≈1.9×DM. In other embodiments, larger or smaller dimensions may also be used, depending on the amount of x-rays absorbed by the substrate and the relative thermal gradients that may be achieved between the specific materials of the x-ray generating microstructures 711-717 and the substrate 1000.
Likewise, the distance between the edge of the shelf and the edge of the x-ray generating material p as illustrated is p≈LM, but may be selected to be any value, from flush with the edge 1003 (p=0) to as much as 1 mm, depending on the x-ray reabsorption properties of the substrate material, the relative thermal properties, and the amount of heat expected to be generated when bombarded with electrons.
For a configuration such as shown in
The microstructures may be embedded in the substrate (as shown), but in some embodiments may they may also be partially embedded, or in other embodiments placed on top of the substrate.
The thermal benefits of a structured target such as that illustrated in
In the cited Provisional Patent Application, calculations therein for two targets are presented using the finite element modeling product Solidworks Simulation Professional.
The first target modeled has a uniform coating of copper 300 microns thick as the x-ray material, as is common in commercial x-ray targets. Simulation of bombardment of the copper layer with electrons over an ellipse 10 microns wide and 66 microns long predicts an increase in the temperature of the copper to over 700° C.
The second target, according to an embodiment of the invention, has 22 discrete structures of copper as the x-ray generating material, arranged in a one-dimensional array similar to that illustrated in
The length of each x-ray generating structure along the axis of the array LM is 1 micron, and elements are placed with a separation LGap of 2 microns. The width of the elements in the direction perpendicular to the array axis WM is 10 microns, and depth perpendicular from the surface into the target DM is also 10 microns.
In the simulation, both targets are modeled as being bombarded with an electron beam that raises the temperature to the operating temperature of ˜700° C. The uniform copper target reaches this temperature with an electron exposure of 16 Watts. However, in the case of the second, structured target, the copper reaches the operating temperature of ˜700° C. with an exposure of 65 Watts—a level 4 times higher. Normalizing for the reduced copper volume still gives more than twice the power deposited into the copper regions. Moreover, electron energy deposition rates between the materials is much more substantial in the higher density Cu than in diamond, and is therefore predicted to generate at least twice the number of x-rays. This demonstrates the utility of embedding microstructures of x-ray generating material into a thermally conducting substrate, in spite of a reduction in the total amount of x-ray generating material.
For a structure comprising the microstructures embedded in the substrate with a side/cross-section view as shown in
With a small value for DM relative to WM and LM, the ratio is essentially 1. For larger thicknesses, the ratio becomes larger, and for a cube (DM=WM=LM) in which 5 equal sides are in thermal contact, the ratio is 5. If an overcoat or cap layer of a material with similar properties as the substrate in terms of mass density and thermal conductivity is used, the ratio may be increased to 6.
The heat transfer is illustrated with representative arrows in
In other embodiments, this overcoat 725 may comprise a material selected for its thermal conductivity. In some embodiments, this overcoat 725 may be a layer of diamond, deposited by chemical vapor deposition (CVD). This allows heat to be conducted away from all sides of the microstructure. It may also provide a protective layer, preventing x-ray generating material from subliming away from the target during extended or prolonged use. Such protective overcoats typically have thicknesses on the order of 0.2 to 5 microns. Such a protective overcoat may also be deposited using an additional dopant to provide electrical conductivity as well. In some embodiments, two distinct layers, one to provide electrical conductivity, the other to provide thermal conductivity and/or encapsulation, may be used. In some embodiments, overcoats may comprise beryllium, diamond, polycrystalline diamond, CVD diamond, diamond-like carbon, graphite, silicon, boron nitride, silicon carbide and sapphire.
In other embodiments the substrate may additionally comprise a cooling channel 1200, as also illustrated in
Other configurations that may be used in embodiments of the invention, such as a checkerboard array of microstructures, a non-planar “staircase” substrate and various non-uniform shapes of x-ray generating elements, have been described in the above cited parent Applications of the present Application, U.S. patent application Ser. Nos. 14/490,672 and 14/999,147. Additional target configurations presented in U.S. patent application Ser. No. 14/465,816 are microstructures comprising multiple x-ray generating materials, microstructures comprising alloys of x-ray generating materials, microstructures deposited with an anti-diffusion layer or an adhesion layer, microstructures with a thermally conducting overcoat, microstructures with a thermally conducting and electrically conducting overcoat, microstructured buried within a substrate and the like.
Other target configurations that may be used in embodiments of the invention, as has been described in the above cited U.S. patent application Ser. No. 14/465,816, are arrays of microstructures that may comprise any number of conventional x-ray target materials patterned as features of micron scale dimensions on or embedded in a thermally conducting substrate, such as diamond or sapphire. In some embodiments, the microstructures may alternatively comprise unconventional x-ray target materials, such as tin (Sn), sulfur (S), titanium (Ti), antimony (Sb), etc. that have thus far been limited in their use due to poor thermal properties.
Other target configurations that may be used in embodiments of the invention, as has been described in the above cited U.S. patent application Ser. No. 14/465,816, are arrays of microstructures that take any number of geometric shapes, such as cubes, rectangular blocks, regular prisms, right rectangular prisms, trapezoidal prisms, spheres, ovoids, barrel shaped objects, cylinders, triangular prisms, pyramids, tetrahedra, or other particularly designed shapes, including those with surface textures or structures that enhance surface area, to best generate x-rays of high brightness and that also efficiently disperse heat.
Other target configurations that may be used in embodiments of the invention, as has been described in the above cited U.S. patent application Ser. No. 14/465,816, are arrays of microstructures comprising various materials as the x-ray generating materials, including aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, yttrium, zirconium, molybdenum, niobium, ruthenium, rhenium, rhodium, palladium, silver, tin, iridium, tantalum, tungsten, indium, cesium, barium, germanium, gold, platinum, lead and combinations and alloys thereof
The embodiments described so far include a variety of x-ray target configurations that comprise a plurality of microstructures comprising x-ray generating material that can be used as targets in x-ray sources to generate x-rays with increased brightness.
2. Generic Considerations for a Linear Accumulation X-Ray Source.
It should be noted that, as drawn in
Assuming the ith sub-source 80i produces x-rays 8i8 along the axis to the right in
Using the definitions:
For a source design in which all sub-sources produce approximately the same intensity of x-rays
Ii≈I0 [Eqn. 5]
the total intensity becomes
Furthermore, if the sub-sources are arranged in a regular array with essentially the same value for transmission between elements:
Ta,a-1=T2,1, a>1, [Eqn. 7]
and if the sizes and shapes of the x-ray generating elements are similar enough such that the transmission through any given element will also be the same:
Ta=T1, a>0, [Eqn. 8]
then the total intensity becomes
Note that Ti and Ti,i-1 represent a reduction in transmission due to losses, and therefore always have values between 0 and 1. If N is large, the sum on the right can be approximated by the geometric series
making the approximate intensity
Note that this can also be used to estimate how many generating elements can be arranged in a row before losses and attenuation would make the addition of another x-ray generating element unproductive. For example, if the width of a generating element is μL, the 1/e attenuation length for x-rays, transmission through the element gives T1=1/e=0.3679. Assuming a transmission between elements of Ti,i-1=T2,1=0.98, this makes
This means that a large number of elements with a width equal to the 1/e length could only improve the intensity by a factor of 1.564. For 2 elements (a total x-ray generation length of 2×μL), Eqn. 9 indicates that Itot≈I0 T1,0(1.361), 87% of the estimated maximum from Eqn. 12, while for 3 elements (a total x-ray generation length of 3×μL), Itot≈I0 T1,0 (1.490), 95% of the estimated maximum, and for 4 elements (a total x-ray generation length of 4×μL), Itot≈I0 T1,0 (1.537), which is 98% of the estimated maximum degree of linear accumulation from Eqn. 12. This suggests a general rule that linear accumulation near the maximum may be achieved from a total length of x-ray generating material of only 4×μL.
The 1/e attenuation length μL for a material is related to the transmission factors above for a length L by
Ti=e−α
Therefore, a larger μL means a larger Ti.
As an example of using the values in
Ti=e−L/μ
For 60 keV x-rays in a beryllium substrate, μL≈50,000 μm, which makes the transmission of a 100 μm wide beryllium gap between embedded tungsten x-ray generating elements to be:
Ti,i-1==e−L/μ
Therefore, for a periodic array of tungsten elements 20 μm wide embedded in a Beryllium substrate and spaced 100 μm apart, the best-case estimate for the on-axis intensity is:
which would represent an increase in x-ray intensity by an order of magnitude when compared to a single tungsten x-ray generating element.
3. X-Ray Source Controls.
There are several variables through which a generic linear accumulation source may be “tuned” or adjusted to improve the x-ray output. Embodiments of the invention may allow the control and adjustment of some, all, or none of these variables.
3.1. E-beam Variations.
In some embodiments, the beam or beams of electrons 111 or 1111, 1112, 1113, etc. bombarding the x-ray generating elements 801, 802, 803 . . . etc. may be shaped and directed using one or more electron control mechanisms 70 such as electron optics, electrostatic lenses or magnetic focusing elements. Typically, electrostatic lenses are placed within the vacuum environment of the x-ray source, while the magnetic focusing elements can be placed outside the vacuum.
In many embodiments, the area of electron exposure can be adjusted so that the electron beam or beams primarily bombard the x-ray generating elements and do not bombard the regions in between the elements. A source having multiple electron beams that are used to bombard distinct x-ray generating elements independently may also be configured to allow a different accelerating voltage to be used with the different electron beam sources. Such a source 80-B is illustrated in
This may offer advantages for x-ray radiation management, in that electrons of different energies may generate different x-ray radiation spectra, depending on the materials used in the individual x-ray generating elements. The heat load generated may also be managed through the use of different electron energies.
3.2. Material Variations.
Although it is simpler to treat the x-ray generating elements as identical units, and to have the intervening regions also be considered identical, there may be advantages in some embodiments to having variations in these parameters.
In some embodiments, the different x-ray generating elements may comprise different x-ray generating materials, so that the on-axis view presents a diverse spectrum of characteristic x-rays from the different materials. Materials that are relatively transparent to x-rays may be used in the position closest to the output window 840 (e.g. the element 801 furthest to the right in
In some embodiments, the distance between the x-ray generating elements may be varied. For example, a larger space between elements may be used for elements that are expected to generate more heat under electron bombardment, while smaller gaps may be used if less heat is expected.
3.3. Rotating Anode Embodiments.
The target described above might also be used in an embodiment comprising a rotating anode, distributing the heat as the anode rotates. A system 580-C comprising these features is illustrated in
The target in the embodiment as illustrated is a rotating cylinder 5100 mounted on a shaft 530. In one end of the cylinder 5100, a set 5710 of rings of x-ray generating material 5711-5717 have been embedded into a layer of substrate material 5000, with a gap between each ring. The “length” (parallel to the shaft axis in this illustration, and perpendicular to the local normal n in the region under bombardment) of each ring may be comparable to the length discussed for the set of microstructures illustrated in
This substrate material 5000 may in turn be attached or mounted on a core support 5050 attached to the rotating shaft 530. The core support may comprise any number of materials, but a core of an inexpensive material with high thermal conductivity, such as copper, may be preferred. A solid core/substrate combination that comprises a single material may also be used in some embodiments. The substrate 5000 may be deposited using a CVD process, or pre-fabricated and attached to the core support 5050.
When bombarded with an electron beam 511-R, the portions of the set of rings 5710 of x-ray generating materials that are exposed will generate heat and x-rays 5588. X-rays radiated at a zero-angle (perpendicular to a local surface normal for the target in the region under electron bombardment) or near zero-angle may experience linear accumulation, and appear exceptionally bright. Embedding the set of rings 5710 of x-ray generating material into the substrate 5000 facilitates the transfer of heat away from the x-ray generating structures, allowing higher electron flux to be used to generate more x-rays without causing damage to the structures, as has been demonstrated for the non-rotating case.
It should be noted that the illustrations of
In practical embodiments, the substrate thickness may range from a few microns to 200 microns, while the core may typically have a diameter of 2 cm to 20 cm. A cylinder in which the core and substrate are the same material may also be used in some embodiments. Various overcoats for electrical conduction and/or protection, as discussed for planar targets and illustrated in
Although only parallel rings with zero take-off angle have been illustrated in
3.4. Materials Selection for the Substrate.
For the substrate of a target with microstructures of x-ray generating material, as shown above it is preferred that the transmission of x-rays T for the substrate be near 1. For a substrate material of length L and linear absorption coefficient αs,
T=e−α
where μL is the length at which the x-ray intensity has dropped by a factor of 1/e.
