Various exemplary embodiments disclosed herein relate generally to securing software components that perform a cryptographic function against attacks including diversifying control flow of white-box implementations to harden against correlation and other attacks.
The Internet provides users with convenient and ubiquitous access to digital content. Because the Internet is a powerful distribution channel, many user devices strive to directly access the Internet. The user devices may include a personal computer, laptop computer, set-top box, internet enabled media player, mobile telephone, smart phone, tablet, mobile hotspot, or any other device that is capable of accessing the Internet. The use of the Internet as a distribution medium for copyrighted content creates the compelling challenge to secure the interests of the content provider. Increasingly, user devices operate using a processor loaded with suitable software to render (playback) digital content, such as audio and/or video. Control of the playback software is one way to enforce the interests of the content owner including the terms and conditions under which the content may be used. Previously many user devices were closed systems. Today more and more platforms are partially open. Some users may be assumed to have complete control over and access to the hardware and software that provides access to the content and a large amount of time and resources to attack and bypass any content protection mechanisms. As a consequence, content providers must deliver content to legitimate users across a hostile network to a community where not all users or user devices can be trusted.
Secure software applications may be called upon to carry out various functions such as, for example, cryptographic functions used to protect and authenticate digital content. In order to counter attacks, these algorithms have to be obfuscated (hidden) in order to prevent reverse engineering and modification of the algorithm or prohibit obtaining the user-specific secure information. Accordingly, the functions of the secure software application may be carried out by various functions as defined by the instruction set of the processor implementing the secure software. For example, one way to obscure these functions is by the use of lookup tables.
Content providers must deliver content to legitimate users across a hostile network to a community where not all users or devices can be trusted. This has led to the development of white-box cryptography. In the white-box cryptography scenario it is assumed that the user has complete control of the hardware and software that provides access to the content, and an unlimited amount of time and resources to attack and bypass any content protection mechanisms. The secure software code that enforces the terms and conditions under which the content may be used should be tamper resistant. Digital rights management is a common application of secure software applications. The general approach in digital rights management for protected content distributed to user devices is to encrypt the digital content using for example, DES (Data Encryption Standard), AES (Advanced Encryption Standard), or using other known encryption schemes, and to use decryption keys to recover the digital content. These decryption keys must be protected to prevent unauthorized access to protected material.
In the digital right management scenario, the attacker has complete control of the software enforcing the management and access to the protected content. Accordingly, the attacker can modify software and also seek to obtain cryptographic keys used to encrypt the protected content. Such keys may be found by analyzing the software
Regarding key distribution, a media player has to retrieve a decryption key from a license database in order to play back the media. The media player then has to store this decryption key somewhere in memory for the decryption of the encrypted content. This leaves an attacker two options for an attack on the key. First, an attacker may reverse engineer the license database access function allowing the attacker to retrieve asset keys from all license databases. In this situation the attacker does not need to understand the internal working of the cryptographic function. Second, the attacker may observe accesses of the memory during content decryption, thus the attacker may retrieve the decryption key. In both cases the key is considered to be compromised.
The widespread use of digital rights management (DRM) and other secure software has given rise to the need for secure, tamper-resistant software that seeks to complicate tampering with the software. Various techniques for increasing the tamper resistance of software applications exist. Most of these techniques are based on hiding the embedded knowledge of the application by adding a veil of randomness and complexity in both the control and the data path of the software application. The idea behind this is that it becomes more difficult to extract information merely by code inspection. It is therefore more difficult to find the code that, for example, handles access and permission control of the secure application, and consequently to change it.
As used herein, white-box cryptography includes a secure software application that performs cryptographic functions in an environment where an attacker has complete control of the system running the white-box cryptography software. Thus, the attacker can modify inputs and outputs, track the operations of the software, sample and monitor memory used by the software at any time, and even modify the software. Accordingly, the secure functions need to be carried out in a manner that prevents the disclosure of secret information used in the secure functionality. White-box cryptography functions may be implemented in various ways. Such methods include: obscuring the software code; using complex mathematical functions that obscure the use of the secret information; using look-up tables; using finite state machines; or any other methods that carry out cryptographic functions but hide the secret information needed for those secure functions. A white-box implementation may also contain components that include anti-debugging and tamper-proofing properties.