Generally,
μL∝X3/Z4 [Eqn. 18]
where X is the x-ray energy in keV and Z is the atomic number. Therefore, to make μL large (i.e. make the material more transparent), higher x-ray energy is called for, and a lower atomic number is highly preferred. For this reason, both beryllium (Z=4) and carbon (Z=6) in its various forms (e.g. diamond, graphite, etc.) may be desirable as substrates, both because they are highly transparent to x-rays, but also because they have high thermal conductivity (see Table I).
4. Design Guidelines for Structured Targets.
The embodiments of the invention disclosed in this Application can be especially suitable for making a high brightness x-ray source for use at one or more predetermined low take-off angles. In some embodiments, the arrangement of discrete structures of x-ray generating material can be arranged to increase the x-ray radiation into a predetermined cone of angles around a predetermined take-off angle. Such a predetermined cone can be matched to the acceptance angles of a defined x-ray optical system to increase or maximize the useful x-ray intensity that may be delivered to a sample in applications such as XRD, XRF, SAXS, TXRF, especially, with microbeams, such as microXRD, microXRF, microSAXS, microXRD, etc. Examples of such an x-ray optical system is one having a monocapillary x-ray optical element with a defined inner reflective surface, such as a paraboloidal collimator or a dual paraboloidal or ellipsoidal focusing surface.
In other embodiments, the arrangement of discrete structures of x-ray generating material can be arranged to increase the x-ray radiation into a predetermined fan of angles around a predetermined take-off angle. Such a distribution of x-rays may be matched to other x-ray optical elements designed to produce x-ray beams with a line profile or collimated to form a parallel beam instead of a focused spot.
The design of the layout of the x-ray generating elements in the target can be optimized to increase the x-rays radiated in specific directions using two factors. One is the management of the thermal load, so that heat is efficiently transported away from the x-ray generating elements. With effective thermal transfer, the x-ray generating elements can be bombarded with an electron beam of even greater power density to produce more x-rays. The second is the distribution of the x-ray generating materials such that the self-absorption of x-rays propagating through the remaining volume of x-ray generating material is reduced and linear accumulation of x-rays is optimized.
4.1. An Example: Microstructured Target for a Conical X-Ray Beam
For the target 1100-T as illustrated, there is a local surface in the area of the x-ray generating elements that has a surface normal n. This defines an axis for the dimension of depth D into the target for determining the depth of the x-ray generating materials. This axis is also used to measure the electron penetration depth or the electron continuous slowing down approximation depth (CSDA depth).
For the target as illustrated, there is furthermore a predetermined take-off direction (designated by ray 88-T) for the downstream formation of an x-ray beam. This take-off direction is oriented at an angle θT relative to the local surface, and the projection of this ray onto the local surface (designated by ray 88-S) in the plane that contains both the take-off angle and the surface normal is a determinant of the dimension of length L for the target. The final dimension of width W is defined as the third spatial dimension orthogonal to both the depth and the length directions.
As illustrated, the set of discrete structures of x-ray generating material is in the form of a linear array of x-ray generating microstructures, each of length LM, width WM, and depth DM, the same as was that illustrated in
It should be noted that these dimensions of depth, length and width in a given target may or may not correspond to those that might be intuited merely from the layout of the discrete structures of x-ray generating material. As has already been illustrated, discrete structures of x-ray generating material may be laid out in 1-dimensional and 2-dimensional arrays, grids, checkerboards, staggered and buried structures, etc. and the alignment and relative orientation of these physical arrays and patterns with the predetermined take off angle and the surface normal may or may not be parallel. As defined in these embodiments, the coordinates of depth, length and width are defined only by the surface normal and the predetermined take-off angle.
As illustrated in
The actual design of the x-ray target may be more easily described using the concept of an “x-ray generating volume”, as discussed further below. This is the volume of the target from which the substantial majority of the x-rays of a desired energy will be radiated. In the embodiments of the invention, there are four primary factors that may affect the design rules for the structure of x-ray generating material within the x-ray generating volume that may be applied in embodiments of the invention to improve the x-ray brightness radiated into this predetermined cone. These four factors are:
The “x-ray generating volume” of a target comprising discrete structures of x-ray generating material is the volume of the target that, when bombarded with electrons, generates x-rays of a desired energy. The energy is typically specified as the characteristic x-ray radiation generated by specific transitions in the selected x-ray generating material, although for certain applications, spectral bandwidths of continuum x-rays from the x-ray generating material may also be designated.
Two “volumes” must be considered to define the “x-ray generating volume”: a “geometric volume” encompassing the x-ray generating material, and the “electron excitation volume” encompassing the region in which electrons deliver enough energy to generate x-rays.
4.1.1A. Geometric Volume
The “geometric volume” for the x-ray generating material is defined as the minimum contiguous volume that completely encompasses a given set of discrete structures of x-ray generating material and the gaps between them.
For the x-ray generating structures of
For other configurations, such as those shown in
4.1.1B. Electron Excitation Volume.
The “electron excitation volume” is the volume of the target in which electrons deliver enough energy to generate x-rays of a predetermined desired energy.
The electron beam bombarding the target may have various sizes and shapes, depending on the electron optics selected to direct and shape the electron beam. For example, the electron beam may be approximately circular, elliptical, or rectangular. Various accelerating voltages may be used as well, although generally the accelerating voltage will be selected to be at least twice that needed to produce x-rays of a given energy (e.g. to produce x-rays with an energy of ˜8 keV, the accelerating voltage is preferred to be at least 16 keV).
If the entire region of x-ray generating structures is bombarded with an equivalent footprint of electrons of high energy, the x-ray generating volume may be identical to the “geometric volume” as described above. However, in some cases, the depth of the microstructured x-ray generating material DM may be significantly deeper than the electron penetration depth into the substrate, which may be estimated using Potts' Law (as discussed above), or deeper than the continuous slowing down approximation (CSDA) range (CSDA values normalized for element density may be computed using the NIST website physics.nist.gov/PhysRefData/Star/Text/ESTAR.html). In such cases, the deeper regions of x-ray generating material may be relatively unproductive in generating x-rays, and the x-ray generating volume is preferably defined by the area overlap of the electron footprint upon the sample with the minimal geometric area containing the microstructures and the electron penetration depth of the electrons into the substrate. For 60 keV electrons bombarding copper (density ˜8.96 g/cm3) the electron penetration depth by Potts' Law is estimated to be ˜5.2 microns, while the CSDA depth is ˜10.6 microns. For a diamond substrate (density ˜3.5 g/cm3), the Potts' Law penetration depth is ˜15.3 microns, while the CSDA depth for the diamond substrate is ˜18.9 microns.
In some embodiments, the depth of the x-ray generating structures DM measured from the target surface may be limited to be less than the penetration depth of the electrons into the x-ray target substrate material. In most cases (due to the typically lower mass density of the x-ray substrate relative to the x-ray generating material), the entire depth of x-ray generating material will be generating x-rays. In some embodiments, the depth of the x-ray generating structures DM measured from the target surface may be some multiple (e.g. 1×-5×) of the penetration depth of the electrons into the x-ray target substrate material. In this case, the depth DP of the electron excitation volume 7770-E in which x-rays are generated will be less than DM, as illustrated in
In other embodiments, the depth of the x-ray generating structures DM measured from the target surface may be limited to be less than the penetration depth of the electrons into the x-ray generating material. This may include 1× the penetration depth, or in some cases, preferably a fraction of the penetration depth such as ½ or ⅓ of the penetration depth.
For some embodiments, the depth DP of the electron excitation volume will be defined as being equal to half the penetration depth of the target X-ray generating material, since this is the depth over which the electrons will generate more characteristic x-rays. (See the discussion of
4.1.1C. Synthesis of the X-Ray Generating Volume.
For any general embodiment, the x-ray generating volume will be defined as the volume overlap of the “geometric volume” for the x-ray generating material within the target and the “electron excitation volume” for electrons of a predetermined energy and known penetration depth and CSDA depth for materials of the target.
4.1.2. Design Rules for Volume Fraction.
The volume fraction of the x-ray generating volume is defined as the ratio of the volume of the x-ray generating material within the x-ray generating volume to the overall x-ray generating volume. A typical prior art x-ray target with a uniform target of x-ray generating material will have a volume fraction of 100%. Targets such those illustrated in
A general rule for the x-ray sources according to the invention disclosed here is that the volume fraction of the x-ray generating volume be between 10 and 70%, with the non-x-ray generating portion being filled with material of a high thermal conductivity. The regions of non-x-ray generating material serve to conduct the heat away from the x-ray generating structures, enabling bombardment with an electron beam of higher power, thereby producing more x-rays.
The ideal volume fraction for a target typically depends on the relative thermal properties of the x-ray generating material and the substrate material in the x-ray generating volume. If the target is fabricated by embedding discrete structures of x-ray generating material with moderate thermal properties into a substrate of high thermal conductivity, good thermal transfer is generally achieved. If the thermal transfer between the x-ray generating material and the substrate is poor (for example, in circumstances of when the x-ray generating material has poor thermal properties), a smaller volume fraction may be desired. In general, for the embedded target structures described herein, a volume fraction of 30%-50% is preferred.
It should be noted that in some embodiments, the discrete x-ray structures are not manufactured through etching or ordered patterning processes but instead formed using less ordered discrete structures, such as powders of target materials.
Once the particles of x-ray generating material have been placed in the groove, the gaps between particles 7006 can be filled with a coating of material deposited by chemical vapor deposition (CVD) processes. This provides the thermal dissipation for the heat produced in the x-ray generating target structures. When bombarded by electrons 111, the x-ray generating material will produce x-rays 8088. As long as the space between particles is small, and the depth of the groove is less than half the penetration depth of the electrons into the substrate, the x-ray generating volume 7070 will be the overlap of the groove (defining the geometric volume) and the projection of the footprint of the electron beam at the surface.
In some embodiments, the powders may be pressed into an intact ductile substrate material. In some embodiments, additional overcoats as described for more regular structures and illustrated in
For a target formed using a powder of x-ray generating material, the substrate is preferably a material with high thermal conductivity, such as diamond or beryllium, and the filling material is a matching material (e.g. diamond) deposited by CVD.
4.2.3. Design Rules for Thermal Properties.
The x-ray source target substrate material is preferred to have superior thermal properties, particularly its thermal conductivity, in respect to the x-ray generating material. Moreover, it is preferred that substrate materials of the target limit the self-absorption of x-rays produced in the target along the low take-off angle. In many embodiments, this leads to the selection of a substrate material having low atomic number, such as diamond, beryllium, sapphire, or some other carbon-based material.
For some materials, such as diamond, the thermal conductivity is severely reduced in very thin samples of the material. There may therefore be a minimum thickness required for the space between structures of x-ray generating material.
In general, for diamond having embedded structures of x-ray generating material, suitable results have been achieved when the thickness of the diamond between structures of x-ray generating material is 0.5 micrometer or more.
Likewise, if the discrete structures of x-ray generating material are too thick, heat cannot transfer efficiently from the center to the outside, and there is therefore a practical limit on how thick a given structure of x-ray generating material should be.
In general, when being embedded into diamond, suitable results have been achieved when the thickness of the x-ray generating structures is 10 micrometers or less.
4.1.4. Design Rules Based on Propagation Length.
As described previously, there will be a total length for x-ray generation after which additional x-rays generated cease to contribute additional x-rays to the output, due to reabsorption. There is therefore an upper bound on the length ΣLM of the x-ray generating material within the x-ray generating volume.
For a given x-ray energy, which in general may correspond to a characteristic line of the selected x-ray generating material, μL is be defined to be the 1/e attenuation length for x-rays of that energy in the same material. Values for this number have been illustrated in
As a general rule, the propagation path through x-ray generating material for any given x-ray path should be less than 4×μL. For target structures such as the powder structure in
For more defined discrete target structures, such as that illustrated in
In
Although
Such a target design is illustrated in
If the take-off angle is in the plane of the microstructures, the path for x-rays at or near the take-off angle may be longer than the reabsorption upper bound. However, for x-rays emerging from the sides of the microstructures, low attenuation through the surrounding substrate and other x-ray microstructures may be achieved. The spacing between the microstructures may be adjusted so that x-rays emerging at the maximum cone angle θ2 in the plane orthogonal to the plane of the take-off angle (i.e. in the plane of
Note that these cone angles need not be in any particular plane, and therefore a design rule limiting the length of overlap must apply to certain rays within the cone, preferably those out of the plane of orientation for the microstructures. In some embodiments, a design rule limiting the length of the sum of segments will apply to any cone angle within a predetermined subset of cone angles. In some embodiments, a design rule limiting the length of the sum of segments will apply to a majority of cone angles.
A general design rule can be stated that, for any ray within a predetermined subset of cone of angles greater than or equal to θ1 and less than or equal to θ2 relative to the take-off angle ray, the sum of the segments of overlap with the x-ray generating material within the x-ray generating volume must be smaller than 4×μL. Note that for prior embodiments, this design rule may also be used rather than using the ray along the take-off angle to define the amount of x-ray generating material within a giving x-ray generating volume.
Design rules may also be placed on having a minimum length for sums of segments of overlap, to ensure that at least some accumulation of x-rays may occur. For some embodiments, the sum of the segments of overlap with the x-ray generating material within the x-ray generating volume must be greater than 0.3×μL. For other embodiments, the sum of the segments of overlap with the x-ray generating material within the x-ray generating volume must be greater than 1.0×μL. For other embodiments, the sum of the segments of overlap with the x-ray generating material within the x-ray generating volume must be less than 1×μL and in other embodiments this may be 2.0×μL.
4.1.5. Design Rules for Depth.
As discussed above, the depth DM of the structures of x-ray generating material may be determined by any number of factors, such as the ease of reliably manufacturing embedded structures of certain dimensions, the thermal load and thermal expansion of the embedded structures, a minimum thickness to minimize source degradation due to delamination or evaporation, etc.
However, creating structures with a depth DM significantly deeper than the electron penetration depth into the substrate will generally result in deep regions that are unproductive in generating x-rays. For 60 keV electrons bombarding copper (density ˜8.96 g/cm3) the electron penetration depth by Potts' Law is estimated to be ˜5.2 microns, while the CSDA depth is ˜10.6 microns. For a diamond substrate (density ˜3.5 g/cm3), the Potts' Law penetration depth is ˜15.3 microns, while the CSDA depth for the diamond substrate is ˜18.9 microns.
As a general design rule, the depth of the x-ray structures DM measured from the target surface should be limited to be less than 5 times the penetration depth of the electrons into the x-ray target substrate material. This ensures that the depth of the structures of x-ray generating material, which typically have poorer thermal properties than the substrate, is minimized, as typically only the portion closer to the surface is efficient at generating characteristic x-rays. Although some x-rays are generated at lower depths, there is also associated heat generation. In some embodiments, the depth of the x-ray generating material is preferred to be a fraction (e.g. ½) of the electron penetration depth in the x-ray generating material, providing the overlap of electron excitation and x-ray generating material primarily in the zone in which most of the characteristic x-rays are generated (see previous discussion of
4.2. Relation of the X-Ray Generating Volume to Take-off Angle.
Conventional reflection-type x-ray target geometries are often arranged, such that the x-ray beam emitted is centered along a take-off angle of ˜6° measured from the x-ray target surface tangent. This angle is typically selected in an effort to both minimize apparent x-ray source size (smaller at lower take-off angles) and minimize self-attenuation by the x-ray target (larger at lower take-off angles).
The disclosed embodiments of the invention are preferably operated at take-off angles less than or equal to 3°, and for some embodiments at 0° take-off angle, substantially lower than for conventional x-ray sources. This is enabled by the structured nature of the x-ray source and the incorporation of an x-ray substrate, as discussed above, comprised of a material or structure that reduces or minimizes self-absorption of the x-ray energies of interest generated by the x-ray target.
Such a structured target is especially useful as a distributed, high-brightness source for use in systems that make use of an x-ray beam having the form of an annular cone.
This annular output can be selected to match the acceptance angle of an x-ray optical element, such as a capillary optic with a reflecting inner surface used for directing (e.g. focusing or collimating) the generated x-ray beam for downstream applications. The predetermined cone of x-rays generated by the x-ray source can be defined to correspond to the angles and dimensions of such downstream optical elements. Likewise, a central beamstop to block the x-rays propagating at the take-off angle θT (which typically will not be collected by the downstream optical elements such as monocapillaries) can also be used, with the propagation angles blocked by the beam stop being those that correspond to the inner diameter of the predetermined annular x-ray cone. In some embodiments, annular cones may be defined by the acceptance angles of downstream optics, i.e. by the numerical aperture of such optics, or other parameters that may occur in such systems. Matching the volume to, for example, the depth-of-focus range for a collecting optic or to the critical angle of the reflecting surface of a collecting optic may maximize the number of useful x-rays, while limiting the total power that must be expended to generate them.
The angular range for the annular cone of x-rays is generally specified by having the inner cone angle θ1 being greater than 2 mrad relative to the take-off angle, and having the outer cone angle θ2 be less than or equal to 50 mrad relative to the take-off angle.
4.3. Rotating Anodes.
The previous discussion on take-off angles and cones of annular x-rays may also be applied to rotating anodes.
On the outer surface of the cylinder, a layer of substrate material 5000 such as diamond or CVD diamond has been formed, and embedded in this substrate are a number of rings 5711, 5712, . . . , 5717 comprising x-ray generating material. As before, the “length” (parallel to the shaft axis in this illustration, and perpendicular to the local normal n in the region under bombardment) of each ring may be comparable to the length discussed for the set of microstructures illustrated in
When a portion of the x-ray generating structures are bombarded by electrons 511-R, an x-ray generating volume 5070 is formed, generating x-rays 5088. Although x-rays may be radiated in many directions, for this system, as with the systems illustrated in
However, in the embodiment as illustrated, the cylinder is beveled at an angle in the region of the x-ray generating volume, and the take-off angle is at a non-zero angle θT, similar to the configuration for the planar geometry of
Also illustrated in this embodiment, the cylinder 5105 may also be fabricated with a interface layer 5003, which may be provide a coupling between the beveled substrate 5005 and the core 5055.
Other rotating anode designs, such as patterns of lines, checkerboards, grids, etc. as have been illustrated U.S. Provisional Patent Application Ser. No. 62/141,847 (to which the Parent Application of the Present Application claims the benefit of priority) as well various designs and structures illustrated in other planar embodiments of the present Application and the previously mentioned co-pending Applications may be used in these configurations as well. These rotating anode embodiments may additionally be fabricated using conducting and/or protective overcoats, as was previously discussed for use with planar targets.
5. Limitations and Extensions.
With this application, several embodiments of the invention, including the best mode contemplated by the inventors, have been disclosed. It will be recognized that, while specific embodiments may be presented, elements discussed in detail only for some embodiments may also be applied to others. Also, details and various elements described as prior art may also be applied to various embodiments of the invention.
While specific materials, designs, configurations and fabrication steps have been set forth to describe this invention and the preferred embodiments, such descriptions are not intended to be limiting. Modifications and changes may be apparent to those skilled in the art, and it is intended that this invention be limited only by the scope of the appended claims.
The Present Patent Application is a continuation-in-part of U.S. patent application Ser. No. 14/999,147, filed Apr. 1, 2016 and entitled X-RAY SOURCES USING LINEAR ACCUMULATION, which claims the benefit of U.S. Provisional Patent Application No. 62/141,847, filed Apr. 1, 2015 and entitled ADDITIONAL X-RAY SOURCE DESIGNS USING MICROSTRUCTURED TARGETS, and U.S. Provisional Patent Application No. 62/155,449, filed Apr. 30, 2015, and entitled X-RAY TARGET FABRICATION, both of which are incorporated herein by reference in their entirety; and which in turn is also a continuation-in-part of U.S. patent application Ser. No. 14/490,672, filed Sep. 19, 2014 and entitled X-RAY SOURCES USING LINEAR ACCUMULATION, which claims the benefit of U.S. Provisional Patent Application Nos. 61/880,151, filed on Sep. 19, 2013, 61/894,073, filed on Oct. 22, 2013, 61/931,519, filed on Jan. 24, 2014, and 62/008,856, filed on Jun. 6, 2014, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1203495 | Coolidge | Oct 1916 | A |
1211092 | Coolidge | Jan 1917 | A |
1215116 | Coolidge | Feb 1917 | A |
1328495 | Coolidge | Jan 1920 | A |
1355126 | Coolidge | Oct 1920 | A |
1790073 | Pohl | Jan 1931 | A |
1917099 | Coolidge | Jul 1933 | A |
1946312 | Coolidge | Feb 1934 | A |
2926270 | Zunick | Feb 1960 | A |
3795832 | Holland | Mar 1974 | A |
4227112 | Waugh et al. | Oct 1980 | A |
4266138 | Nelson et al. | May 1981 | A |
4426718 | Hayashi | Jan 1984 | A |
4523327 | Eversole | Jun 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4807268 | Wittrey | Feb 1989 | A |
4940319 | Ueda et al. | Jul 1990 | A |
4951304 | Piestrup et al. | Aug 1990 | A |
4972449 | Upadhya et al. | Nov 1990 | A |
5001737 | Lewis et al. | Mar 1991 | A |
5008918 | Lee et al. | Apr 1991 | A |
5132997 | Kojima | Jul 1992 | A |
5148462 | Spitsyn et al. | Sep 1992 | A |
5173928 | Momose et al. | Dec 1992 | A |
5249216 | Ohsugi et al. | Sep 1993 | A |
5276724 | Kumasaka et al. | Jan 1994 | A |
5602899 | Larson | Feb 1997 | A |
5604782 | Cash, Jr. | Feb 1997 | A |