There are several reasons for preferring a software implementation of a cryptographic algorithm to a hardware implementation. This may, for instance, be the case because a software solution is renewable if the keys leak out, because it is has lower cost, or because the application-developer has no influence on the hardware where the white-box system is implemented.
A brief summary of various exemplary embodiments is presented below. Some simplifications and omissions may be made in the following summary, which is intended to highlight and introduce some aspects of the various exemplary embodiments, but not to limit the scope of the invention. Detailed descriptions of an exemplary embodiment adequate to allow those of ordinary skill in the art to make and use the inventive concepts will follow in later sections.
Various embodiments relate to a non-transitory machine-readable storage medium encoded with instructions for execution by a keyed cryptographic operation by a cryptographic system mapping an input message to an output message, including: instructions for receiving input data for a round of the keyed cryptographic operation; instructions for determining the order of computing output portions for the round of the cryptographic function based upon portions of the input data; and instructions for computing the portions of the output data in the determined order based upon the input data.
Various embodiments are described wherein the cryptographic function is the Advanced Encryption Standard (AES).
Various embodiments are described wherein the input data portions include 16 bytes.
Various embodiments are described wherein the input data and output data each have N portions and wherein determining the order of computing output portions for the round of the cryptographic function based upon portions of the input data further includes: selecting a segment of the input data to indicate the order that the N output portions are calculated, wherein each value associated with the segment indicates one of the possible permutations of the order of calculating the N output portions.
Various embodiments are described wherein the selected segment of the input data is hashed before being used to indicate the order that the N output portions are calculated.
Various embodiments are described wherein the input data and output data each have N portions and wherein determining the order of computing output portions for the round of the cryptographic function based upon portions of the input data further includes: sorting the values of the of the N input portions to indicate the order of computing the output portions.
Various embodiments are described wherein the input data and output data each have N portions and wherein determining the order of computing output portions for the round of the cryptographic function based upon portions of the input data further includes: forming N/2 pairs of inputs; and for each pair of inputs selecting the lower value of the inputs to be computed first.
Various embodiments are described wherein the input data and output data each have N portions and wherein determining the order of computing output portions for the round of the cryptographic function based upon portions of the input data further includes: forming N/2 pairs of inputs; and for each pair of inputs selecting the higher value of the inputs to be computed first.
Various embodiments are described wherein computing the portions of the output data further comprises using lookup tables.
Various embodiments are described wherein computing the portions of the output data further comprises using state machines.
Further various embodiments relate to a non-transitory machine-readable storage medium encoded with instructions for execution by a keyed cryptographic operation including a plurality of basic blocks by a cryptographic system mapping an input message to an output message, including: instructions for receiving input data for a round of the keyed cryptographic operation; instructions for determining the number of basic blocks to implement the round of the cryptographic function based upon portions of the input data; and instructions for computing the portions of the output data using the determined number of basic blocks based upon the input data.
Various embodiments are described wherein the cryptographic function is the Advanced Encryption Standard (AES).
Various embodiments are described wherein the input data portions include 16 bytes.
Various embodiments are described wherein the input data and the output data each have N portions, wherein a substitution box converts input data into output data, and wherein determining the number of basic blocks to implement the round of the cryptographic function based upon portions of the input data further includes: splitting input data into two portions such that each split portion is input into the substitution box to produce split outputs and when the split outputs of the substitution box are combined, the result is the same as when the input data is input into the substitution box; and computing a portion of the output data using the split input data based upon a value of the input data.
Various embodiments are described wherein determining the number of basic blocks to implement the round of the cryptographic function based upon portions of the input data further includes: selecting a segment of the input data to indicate a number of dummy basic blocks to be used to implement the round of the cryptographic function.
Various embodiments are described wherein the number of dummy basic blocks to be used to implement the round of the cryptographic function is different for each input portion.
Various embodiments are described wherein computing the portions of the output data further comprises using lookup tables.
Various embodiments are described wherein computing the portions of the output data further comprises using state machines.
Further various embodiments relate to a method of controlling a server that provides an application implementing a keyed cryptographic operation by a cryptographic system mapping an input message to an output message, including: receiving a request from a user for the application implementing a keyed cryptographic operation by a cryptographic system mapping an input message to an output message; and providing the user the application implementing a keyed cryptographic operation by a cryptographic system mapping an input message to an output message, wherein the application includes: instructions for receiving input data for a round of the keyed cryptographic operation; instructions for determining the order of computing output portions for the round of the cryptographic function based upon portions of the input data; and instructions for computing the portions of the output data in the determined order based upon the input data.