5629969 | Koshishiba | May 1997 | A |
5657365 | Yamamoto et al. | Aug 1997 | A |
5682415 | O'Hara | Oct 1997 | A |
5715291 | Momose | Feb 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5768339 | O'Hara | Jun 1998 | A |
5772903 | Hirsch | Jun 1998 | A |
5778039 | Hossain | Jul 1998 | A |
5812629 | Clauser | Sep 1998 | A |
5825848 | Virshup et al. | Oct 1998 | A |
5832052 | Hirose et al. | Nov 1998 | A |
5857008 | Reinhold | Jan 1999 | A |
5878110 | Yamamoto et al. | Mar 1999 | A |
5881126 | Momose | Mar 1999 | A |
5912940 | O'Hara | Jun 1999 | A |
5930325 | Momose | Jul 1999 | A |
6108397 | Cash, Jr. | Aug 2000 | A |
6108398 | Mazor et al. | Aug 2000 | A |
6125167 | Morgan | Sep 2000 | A |
6278764 | Barbee, Jr. et al. | Aug 2001 | B1 |
6359964 | Kogan | Mar 2002 | B1 |
6377660 | Ukita et al. | Apr 2002 | B1 |
6381303 | Vu et al. | Apr 2002 | B1 |
6389100 | Verman et al. | May 2002 | B1 |
6430254 | Wilkins | Aug 2002 | B2 |
6442231 | O'Hara | Aug 2002 | B1 |
6456688 | Taguchi et al. | Sep 2002 | B1 |
6463123 | Korenev | Oct 2002 | B1 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6504902 | Iwasaki et al. | Jan 2003 | B2 |
6507388 | Burghoorn | Jan 2003 | B2 |
6553096 | Zhou et al. | Apr 2003 | B1 |
6560313 | Harding et al. | May 2003 | B1 |
6560315 | Price et al. | May 2003 | B1 |
6707883 | Tiearney et al. | Mar 2004 | B1 |
6711234 | Loxley et al. | Mar 2004 | B1 |
6811612 | Gruen et al. | Nov 2004 | B2 |
6815363 | Yun et al. | Nov 2004 | B2 |
6829327 | Chen | Dec 2004 | B1 |
6847699 | Rigali et al. | Jan 2005 | B2 |
6850598 | Fryda et al. | Feb 2005 | B1 |
6870172 | Mankos et al. | Mar 2005 | B1 |
6885503 | Yun et al. | Apr 2005 | B2 |
6914723 | Yun et al. | Jul 2005 | B2 |
6917472 | Yun et al. | Jul 2005 | B1 |
6947522 | Wilson et al. | Sep 2005 | B2 |
6975703 | Wilson et al. | Dec 2005 | B2 |
7003077 | Jen et al. | Feb 2006 | B2 |
7006596 | Janik | Feb 2006 | B1 |
7015467 | Maldonado et al. | Mar 2006 | B2 |
7023955 | Chen et al. | Apr 2006 | B2 |
7057187 | Yun et al. | Jun 2006 | B1 |
7079625 | Lenz | Jul 2006 | B2 |
7095822 | Yun | Aug 2006 | B1 |
7110503 | Kumakhov | Sep 2006 | B1 |
7119953 | Yun et al. | Oct 2006 | B2 |
7130375 | Yun et al. | Oct 2006 | B1 |
7170969 | Yun et al. | Jan 2007 | B1 |
7180979 | Momose | Feb 2007 | B2 |
7180981 | Wang | Feb 2007 | B2 |
7183547 | Yun et al. | Feb 2007 | B2 |
7215736 | Wang et al. | May 2007 | B1 |
7215741 | Ukita et al. | May 2007 | B2 |
7218700 | Huber et al. | May 2007 | B2 |
7218703 | Yada et al. | May 2007 | B2 |
7221731 | Yada et al. | May 2007 | B2 |
7245696 | Yun et al. | Jul 2007 | B2 |
7268945 | Yun et al. | Sep 2007 | B2 |
7286640 | Yun et al. | Oct 2007 | B2 |
7297959 | Yun et al. | Nov 2007 | B2 |
7298826 | Inazuru | Nov 2007 | B2 |
7330533 | Sampayon | Feb 2008 | B2 |
7346148 | Ukita | Mar 2008 | B2 |
7346204 | Ito | Mar 2008 | B2 |
7359487 | Newcome | Apr 2008 | B1 |
7365909 | Yun et al. | Apr 2008 | B2 |
7365918 | Yun et al. | Apr 2008 | B1 |
7382864 | Hebert et al. | Jun 2008 | B2 |
7388942 | Wang et al. | Jun 2008 | B2 |
7394890 | Wang et al. | Jul 2008 | B1 |
7400704 | Yun et al. | Jul 2008 | B1 |
7406151 | Yun | Jul 2008 | B1 |
7412024 | Yun et al. | Aug 2008 | B1 |
7412030 | O'Hara | Aug 2008 | B1 |
7412131 | Lee et al. | Aug 2008 | B2 |
7414787 | Yun et al. | Aug 2008 | B2 |
7433444 | Baumann | Oct 2008 | B2 |
7443953 | Yun et al. | Oct 2008 | B1 |
7453981 | Baumann | Nov 2008 | B2 |
7463712 | Zhu et al. | Dec 2008 | B2 |
7486770 | Baumann | Feb 2009 | B2 |
7492871 | Popescu | Feb 2009 | B2 |
7499521 | Wang et al. | Mar 2009 | B2 |
7515684 | Gibson et al. | Apr 2009 | B2 |
7522698 | Popescu | Apr 2009 | B2 |
7522707 | Steinlage et al. | Apr 2009 | B2 |
7522708 | Heismann | Apr 2009 | B2 |
7529343 | Safai et al. | May 2009 | B2 |
7532704 | Hempel | May 2009 | B2 |
7551719 | Yokhin et al. | Jun 2009 | B2 |
7551722 | Ohshima et al. | Jun 2009 | B2 |
7561662 | Wang et al. | Jul 2009 | B2 |
7564941 | Baumann | Jul 2009 | B2 |
7583789 | Macdonald et al. | Sep 2009 | B1 |
7601399 | Barnola et al. | Oct 2009 | B2 |
7639786 | Baumann | Dec 2009 | B2 |
7646843 | Popescu et al. | Jan 2010 | B2 |
7672433 | Zhong et al. | Mar 2010 | B2 |
7680243 | Yokhin et al. | Mar 2010 | B2 |
7787588 | Yun et al. | Aug 2010 | B1 |
7796725 | Yun et al. | Sep 2010 | B1 |
7796726 | Gendreau et al. | Sep 2010 | B1 |
7800072 | Yun et al. | Sep 2010 | B2 |
7813475 | Wu et al. | Oct 2010 | B1 |
7817777 | Baumann et al. | Oct 2010 | B2 |
7864426 | Yun et al. | Jan 2011 | B2 |
7864922 | Kawabe | Jan 2011 | B2 |
7873146 | Okunuki et al. | Jan 2011 | B2 |
7876883 | O'Hara | Jan 2011 | B2 |
7889838 | David et al. | Feb 2011 | B2 |
7889844 | Okunuki et al. | Feb 2011 | B2 |
7914693 | Jeong et al. | Mar 2011 | B2 |
7920673 | Lanza et al. | Apr 2011 | B2 |
7920676 | Yun et al. | Apr 2011 | B2 |
7924973 | Kottler et al. | Apr 2011 | B2 |
7929667 | Zhuang et al. | Apr 2011 | B1 |
7945018 | Heismann | May 2011 | B2 |
7949092 | Brons | May 2011 | B2 |
7949095 | Ning | May 2011 | B2 |
7974379 | Case et al. | Jul 2011 | B1 |
7983381 | David et al. | Jul 2011 | B2 |
7991120 | Okunuki et al. | Aug 2011 | B2 |
8005185 | Popescu | Aug 2011 | B2 |
8009796 | Popescu | Aug 2011 | B2 |
8041004 | David | Oct 2011 | B2 |
8036341 | Lee | Nov 2011 | B2 |
8058621 | Kommareddy | Nov 2011 | B2 |
8068579 | Yun et al. | Nov 2011 | B1 |
8073099 | Niu et al. | Dec 2011 | B2 |
8094784 | Morton | Jan 2012 | B2 |
8139716 | Okunuki et al. | Mar 2012 | B2 |
8184771 | Murakoshi | May 2012 | B2 |
8208602 | Lee | Jun 2012 | B2 |
8208603 | Sato | Jun 2012 | B2 |
8243879 | Itoh et al. | Aug 2012 | B2 |
8243884 | Rödhammer et al. | Aug 2012 | B2 |
8280000 | Takahashi | Oct 2012 | B2 |
8306183 | Koehler | Nov 2012 | B2 |
8306184 | Chang et al. | Nov 2012 | B2 |
8351569 | Baker | Jan 2013 | B2 |
8351570 | Nakamura | Jan 2013 | B2 |
8353628 | Yun et al. | Jan 2013 | B1 |
8360640 | Reinhold | Jan 2013 | B2 |
8374309 | Donath | Feb 2013 | B2 |
8406378 | Wang et al. | Mar 2013 | B2 |
8416920 | Okumura et al. | Apr 2013 | B2 |
8422633 | Lantz et al. | Apr 2013 | B2 |
8451975 | Tada | May 2013 | B2 |
8422637 | Okunuki et al. | Jun 2013 | B2 |
8509386 | Lee et al. | Aug 2013 | B2 |
8520803 | Behling | Aug 2013 | B2 |
8526575 | Yun et al. | Sep 2013 | B1 |
8532257 | Mukaide et al. | Sep 2013 | B2 |
8553843 | Drory | Oct 2013 | B2 |
8559597 | Chen et al. | Oct 2013 | B2 |
8565371 | Bredno | Oct 2013 | B2 |
8576983 | Baeumer | Nov 2013 | B2 |
8591108 | Tada | Nov 2013 | B2 |
8602648 | Jacobsen et al. | Dec 2013 | B1 |
8632247 | Ishii | Jan 2014 | B2 |
8666024 | Okunuki et al. | Mar 2014 | B2 |
8666025 | Klausz | Mar 2014 | B2 |
8699667 | Steinlage et al. | Apr 2014 | B2 |
8735844 | Khaykovich et al. | May 2014 | B1 |
8737565 | Lyon et al. | May 2014 | B1 |
8744048 | Lee et al. | Jun 2014 | B2 |
8755487 | Kaneko | Jun 2014 | B2 |
8767915 | Stutman | Jul 2014 | B2 |
8767916 | Hashimoto | Jul 2014 | B2 |
8781069 | Murakoshi | Jul 2014 | B2 |
8824629 | Ishii | Sep 2014 | B2 |
8831174 | Kohara | Sep 2014 | B2 |
8831175 | Silver et al. | Sep 2014 | B2 |
8831179 | Adler et al. | Sep 2014 | B2 |
8855265 | Engel | Oct 2014 | B2 |
8861682 | Okunuki et al. | Oct 2014 | B2 |
8903042 | Ishii | Dec 2014 | B2 |
8995622 | Adler et al. | Mar 2015 | B2 |
9001967 | Baturin | Apr 2015 | B2 |
9008278 | Lee et al. | Apr 2015 | B2 |
9016943 | Jacobsen et al. | Apr 2015 | B2 |
9020101 | Omote et al. | Apr 2015 | B2 |
9129715 | Adler et al. | Sep 2015 | B2 |
9329141 | Stutman | May 2016 | B2 |
9357975 | Baturin | Jun 2016 | B2 |
9390881 | Yun et al. | Jul 2016 | B2 |
9439613 | Stutman | Sep 2016 | B2 |
9448190 | Yun et al. | Sep 2016 | B2 |
9449781 | Yun et al. | Sep 2016 | B2 |
9543109 | Yun et al. | Jan 2017 | B2 |
9570265 | Yun et al. | Feb 2017 | B1 |
9594036 | Yun et al. | Mar 2017 | B2 |
9632040 | Stutman | Apr 2017 | B2 |
9719947 | Yun et al. | Aug 2017 | B2 |
9823203 | Yun et al. | Nov 2017 | B2 |
9874531 | Yun et al. | Jan 2018 | B2 |
9939392 | Wen | Apr 2018 | B2 |
20010006413 | Burghoorn | Jul 2001 | A1 |
20020085676 | Snyder | Jul 2002 | A1 |
20030142790 | Zhou et al. | Jan 2003 | A1 |
20030223536 | Yun et al. | Dec 2003 | A1 |
20040120463 | Wilson et al. | Jun 2004 | A1 |
20040140432 | Maldonado et al. | Jul 2004 | A1 |
20050074094 | Jen et al. | Apr 2005 | A1 |
20050123097 | Wang | Jun 2005 | A1 |
20050163284 | Inazuru | Jul 2005 | A1 |
20050282300 | Yun et al. | Dec 2005 | A1 |
20060045234 | Pelc | Mar 2006 | A1 |
20060062350 | Yokhin | Mar 2006 | A1 |
20070030959 | Ritter | Feb 2007 | A1 |
20070071174 | Hebert et al. | Mar 2007 | A1 |
20070108387 | Yun et al. | May 2007 | A1 |
20070110217 | Ukita | May 2007 | A1 |
20070183563 | Baumann | Aug 2007 | A1 |
20070183579 | Baumann et al. | Aug 2007 | A1 |
20070189449 | Baumann | Aug 2007 | A1 |
20070248215 | Ohshima et al. | Oct 2007 | A1 |
20080084966 | Aoki et al. | Apr 2008 | A1 |
20080089484 | Reinhold | Apr 2008 | A1 |
20080094694 | Yun et al. | Apr 2008 | A1 |
20080159707 | Lee et al. | Jul 2008 | A1 |
20080165355 | Yasui et al. | Jul 2008 | A1 |
20080170662 | Reinhold | Jul 2008 | A1 |
20080170668 | Kruit et al. | Jul 2008 | A1 |
20080181363 | Fenter et al. | Jul 2008 | A1 |
20080240344 | Reinhold | Oct 2008 | A1 |
20080273662 | Yun | Nov 2008 | A1 |
20090052619 | Endoh | Feb 2009 | A1 |
20090092227 | David | Apr 2009 | A1 |
20090154640 | Baumann et al. | Jun 2009 | A1 |
20090316860 | Okunuki et al. | Dec 2009 | A1 |
20100012845 | Baeumer et al. | Jan 2010 | A1 |
20100027739 | Lantz et al. | Feb 2010 | A1 |
20100040202 | Lee | Feb 2010 | A1 |
20100046702 | Chen et al. | Feb 2010 | A1 |
20100061508 | Takahashi | Mar 2010 | A1 |
20100091947 | Niu | Apr 2010 | A1 |
20100141151 | Reinhold | Jun 2010 | A1 |
20100246765 | Murakoshi | Sep 2010 | A1 |
20100260315 | Sato et al. | Oct 2010 | A1 |
20100272239 | Lantz et al. | Oct 2010 | A1 |
20100284513 | Kawabe | Nov 2010 | A1 |
20110026680 | Sato | Feb 2011 | A1 |
20110038455 | Silver et al. | Feb 2011 | A1 |
20110058655 | Okumura et al. | Mar 2011 | A1 |
20110064191 | Toth et al. | Mar 2011 | A1 |
20110085644 | Verman | Apr 2011 | A1 |
20110135066 | Behling | Jun 2011 | A1 |
20110142204 | Zou et al. | Jun 2011 | A1 |
20110235781 | Aoki et al. | Sep 2011 | A1 |
20110243302 | Murakoshi | Oct 2011 | A1 |
20110268252 | Ozawa et al. | Nov 2011 | A1 |
20120041679 | Stampanoni | Feb 2012 | A1 |
20120057669 | Vogtmeier et al. | Mar 2012 | A1 |
20120163547 | Lee et al. | Jun 2012 | A1 |
20120163554 | Tada | Jun 2012 | A1 |
20120224670 | Kiyohara et al. | Sep 2012 | A1 |
20120228475 | Pang et al. | Sep 2012 | A1 |
20120269323 | Adler et al. | Oct 2012 | A1 |
20120269324 | Adler | Oct 2012 | A1 |
20120269325 | Adler et al. | Oct 2012 | A1 |
20120269326 | Adler et al. | Oct 2012 | A1 |
20120294420 | Nagai | Nov 2012 | A1 |
20130011040 | Kido et al. | Jan 2013 | A1 |
20130032727 | Kondoe | Feb 2013 | A1 |
20130039460 | Levy | Feb 2013 | A1 |
20130108012 | Sato | May 2013 | A1 |
20130108022 | Kugland et al. | May 2013 | A1 |
20130195246 | Tamura et al. | Aug 2013 | A1 |
20130223594 | Sprong et al. | Aug 2013 | A1 |
20130259207 | Omote et al. | Oct 2013 | A1 |
20130279651 | Yokoyama | Oct 2013 | A1 |
20130308112 | Clube et al. | Nov 2013 | A1 |
20130308754 | Yamazaki et al. | Nov 2013 | A1 |
20140023973 | Marconi et al. | Jan 2014 | A1 |
20140037052 | Adler | Feb 2014 | A1 |
20140064445 | Adler | Mar 2014 | A1 |
20140072104 | Jacobsen et al. | Mar 2014 | A1 |
20140079188 | Hesselink et al. | Mar 2014 | A1 |
20140105363 | Chen et al. | Apr 2014 | A1 |
20140146945 | Fredenberg et al. | May 2014 | A1 |
20140153692 | Larkin et al. | Jun 2014 | A1 |
20140177800 | Sato et al. | Jun 2014 | A1 |
20140185778 | Lee et al. | Jul 2014 | A1 |
20140205057 | Koehler et al. | Jul 2014 | A1 |
20140211919 | Ogura et al. | Jul 2014 | A1 |
20140226785 | Stutman et al. | Aug 2014 | A1 |
20140241493 | Yokoyama | Aug 2014 | A1 |
20140270060 | Date et al. | Sep 2014 | A1 |
20140369469 | Ogura et al. | Dec 2014 | A1 |
20150030126 | Radicke | Jan 2015 | A1 |
20150030127 | Aoki et al. | Jan 2015 | A1 |
20150043713 | Chen | Feb 2015 | A1 |
20150049860 | Das | Feb 2015 | A1 |
20150055743 | Vedantham et al. | Feb 2015 | A1 |
20150055745 | Holzner et al. | Feb 2015 | A1 |
20150092924 | Yun | Apr 2015 | A1 |
20150110252 | Yun et al. | Apr 2015 | A1 |
20150117599 | Yun et al. | Apr 2015 | A1 |
20150194287 | Yun et al. | Jul 2015 | A1 |
20150243397 | Yun et al. | Aug 2015 | A1 |
20150247811 | Yun et al. | Sep 2015 | A1 |
20150260663 | Yun et al. | Sep 2015 | A1 |
20150357069 | Yun et al. | Dec 2015 | A1 |
20160064175 | Yun et al. | Mar 2016 | A1 |
20160066870 | Yun et al. | Mar 2016 | A1 |
20160106387 | Kahn | Apr 2016 | A1 |
20160178540 | Yun et al. | Jun 2016 | A1 |
20160268094 | Yun et al. | Sep 2016 | A1 |
20160320320 | Yun et al. | Nov 2016 | A1 |
20170047191 | Yun et al. | Feb 2017 | A1 |
20170052128 | Yun et al. | Feb 2017 | A1 |
20170162288 | Yun et al. | Jun 2017 | A1 |
20170162359 | Tang et al. | Jun 2017 | A1 |
20170227476 | Zhang et al. | Aug 2017 | A1 |
20170234811 | Zhang et al. | Aug 2017 | A1 |
20170261442 | Yun et al. | Sep 2017 | A1 |
20170336334 | Yun et al. | Nov 2017 | A1 |
20180144901 | Yun et al. | May 2018 | A1 |
20180261352 | Matsuyama et al. | Sep 2018 | A1 |
20180306734 | Morimoto et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
102124537 | Jul 2011 | CN |
0432568 | Jun 1991 | EP |
0751533 | Jan 1997 | EP |
1028451 | Aug 2000 | EP |
2548447 | Jan 1985 | FR |
H06-188092 | Jul 1994 | JP |
H07-056000 | Mar 1995 | JP |
H08-184572 | Jul 1996 | JP |
2000-306533 | Nov 2000 | JP |
2007-218683 | Aug 2007 | JP |
2007-265981 | Oct 2007 | JP |
2007-311185 | Nov 2007 | JP |
2008-200359 | Apr 2008 | JP |
2008-197495 | Aug 2008 | JP |
2009-195349 | Mar 2009 | JP |
2009-212058 | Sep 2009 | JP |
2010-236986 | Oct 2010 | JP |
2011-029072 | Feb 2011 | JP |
2011-218147 | Nov 2011 | JP |
2012-187341 | Oct 2012 | JP |
2013-508683 | Mar 2013 | JP |
2013-157269 | Aug 2013 | JP |
2013-160637 | Aug 2013 | JP |
2013-239317 | Nov 2013 | JP |
2015-002074 | Jan 2015 | JP |
2015-047306 | Mar 2015 | JP |
2015-077289 | Apr 2015 | JP |
WO 1995006952 | Mar 1995 | WO |
WO 1998011592 | Mar 1998 | WO |
WO 2002039792 | May 2002 | WO |
WO 2003081631 | Oct 2003 | WO |
WO 2005109969 | Nov 2005 | WO |
WO 2006096052 | Sep 2006 | WO |
WO 20071125833 | Nov 2007 | WO |
WO 2009098027 | Aug 2009 | WO |
WO 20091104560 | Aug 2009 | WO |
WO 2011032572 | Mar 2011 | WO |
WO 2012032950 | Mar 2012 | WO |
WO 2013004574 | Jan 2013 | WO |
WO 2013111050 | Aug 2013 | WO |
WO 2013118593 | Aug 2013 | WO |
WO 2013160153 | Oct 2013 | WO |
WO 2013168468 | Nov 2013 | WO |
WO 2014054497 | Apr 2014 | WO |
WO 2015016019 | Feb 2015 | WO |
WO 2015034791 | Mar 2015 | WO |
WO 2015066333 | May 2015 | WO |
WO 2015084466 | Jun 2015 | WO |
WO 2015168473 | Nov 2015 | WO |
WO 2015176023 | Nov 2015 | WO |
WO 2015187219 | Dec 2015 | WO |
WO 2016187623 | Nov 2016 | WO |
WO 2017031740 | Mar 2017 | WO |
WO 2017204850 | Nov 2017 | WO |
WO 2017213996 | Dec 2017 | WO |
WO 2018175570 | Sep 2018 | WO |
Entry |
---|
Dong et al., “Improving Molecular Sensitivity in X-Ray Fluorescence Molecular Imaging (XFMI) of Iodine Distribution in Mouse-Sized Phantoms via Excitation Spectrum Optimization,” IEEE Access, vol. 6, pp. 56966-56976 (2018). |
Hennekam et al., “Trace metal analysis of sediment cores using a novel X-ray fluorescence core scanning method,” Quaternary Int'l, https://doi.org/10.1016/j.quaint.2018.10.018 (2018). |
Malzer et al., “A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research,” Rev. Sci. Inst. 89, 113111 (2018). |
Viermetz et al., “High resolution laboratory grating-based X-ray phase-contrast CT,” Scientific Reports 8:15884 (2018). |
“Diamond,” Section 10.4.2 of Zorman et al., “Material Aspects of Micro-Nanoelectromechanical Systems,” Chapter 10 of Springer Handbook of Nanotechnology, 2nd ed., Barat Bushan, ed. (Springer Science + Business Media, Inc., New York, 2007), pp. 312-314. |
“Element Six CVD Diamond Handbook” (Element Six, Luxembourg, 2015). |
“High performance benchtop EDXRF spectrometer with Windows® software,” published by: Rigaku Corp., Tokyo, Japan; 2017. |
“Monochromatic Doubly Curved Crystal Optics,” published by: X-Ray Optical Systems, Inc. (XOS), East Greenbush, NY; 2017. |
“Optics and Detectors,” Section 4 of XS-Ray Data Booklet, 3rd Ed., A.C. Thompson ed. (Lawrence Berkeley Nat'l Lab, Berkeley, CA, 2009). |
“Properties of Solids,” Ch. 12 of CRC Handbook of Chemistry and Physics, 90th ed., Devid R. Lide & W.M. “Mickey” Haynes, eds. (CRC Press, Boca Raton, FL, 2009), pp. 12-41-12-46; 12-203-12-212. |
“Science and Technology of Future Light Sources”, Arthur L. Robinson (LBNL) and Brad Plummer (SLAG), eds. Report Nos. ANL-08/39 / BNL-81895-2008 / LBNL-1090E-2009 / SLAC-R-917 (Lawrence Berkeley Nal'l Lab, Berkeley, CA, Dec. 2008). |
“Series 5000 Packaged X-ray Tubes,” Product Technical Data Sheet DS006 Rev. G, X-Ray Technologies Inc. (Oxford Insstruments), Scotts Valley, CA (no date). |
“Toward Control of Matter: Energy Science Needs for a New Class of X-Ray Light Sources” (Lawrence Berkeley Nal'l Lab, Berkeley, CA, Sep. 2008). |
“X-ray Optics for BES Light Source Facilities,” Report of the Basic Energy Sciences Workshop on X-ray Optics for BES Light Source Facilities, D. Mills & H. Padmore, Co-Chairs, (U.S. Dept. of Energy, Office of Science, Potomac, MD, Mar. 2013). |
Abullian et al., “Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence,” 28 Nov. 2012, The Journal of Chemical Physics, vol. 137, pp. 204907-1 to 204907-8. |
Adachi et al., “Development of the 17-inch Direct-Conversion Dynamic Flat-panel X-ray Detector (FPD),” Digital R/F (Shimadzu Corp., 2 pp. (no date, published—2004 with product release). |
Aharonovich et al., “Diamond Nanophotonics,” Adv. Op. Mat'ls vol. 2, Issue 10 (2014). |
Als-Nielsen et al., “Phase contrast imaging” Sect. 9.3 of Ch. 9 of “Elements of Modern X-ray Physics, Second Edition”, (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011), pp. 318-329. |
Als-Nielsen et al., “Photoelectric Absorption,” Ch. 7 of “Elements of Modern X-ray Physics, Second Edition,” (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011). |
Als-Nielsen et al., “Refraction and reflection from interfaces,” Ch. 3 of “Elements of Modern X-ray Physics, Second Edition,” (John Wiley & Sons Ltd., Chichester, West Sussex, UK, 2011), pp. 69-112. |
Als-Nielsen et al., “X-rays and their interaction with matter”, and “Sources”, Ch. 1 & 2 of “Elements of Modern X-ray Physics, Second Edition” (John Wiley & Sons Ltd, Chichester, West Sussex, UK, 2011). |
Altapova et al., “Phase contrast laminography based on Talbot interferometry,” Opt. Express, vol. 20, No. 6, (2012) pp. 6496-6508. |
Ando et al., “Smooth and high-rate reactive ion etching of diamond,” Diamond and Related Materials, vol. 11, (2002) pp. 824-827. |
Arfelli et al., “Mammography with Synchrotron Radiation: Phase-Detection Techniques,” Radiology vol. 215, (2000), pp. 286-293. |
Arndt et al., Focusing Mirrors for Use with Microfocus X-ray Tubes, 1998, Journal of Applied Crystallography, vol. 31, pp. 733-741. |
Balaic et al., “X-ray optics of tapered capillaries,” Appl. Opt. vol. 34 (Nov. 1995) pp. 7263-7272. |
Baltes et al., “Coherent and incoherent grating reconstruction,” J. Opt. Soc. Am. A vol. 3(8), (1986), pp. 1268-1275. |
Barbee Jr., “Multilayers for x-ray optics,” Opt. Eng. vol. 25 (Aug. 1986) pp. 898-915. |
Baron et al., “A compact optical design for Bragg reflections near backscattering,” J. Synchrotron Rad., vol. 8 (2001), pp. 1127-1130. |
Bech, “In-vivo dark-field and phase-contrast x-ray imaging,” Scientific Reports 3, (2013), Article No. 03209. |
Bech, “X-ray imaging with a grating interferometer,” University of Copenhagan PhD. Thesis, (May 1, 2009). |
Bergamin et al., “Measuring small lattice distortions in Si-crystals by phase-contrast x-ray topography,” J. Phys. D: Appl. Phys. vol. 33 (Dec. 31, 2000) pp. 2678-2682. |
Bernstorff, “Grazing Incidence Small Angle X-ray Scattering (GISAXS),” Presentation at Advanced School on Synchrotron and Free Electron Laser Sources and their Multidisciplinary Applications, Apr. 2008, Trieste, Italy. |
Bilderback et al., “Single Capillaries,” Ch. 29 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Birkholz, “Chapter 4: Grazing Incidence Configurations,” Thin Film Analysis by X-ray Scattering (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006). |
Bjeoumikhov et al., “A modular system for XRF and XRD applications consisting of a microfocus X-ray source and different capillary optics,” X-ray Spectrometry, vol. 33 (2004), pp. 312-316. |
Bjeoumikhov et al., “Capillary Optics for X-Rays,” Ch. 18 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds. (Springer, Berlin, Germany, 2008), pp. 287-306. |
Canberra Model S-5005 WinAxil X-Ray Analysis Software, published by: Canberra Eurisys Benelux N.V./S.A.,Zellik, Belgium; Jun. 2004. |
Cerrina, “The Schwarzschild Objective,” Ch. 27 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Chen et al., “Advance in detection of low sulfur content by wavelength dispersive XRF,” Proceedings of the Annual ISA Analysis Division Symposium (2002). |
Chen et al., “Doubly curved crystal (DCC) X-ray optics and applications,” Powder Diffraction, vol. 17(2) (2002), pp. 99-103. |
Chen et al., “Guiding and focusing neutron beams using capillary optics,” Nature vol. 357 (Jun. 4, 1992), pp. 391-393. |
Chervenak et al., “Experimental thick-target bremsstrahlung spectra from electrons in the range 10 to 30 keV”, Phys. Rev. A vol. 12 (1975), pp. 26-33. |
Coan et al., “In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs,” Phys. Med. Biol. vol. 55(24) (2010), pp. 7649-62. |
Cockcroft et al., “Chapter 2: Experimental Setups,” Powder Diffraction: Theory and Practice, R.E. Dinnebier and S.J.L. Billinge, eds (Royal Society of Chemistry Publishing, London, UK, 2008). |
Cohen et al., “Tunable laboratory extended x-ray absorption fine structure system,” Rev. Sci. Instr. vol. 51, No. 3, Mar. 1980, pp. 273-277. |
Cong et al., “Fourier transform-based iterative method for differential phase-contrast computed tomography”, Opt. Lett. vol. 37 (2012), pp. 1784-1786. |
Cornaby et al., “Advances in X-ray Microfocusing with Monocapillary Optics at CHESS,” CHESS News Magazine (2009), pp. 63-66. |
Cornaby et al., “Design of Single-Bounce Monocapillary X-ray Optics,” Advances in X-ray Analysis: Proceedings of the 55th Annual Conference on Applications of X-ray Analysis, vol. 50, (International Centre for Diffraction Data (ICDD), 2007), pp. 194-200. |
Cornaby, “The Handbook of X-ray Single Bounce Monocapillary Optics, Including Optical Design and Synchrotron Applications” (PhD Dissertation, Cornell University, Ithaca, NY, May 2008). |
David et al., “Fabrication of diffraction gratings for hard x-ray phase contrast imaging,” Microelectron. Eng. vol. 84, (2007), pp. 1172-1177. |
David et al., “Hard X-ray phase imaging and tomography using a grating interferometer,” Spectrochimica Acta Part B vol. 62 (2007) pp. 626-630. |
Davis et al., “Bridging the Micro-to-Macro Gap: A New Application for Micro X-Ray Fluorescence,” Microsc Microanal., vol. 17(3) (Jun. 2011), pp. 410-417. |
Diaz et al., “Monte Carlo Simulation of Scatter Field for Calculation of Contrast of Discs in Synthetic CDMAM Images,” in: Digital Mammography, Proceedings 10th International Workshop IWDM 2010 (Springer Verlag, Berlin Heidelberg), (2010), pp. 628-635 (9 pages). Jun. 18, 2010. |
Ding et al., “Reactive Ion Etching of CVD Diamond Films for MEMS Applications,” Micromachining and Microfabrication, Proc. SPIE vol. 4230 (2000), pp. 224-230. |
Dobrovinskaya et al., “Thermal Properties,” Sect. 2.1.5 of “Sapphire: Material, Manufacturing Applications” (Springer Science + Business Media, New York, 2009). |
Erko et al., “X-ray Optics,” Ch. 3 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin, Germany, 2006), pp. 85-198. |
Falcone et al., “New directions in X-ray microscopy,” Contemporary Physics, vol. 52, No. 4, (Jul.-Aug. 2010), pp. 293-318. |
Fernández-Ruiz, “TXRF Spectrometry as a Powerful Tool for the Study of Metallic Traces in Biological Systems,” Development in Analytical Chemistry, vol. 1 (2014), pp. 1-14. |
Freund, “Mirrors for Synchrotron Beamlines,” Ch. 26 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Ge et al., “Investigation of the partially coherent effects in a 2D Talbot interferometer,” Anal. Bioanal. Chem. vol. 401, (2011), pp. 865-870. Apr. 29, 2011 pub Jun. 14, 2011. |
Gibson et al., “Polycapillary Optics: an Enabling Technology for New Applications,” Advances in X-ray Analysis, vol. 45 (2002), pp. 286-297. |
Gonzales et al., “Angular Distribution of Bremsstrahlung Produced by 10-Kev and 20 Kev Electrons Incident on a Thick Au Target”, in Application of Accelerators in Research and Industry, AIP Conf. Proc. 1221 (2013), pp. 114-117. |
Gonzales et al., “Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag”, Phys. Rev. A vol. 84 (2011): 052726. |
Guttmann et al., “Ellipsoidal capillary as condenser for the BESSSY full-field x-ray microscope,” J. Phys. Conf. Ser. vol. 186 (2009): 012064. |
Harasse et al., “Iterative reconstruction in x-ray computed laminography from differential phase measurements”, Opt. Express. vol. 19 (2011), pp. 16560-16573. |
Harasse et al., “X-ray Phase Laminography with a Grating Interferometer using Iterative Reconstruction”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 163-168. |
Harasse et al., “X-ray Phase Laminography with Talbot Interferometer”, in Developments in X-Ray Tomography VII, Proc. SPIE vol. 7804 (2010), 780411. |
Hasse et al., “New developments in laboratory-based x-ray sources and optics,” Adv. in Laboratory-based X-Ray Sources, Optics, and Applications VI, ed. A.M. Khounsary, Proc. SPIE vol. 10387, 103870B-1 (2017). |
Hemraj-Benny et al., “Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials,” Small, vol. 2(1), (2006), pp. 26-35. |
Henke et al., “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” Atomic Data and Nuclear Data Tables, vol. 54 (No. 2) (Jul. 1993), pp. 181-342. |
Honma et al., Full-automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at Spring-8, 2011, AIP Conference Proceedings 1234, pp. 13-16. |
Howard et al., “High-Definition X-ray Fluorescence Elemental Mapping of Paintings,” Anal. Chem., 2012, vol. 84(7), pp. 3278-3286. |
Howells, “Gratings and Monochromators in the VUV and Soft X-Ray Spectral Region,” Ch. 21 of Handbook of Optics vol. III, 2nd Ed. (McGraw Hill, New York, 2001). |
Howells, “Mirrors for Synchrotron-Radiation Beamlines,” Publication LBL-34750 (Lawrence Berkeley Laboratory, Berkeley, CA, Sep. 1993). |
Hrdý et al, “Diffractive-Refractive Optics: X-ray Crystal Monochromators with Profiled Diffracting Surfaces,” Ch. 20 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds. (Springer, Berlin Heidelberg New York, 2008). |
Hwang et al, “New etching process for device fabrication using diamond,” Diamond & Related Materials, vol. 13 (2004) pp. 2207-2210. |
IDE-Ektessabi et al., “The role of trace metallic elements in neurodegenerative disorders: quantitative analysis using XRF and XANES spectroscopy,” Anal. Sci., vol. 21(7) (Jul. 2005), pp. 885-892. |
Ihsan et al., “A microfocus X-ray tube based on a microstructured X-ray target”, Nuclear Instruments and Methods in Physics Research B vol. 267 (2009) pp. 3566-3573. |
Ishisaka et al., “A New Method of Analyzing Edge Effect in Phase Contrast Imaging with Incoherent X-rays,” Optical Review, vol. 7, No. 6, (2000), pp. 566-572. |
Ito et al., “A Stable In-Laboratory EXAFS Measurement System,” Jap. J. Appl. Phys., vol. 22, No. 2, Feb. 1, 1983, pp. 357-360. |
Itoh et al., “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Op. Express, vol. 19, No. 4 (2011) pp. 3339-3346. |
Janssens et al, “Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis,” TrAC Trends in Analytical Chemistry 29.6 (Jun. 2010): 464-478. |
Jiang et al., “X-Ray Phase-Contrast Imaging with Three 2D Gratings,” Int. J. Biomed. Imaging, (2008), 827152, 8 pages. |
Joy, “Astronomical X-ray Optics,” Ch. 28 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Keyrilainen et al., “Phase contrast X-ray imaging of breast,” Acta Radiologica, vol. 51 (8), (2010), pp. 866-884. Jan. 18, 2010 pub Jun. 15, 2010. |
Kidalov et al., “Thermal Conductivity of Diamond Composites,” Materials, vol. 2 (2009) pp. 2467-2495. |
Kido et al., “Bone Cartilage Imaging with X-ray Interferometry using a Practical X-ray Tube”, in Medical Imaging 2010: Physics of Medical Imaging, Proc. SPIE vol. 7622 (2010), 762240. |
Kim, “Talbot images of wavelength-scale amplitude gratings,” Opt. Express vol. 20(5), (2012), pp. 4904-4920. |
Kirkpatrick et al., “Formation of Optical Images by X-Rays”, J. Opt. Soc. Am. vol. 38(9) (1948), pp. 766-774. |
Kirz, “Phase zone plates for x rays and the extreme uv,” J. Op. Soc. Am. vol. 64 (Mar. 1974), pp. 301-309. |
Kirz et al., “The History and Future of X-ray Microscopy”, J. Physics: Conden. Series vol. 186 (2009): 012001. |
Kiyohara et al., “Development of the Talbot-Lau Interferometry System Available for Clinical Use”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Cong. Proc. vol. 1466, (2012), pp. 97-102. |
Klockenkämper et al., “7.1 Instrumental Developments” and “7.3 Future Prospects by Combinations,” from Chapter 7 of Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015). |
Klockenkämper et al., “Chapter 3: Instrumentation for TXRF and GI-XRF,” Total Reflection X-ray Fluorescence Analysis and Related Methods 2nd Ed. (J. Wiley and Sons, Hoboken, NJ, 2015). |
Kottler et al., “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express vol. 15(3), (2007), pp. 1175-1181. |
Kottler et al., “Dual energy phase contrast x-ray imaging with Talbot-Lau interferometer,” J. Appl. Phys. vol. 108(11), (2010), 114906. Jul. 7, 2010 pub Dec. 7, 2010. |
Kumakhov et al., “Multiple reflection from surface X-ray optics,” Physics Reports, vol. 191(5), (1990), pp. 289-350. |
Kumakhov, “X-ray Capillary Optics. History of Development and Present Status” in Kumakhov Optics and Application, Proc. SPIE 4155 (2000), pp. 2-12. |
Kuwabara et al., “Hard-X-ray Phase-Difference Microscopy with a Low-Brilliance Laboratory X-ray Source”, Appl. Phys. Express vol. 4 (2011) 062502. |
Kuznetsov, “X-Ray Optics Calculator,” Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences (IMT RAS), Chernogolovka, Russia (6 pages submitted); 2016. |
Lagomarsino et al., “Reflective Optical Arrays,” Ch. 19 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al. eds. (Springer, Berlin, Germany, 2008), pp. 307-317. |
Lai, “X-Ray Microfocusing Optics,” Slide Presentation from Argonne National Laboratory, 71 slides, Cheiron Summer School 2007. |
Langhoff et al., “X-ray Sources,” Ch. 2 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg New York, 2006), pp. 33-82. |
Lechner et al., “Silicon drift detecors for high count rate X-ray spectroscopy at room temperature,” Nuclear Instruments and Methods, vol. 458A (2001), pp. 281-287. |
Leenaers et al., “Application of Glancing Incidence X-ray Analysis,” 1997, X-ray Spectrometry, vol. 26, pp. 115-121. |
Lengeler et al., “Refractive X-ray Optics,” Ch. 20 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001. |
Li et al., “Source-optic-crystal optimisation for compact monochromatic imaging,” Proc. SPIE 5537 (2004), pp. 105-114. |
Lohmann et al., “An interferometer based on the Talbot effect,” Optics Communications vol. 2 (1971), pp. 413-415. |
Macdonald et al., “An Introduction to X-ray and Neutron Optics,” Ch. 19 of “Handbook of Optics vol. III, 2nd Ed.” (McGraw Hill, New York, 2001). |
Macdonald et al., “Polycapillary and Multichannel Plate X-Ray Optics,” Ch. 30 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Macdonald et al., “Polycapillary X-ray Optics for Microdiffraction,” J. Appl. Cryst., vol. 32 (1999) pp. 160-167. |
Macdonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Optics and Instrumentation, vol. 2010, (Oct. 2010): 867049. |
Maj et al., “Etching methods for improving surface imperfections of diamonds used for x-ray monochromators,” Adv. X-ray Anal., vol. 48 (2005), pp. 176-182. |
Malgrange, “X-ray Optics for Synchrotron Radiation,” ACTA Physica Polinica A, vol. 82(1) (1992) pp. 13-32. |
Masuda et al., “Fabrication of Through-Hole Diamond Membranes by Plasma Etching Using Anodic Porous Alumina Mask,” Electrochemical and Solid-State Letters, vol. 4(11) (2001) pp. G101-G103. |
Matsushita, “Mirrors and Multilayers,” Slide Presentation from Photon Factor, Tsukuba, Japan, 65 slides, (Cheiron School 2009, Sprint-8, Japan, Nov. 2009). |
Matsushita, “X-ray monochromators,” Slide Presentation from Photon Factory, Tsukuba, Japan, 70 slides, (Cheiron School 2009, Spring-8, Japan, Nov. 2009). |
Matsuyama et al., “Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry”, Opt Express vol. 20 (2012), pp. 24977-24986. |
Miao et al., “Motionless phase stepping in X-ray phase contrast imaging with a compact source,” Proceedings of the National Academy of Sciences, vol. 110(48), (2013), pp. 19268-19272. |
Michette, “Zone and Phase Plates, Bragg-Fresnel Optics,” Ch. 23 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Mizutani et al., X-ray microscopy for neural circuit reconstruction in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012092. |
Modregger et al., “Grating-Based X-ray Phase Contrast Imaging,” Ch. 3 of Emerging Imaging Technologies in Medicine, M. Anastasio & P. La Riviere, ed., CRC Press, Boca Raton, FL, (2012), pp. 43-56. |
Momose et al., “Biomedical Imaging by Talbot-Type X-Ray Phase Tomography” in Developments in X-Ray Tomography V, Proc. SPIE vol. 6318 (2006) 63180T. |
Momose et al., “Grating-Based X-ray Phase Imaging Using Multiline X-ray Source”, Jpn. J. Appl. Phys. vol. 48 (2009), 076512. |
Momose et al., “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging” Jpn. J. Appl. Phys. vol. 45 2006 pp. 5254-5262. |
Momose et al., “Phase Tomography Using X-ray Talbot Interferometer”, in Synchrotron Radiation Instrumentation: Ninth International Conference, AIP Conf. Proc. vol. 879 (2007), pp. 1365-1368. |
Momose et al., “Phase-Contrast X-Ray Imaging Using an X-Ray Interferometer for Biological Imaging”, Analytical Sciences vol. 17 Supplement (2001), pp. i527-i530. |
Momose et al., “Sensitivity of X-ray Phase Imaging Based on Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 8077-8080. |
Momose et al., “X-ray Phase Measurements with Talbot Interferometry and Its Applications”, in International Conference on Advanced Phase Measurement Methods in Optics and Imaging, AIP Conf. Proc. vol. 1236 (2010), pp. 195-199. |
Momose et al., “X-ray Phase Imaging—From Static Observation to Dynamic Observation—”, in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 67-77. |
Momose et al., “X-ray Phase Imaging Using Lau Effect”, Appl. Phys. Express vol. 4 (2011) 066603. |
Momose et al., “X-Ray Phase Imaging with Talbot Interferometry”, in “Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems”, Y. Censor, M. Jiang & G.Wang, eds. (Medical Physics Publishing, Madison, WI, USA, 2010), pp. 281-320. |
Momose et al., “X-ray phase tomography with a Talbot interferometer in combination with an X-ray imaging microscope”, in 9th International Conference on X-Ray Microscopy, J. Phys: Conf. Ser. 186 (2009) 012044. |
Momose et al., “X-ray Talbot Interferometry with Capillary Plates”, Jpn. J. Appl. Phys. vol. 45 (2006), pp. 314-316. |
Momose et al., “Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: dynamic observation of a living worm”, Opt. Express vol. 19 (2011), pp. 8423-8432. |
Momose et al., “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation”, Opt. Express vol. 17 (2009), pp. 12540-12545. |
Momose et al., “Phase Imaging with an X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 21-30. |
Momose et al.,“Demonstration of X-Ray Talbot Interferometry”, Jpn. J. Appl. Phys. vol. 42 (2003), pp. L866-L868. |
Momose et al.,“Phase Tomography Using an X-ray Talbot Interferometer”, in Developments in X-Ray Tomography IV, Proc. SPIE vol. 5535 (2004), pp. 352-360. |
Momose, “Recent Advances in X-ray Phase Imaging”, Jpn. J. Appl. Phys. vol. 44 (2005), pp. 6355-6367. |
Montgomery, “Self Imaging Objects of Infinite Aperture,” J. Opt. Soc. Am. vol. 57(6), (1967), pp. 772-778. |
Morimoto et al., “Development of multiline embedded X-ray targets for X-ray phase contrast imaging,” XTOP 2012 Book of Abstracts, (Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 2012), pp. 74-75. |
Morimoto et al., X-ray phase contrast imaging by compact Talbot-Lau interferometer with a signal transmission grating, 2014, Optics Letters, vol. 39, No. 15, pp. 4297-4300. |
Munro et al., Design of a novel phase contrast imaging system for mammography, 2010, Physics in Medicine and Biology, vol. 55, No. 14, pp. 4169-4185. |
Nango et al., “Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone”, Biomed. Opt. Express vol. 4 (2013), pp. 917-923. |
Neuhausler et al., “Non-destructive high-resolution X-ray imaging of ULSI micro-electronics using keV X-ray microscopy in Zernike phase contrast,” Microelectronic Engineering, Elsevier Publishers BV., Amsterdam, NO, vol. 83, No. 4-9 (Apr. 1, 2006) pp. 1043-1046. |
Newville, “Fundamentals of XAFS,” (Univ. of Chicago, Chicago, IL, Jul. 23, 2004). |
Noda et al., “Fabrication of Diffraction Grating with High Aspect Ratio Using X-ray Lithography Technique for X-ray Phase Imaging,” Jpn. J. Appl. Phys. vol. 46, (2007), pp. 849-851. |
Noda et al., “Fabrication of High Aspect Ratio X-ray Grating Using X-ray Lithography” J. Solid Mech_ Mater. Eng. vol. 3 (2009), pp. 416-423. |
Nojeh, “Carbon Nanotube Electron Sources: From Electron Beams to Energy Conversion and Optophononics”, ISRN Nanomaterials vol. 2014 (2014): 879827. |
Nuhn, “From storage rings to free electron lasers for hard x-rays”, J.A37 Phys.: Condens. Matter vol. 16 (2004), pp. S3413-S34121. |
Nykanen et al., “X-ray scattering in full-field digital mammography,” Med. Phys. vol. 30(7), (2003), pp. 1864-1873. |
Oji et al., Automatic XAFS measurement system developed at BL14B2 in SPring-8, Available online Nov. 15, 2011, Journal of Synchrotron Radiation, vol. 19, pp. 54-59. |
Olbinado et al., “Demonstration of Stroboscopic X-ray Talbot Interferometry Using Polychromatic Synchrotron and Laboratory X-ray Sources”, Appl. Phys. Express vol. 6 (2013), 096601. |
Ortega et al., “Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy,” J. Royal Society Interface vol. 6 suppl. 5 (Oct. 6, 2009), pp. 6S649-6S658. |
Otendal et al., A 9 keV electron-impact liquid-gallium-jet x-ray source, Rev. Sci. Instrum. vol. 79 (2008): 016102. |
Oxford Instruments Inc., Series 5000 Model XTF5011 X-ray Tube information, Jun. 1998, 3 pages. |
Parrill et al., “GISAXS—Glancing Incidence Small Angle X-ray Scattering,” Journal de Physique IV, vol. 3 (Dec. 1993), pp. 411-417. |
Paxscan Flat Panel X-ray Imaging, Varian Sales Brochure, (Varian Medical Systems, Palo Alto, CA, Nov. 11, 2004). |
Pfeiffer et al., “ Hard-X-ray dark-field imaging using a grating interferometer,” Nature Materials vol. 7, (2008), pp. 134-137. |
Pfeiffer et al., “Hard x-ray phase tomography with low brilliance x-ray sources,” Phys. Rev. Lett. vol. 98, (2007), 108105. |
Pfeiffer et al., “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Physics vol. 2, (2006), pp. 258-261. |
Pfeiffer, “Milestones and basic principles of grating-based x-ray and neutron phase-contrast imaging,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 2-11. |
Pianetta et al., “Application of synchrotron radiation to TXRF analysis of metal contamination on silicon wafer surfaces,” Thin Solid Films, vol. 373(1-2), 2000, pp. 222-226. |
Potts, “Electron Probe Microanalysis”, Ch. 10 of “A Handbook of Silicate Rock Analysis” (Springer Science + Business Media, New York, 1987), pp. 326-382 (equation quoted from p. 336). |
Prewitt et al., “FIB Repair of 5X Recticles and Effects on IC Quality,” Integrated Circuit Metrology, Inspection, and Process Control VII, Proc. SPIE vol. 1926 (1993), pp. 517-526. |
Prewitt et al., “Focused ion beam repair: staining of photomasks and reticles,” J. Phys. D Appl. Phys. vol. 26 (1993), pp. 1135-1137. |
Prewitt et al., “Gallium Staining in FIB Repair of Photomasks,” Microelectronic Engineering, vol. 21 (1993), pp. 191-196. |
Qin et al., “Trace metal imaging with high spatial resolution: Applications in biomedicine,” Metallomics, vol. 3 (Jan. 2011), pp. 28-37. |
Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. vol. 11 (1881), pp. 196-205. |
Renaud et al., “Probing surface and interface morphology with Grazing Incidence Small Angle X-ray Scattering,” Surface Science Reports, vol. 64:8 (2009), pp. 255-380. |
Riege, “Electron Emission from Ferroelectrics—A Review”, CERN Report CERN AT/93-18 (CERN, Geneva, Switzerland, Jul. 1993). |
Röntgen, Ueber eine neue Art von Strahlen (Wurzburg Verlag, Warzburg, Germany, 1896) also, in English, “On a New Kind of Rays,” Nature vol. 53 (Jan. 23 1896). pp. 274-276. |
Rovezzi, “Study of the local order around magnetic impurities in semiconductors for spintronics.” PhD Dissertation, Condensed Matter, Universite Joseph-Fourier—Grenoble I, 2009, English <tel-00442852>. |
Rutishauser, “X-ray grating interferometry for imaging and metrology,” 2003, Eth Zurich, Diss. ETH No. 20939. |
Sato et al., Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube, 2011, Optics Letters, vol. 36, No. 18, pp. 3551-3553. |
Scherer et al., “Bi-Directional X-Ray Phase-Contrast Mammography,” PLoS ONE, vol. 9, Issue 5 (May 2014) e93502. |
Scholz, “X-ray Tubes and Monochromators,” Technical Workshop EPIV, Universität Würzburg (2007); 41 slides, 2007. |
Scholze et al., “X-ray Detectors and XRF Detection Channels,” Ch. 4 of “Handbook of Practical X-Ray Fluorescence Analysis,” B. Beckhoff et al., eds. (Springer, Berlin Heidelberg, Germay, 2006), pp. 85-198. |
Sebert, “Flat-panel detectors:how much better are they?” Pediatr. Radiol. vol. 36 (Suppl 2), (2006), pp. 173-181. |
Shen, “Polarizing Crystal Optics,” Ch. 25 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Shields et al., “Overview of Polycapillary X-ray Optics,” Powder Diffraction, vol. 17(2) (Jun. 2002), pp. 70-80. |
Shimura et al., “Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets”, Opt. Lett. vol. 38(2) (2013), pp. 157-159. |
Siddons, “Crystal Monochromators and Bent Crystals,” Ch. 22 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Smith, “Fundamentals of Digital Mammography:Physics, Technology and Practical Considerations,” Publication R-BI-016 (Hologic, Inc., Bedford, MA, Mar. 2005). |
Snigirev et al., “Hard X-Ray Microoptics,” Ch. 17 of “Modern Developments in X-Ray and Neutron Optics,” A. Erko et al., eds (Springer, Berlin, Germany, 2008), pp. 255-285. |
Sparks Jr., “X-ray Fluorescence Microprobe for Chemical Analysis,” in Synchrotron Radiation Research, H. Winick & S. Doniach, eds. (Plenum Press, New York, NY 1980), pp. 459-512. |
Spiller, “Multilayers,” Ch. 24 of “Handbook of Optics vol. III, 2nd Ed.,” (McGraw Hill, New York, 2001). |
Stampanoni et al., “The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography,” Investigative Radiology, vol. 46, pp. 801-806. pub Dec. 2011. |
Strüder et al., “Silicon Drift Detectors for X-ray Imaging,” Presentation at Detector Workshop on Synchrotron Radiation Instrumentation, 54 slides, (Argonne Nat'l Lab, Argonne, IL Dec. 8, 2005), available at: <http://www.aps.anl.gov/News/Conferences/2005/Synchrotron_Radiation_Instrumentation/Presentations/Strueder.pdf>. |
Strüder et al., “X-Ray Detectors,” Ch. 4 of “X-ray Spectrometry: Recent Technological Advances,” K. Tsuji et al. eds. (John Wiley & Sons, Ltd. Chichester, West Sussex, UK, 2004), pp. 63-131. |
Suzuki et al., “Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination,” J. Phys.: Conf. Ser. vol. 463 (2013): 012028. |
Suzuki, “Development of the DIGITEX Safire Cardiac System Equipped with Direct conversion Flat Panel Detector,” Digital Angio Technical Report (Shimadzu Corp., Kyoto, Japan, no date, published—2004 with product release). |
Takahama, “RADspeed safire Digital General Radiography System Equipped with New Direct-Conversion FPD,” Medical Now, No. 62 (2007). |
Takeda et al., “Differential Phase X-ray Imaging Microscopy with X-ray Talbot Interferometer” Appl. Phys. Express vol. 1 (2008) 117002. |
Takeda et al., “X-Ray Phase Imaging with Single Phase Grating”, Jpn. J. Appl. Phys. vol. 46 (2007), pp. L89-L91. |
Takeda et al., “In vivo physiological saline-infused hepatic vessel imaging using a two-crystal-interferometer-based phase-contrast X-ray technique”, J. Synchrotron Radiation vol. 19 (2012), pp. 252-256. |
Talbot, “Facts relating to optical science No. IV,” Philos. Mag. vol. 9 (1836), pp. 401-407. |
Tanaka et al., “Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry”, Z. Med. Phys. vol. 23 (2013), pp. 222-227. |
Tang et al., “Micro-computed tomography (Micro-CT): a novel appraoch for intraoperative breast cancer specimen imaging,” Breast Cancer Res. Treat. vol. 139, pp. 311-316 (2013). |
Taniguchi et al., “Diamond nanoimprint lithography,” Nanotechnology, vol. 13 (2002) pp. 592-596. |
Tkachuk et al., “High-resolution x-ray tomography using laboratory sources”, in Developments in X-Ray Tomography V, Proc. SPIE 6318 (2006): 631810. |
Tkachuk et al., “Multi-length scale x-ray tomography using laboratory and synchrotron sources”, Microsc. Microanal. vol. 13 (Suppl. 2) (2007), pp. 1570-1571. |
Touzelbaev et al., “Applications of micron-scale passive diamond layers for the integrated circuits and microelectromechanical systems industries,” Diamond and Rel. Mat'ls, vol. 7 (1998) pp. 1-14. |
Tsuji et al., “X-Ray Spectrometry: Recent Technological Acvances,” John Wiley & Sons Ltd. Chichester, West Susses, UK 2004), Chapters 1-7. |
Udagawa, “An Introduction to In-House EXAFS Facilities,” The Rigaku Journal, vol. 6, (1) (1989), pp. 20-27. |
Udagawa, “An Introduction to X-ray Absorption Fine Structure,” The Rigaku Journal, vol. 11(2)(1994), pp. 30-39. |
Uehara et al., “Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices”, J. Appl. Phys. vol. 114 (2013), 134901. |
Vogt, “X-ray Fluorescence Microscopy: A Tool for Biology, Life Science and Nanomedicine,” Presentation on May 16, 2012 at James Madison Univ., Harrisonburg, VA (31 slides), 2012. |
Wan et al.,“Fabrication of Multiple Slit Using Stacked-Sliced Method for Hard X-ray Talbot-Lau Interferometer”, Jpn. J. Appl. Phys. vol. 47 (2008), pp. 7412-7414. |
Wang et al., “Advantages of intermediate X-ray energies in Zernicke phase constrast X-ray microscopy,” Biotech. Adv., vol. 31 (2013) pp. 387-392. |
Wang et al., “Non-invasive classification of microcalcifications with phase-contrast X-ray mammography,” Nature Comm. vol. 5:3797, pp. 1-9 (2014). |
Wang, On the single-photon-counting (SPC) modes of imaging using an XFEL source, presented at IWORLD2015, (2015). |
Wang et al., “Precise patterning of diamond films for MEMS application” Journal of Materials Processing Technology vol. 127 (2002), pp. 230-233. |
Weitkamp et al., “Design aspects of X-ray grating interferometry,” in International Workshop on X-ray and Neutron Phase Imaging with Gratings AIP Conf. Proc. vol. 1466, (2012), pp. 84-89. |
Weitkamp et al., “Hard X-ray phase imaging and tomography with a grating interferometer,” Proc. SPIE vol. 5535, (2004), pp. 137-142. |
Weitkamp et al., “X-ray wavefront diagnostics with Talbot interferometers,” International Workshop on X-Ray Diagnostics and Scientific Application of the European XFEL, Ryn, Poland, (2010), 36 slides. |
Weitkamp et al., Tomography with grating interferometers at low-brilliance sources, 2006, SPIE, vol. 6318, pp. 0S-1 to 0S-10. |
Weitkamp et al., “X-ray phase imaging with a grating interferometer,” Opt. Express vol. 13(16), (2005), pp. 6296-6304. |
Weitkamp et al., “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. vol. 86, (2005), 054101. |
Wen et al., “Fourier X-ray Scattering Radiography Yields Bone Structural Information,” Radiology, vol. 251 (2009) pp. 910-918. |
Wen et al., “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Op. Lett. vol. 35, No. 12, (2010) pp. 1932-1934. |
Wobrauschek et al., “Energy Dispersive, X-Ray Fluorescence Analysis,” Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed. (Wiley 2010). |
Wobrauschek et al., “Micro XRF of light elements using a polycapillary lens and an ultra-thin window Silicon Drift Detector inside a vacuum chamber,” 2005, International Centre for Diffraction Data 2005, Advances in X-ray Analysis, vol. 48, pp. 229-235. |
Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen” [Grazing Incidence Reflector Systems as Imaging Optics for X-rays] Annalen der Physik vol. 445, Issue 1-2 (1952), pp. 94-114. |
X-ray-Optics.de Website, http://www.x-ray-optics.de/, accessed Feb. 13, 2016. |
Yakimchuk et al., “Ellipsoidal Concentrators for Laboratory X-ray Sources: Analytical approaches for optimization,” Mar. 22, 2013, Crystallography Reports, vol. 58, No. 2, pp. 355-364. |
Yamamoto, “Fundamental physics of vacuum electron sources”, Reports on Progress in Physics vol. 69, (2006), pp. 181-232. |
Yanagihara et al., “X-Ray Optics,” Ch. 3 of “X-ray Spectrometry: Recent Technological Advances,” K. Tsuji et al. eds. (John Wiley & Sons, Ltd. Chichester, West Sussex, UK, 2004), pp. 63-131. |
Yang et al., “Analysis of Intrinsic Stress in Diamond Films by X-ray Diffraction,” Advances in X-ray Analysis, vol. 43 (2000), pp. 151-156. |
Yashiro et al., “Distribution of unresolvable anisotropic microstructures revealed in visibility-contrast images using x-ray Talbot interferometry”, Phys. Rev. B vol. 84 (2011), 094106. |
Yashiro et al., “Hard x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating”, Phys. Rev. A vol. 82 (2010), 043822. |
Yashiro et al., “Theoretical Aspect of X-ray Phase Microscopy with Transmission Gratings” in International Workshop on X-ray and Neutron Phase Imaging with Gratings, AIP Conf. Proc. vol. 1466, (2012), pp. 144-149. |
Yashiro et al., “X-ray Phase Imaging and Tomography Using a Fresnel Zone Plate and a Transmission Grating”, in “The 10th International Conference on X-ray Microscopy Radiation Instrumentation”, AIP Conf. Proc. vol. 1365 (2011) pp. 317-320. |
Yashiro et al., “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry”, J. Opt. Soc. Am. A vol. 25 (2008), pp. 2025-2039. |
Yashiro et al., “On the origin of visibility contrast in x-ray Talbot interferometry”, Opt. Express (2010), pp. 16890-16901. |
Yashiro et al., “Optimal Design of Transmission Grating for X-ray Talbot Interferometer”, Advances in X-ray Analysis vol. 49(3) (2006), pp. 375-379. |
Yashiro et al., “X-ray Phase Imaging Microscopy using a Fresnel Zone Plate and a Transmission Grating”, in The 10th International Conference on Synchrotron Radiation Instrumentation, AIP Conf. Proc. vol. 1234 (2010), pp. 473-476. |
Yashiro et. al., “Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating”, Phys. Rev. Lett. vol. 103 (2009), 180801. |
Yu et al., “Morphology and Microstructure of Tungsten Films by Magnetron Sputtering,” Mat. Sci. Forum, vol. 913, pp. 416-423 (2018). |
Zanette et al., “Two-Dimensional X-Ray Grating interferometer,” Phys. Rev. Lett. vol. 105 (2010) pp. 248102-1 248102-4. |
Zeng et al., “Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes,” Appl. Opt. vol. 47 (May 2008), pp. 2376-2381. |
Zeng et al., “Glass Monocapillary X-ray Optics and Their Applications in X-Ray Microscopy,” X-ray Optics and Microanalysis: Proceedings of the 20th International Congress, AIP Conf. Proc. vol. 1221, (2010), pp. 41-47. |
Zhang et al., “Fabrication of Diamond Microstructures by Using Dry and Wet Etching Methods”, Plasma Science and Technology vol. 15(6) (Jun. 2013), pp. 552-554. |
Number | Date | Country | |
---|---|---|---|
20160351370 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62155449 | Apr 2015 | US | |
62141847 | Apr 2015 | US | |
62008856 | Jun 2014 | US | |
61931519 | Jan 2014 | US | |
61894073 | Oct 2013 | US | |
61880151 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14999147 | Apr 2016 | US |
Child | 15166274 | US | |
Parent | 14490672 | Sep 2014 | US |
Child | 14999147 | US |