Further various embodiments relate to a method of controlling a server that provides an application implementing a keyed cryptographic operation by a cryptographic system mapping an input message to an output message, including: receiving a request from a user for the application implementing a keyed cryptographic operation by a cryptographic system mapping an input message to an output message; and providing the user the application implementing a keyed cryptographic operation by a cryptographic system mapping an input message to an output message, wherein the application includes: instructions for receiving input data for a round of the keyed cryptographic operation; instructions for determining the number of basic blocks to implement the round of the cryptographic function based upon portions of the input data; and instructions for computing the portions of the output data using the determined number of basic blocks based upon the input data.
In order to better understand various exemplary embodiments, reference is made to the accompanying drawings, wherein:
To facilitate understanding, identical reference numerals have been used to designate elements having substantially the same or similar structure and/or substantially the same or similar function.
The description and drawings illustrate the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within its scope. Furthermore, all examples recited herein are principally intended expressly to be for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Additionally, the term, “or,” as used herein, refers to a non-exclusive or (i.e., and/or), unless otherwise indicated (e.g., “or else” or “or in the alternative”). Also, the various embodiments described herein are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.
There are several reasons for preferring a software implementation of a cryptographic algorithm to a hardware implementation. This may, for instance, be the case because a software solution is renewable if the keys leak out, because it is has lower cost, or because the application-developer has no influence on the hardware where the white-box system is implemented. While the description of embodiments below are directed to software implementation running on a processor, it is noted that these embodiments may also be partially or completely implemented in hardware as well. The lookup tables and finite state machines that are described may be implemented in hardware to carry out the various functions described.
A table-based approach to a white-box implementation of the Advanced Encryption Standard (AES) and the Data Encryption Standard (DES) were proposed in the following papers: “White-Box Cryptography and an AES Implementation”, by Stanley Chow, Philip Eisen, Harold Johnson, and Paul C. Van Oorschot, in Selected Areas in Cryptography: 9th Annual International Workshop, SAC 2002, St. John's, Newfoundland, Canada, Aug. 15-16, 2002, referred to hereinafter as “Chow 1”; and “A White-Box DES Implementation for DRM Applications”, by Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot, in Digital Rights Management: ACM CCS-9 Workshop, DRM 2002, Washington, D.C., USA, Nov. 18, 2002, referred to hereinafter as “Chow 2”. Chow 1 and Chow 2 disclose methods of using a table-based approach to hide the cryptographic key by a combination of encoding its tables with random bijections, and extending the cryptographic boundary by pushing it out further into the containing application.
As noted, for many cryptographic operations it is desired to have a white-box implementation. The invention may be applied, for example, to symmetric and asymmetric cryptographic operations. Also, the invention may be applied to block ciphers, stream ciphers, message authentication schemes, signature schemes, etc. Note that the invention may also be applied to hash functions. The latter is especially useful if the hash function is used as a building block which processes secret information, e.g., a secret key, secret data, etc. For example, the invention may be applied to a hash function used in a keyed-Hash Message Authentication Code (HMAC or KHMAC). Well known block ciphers include: Advanced Encryption Standard (AES), Secure And Fast Encryption Routine, (SAFER, and variants SAFER+ and SAFER++), Blowfish, Data Encryption Standard (DES), etc. A well known stream cipher is RC4. Moreover any block cipher can be used as stream cipher using an appropriate mode of operation, e.g., Cipher feedback (CFB), Counter mode (CTR), etc.
The input message can represent, e.g., encrypted content data, such as multi-media data, including audio and/or video data. The encrypted content data may also include encrypted software, e.g., encrypted computer code representing some computer application, e.g., a computer game, or an office application. The input message may also represent a key for use in a further cryptographic operation. The latter may be used, for example, in a key exchange protocol, wherein a white-box implementation according to the invention encrypts and/or decrypts data representing a new key. The input data may also be plain data, for example, plain user data. The latter is especially advantageous in message authentication schemes. A white-box implementation according to the invention may have the property that the implementation may only be used for encryption, only be used for decryption, but not for both. For example, this property can be achieved if the implementation uses look-up tables which are not bijective, for example, a look-up table having more input bits than output bits. Accordingly, if a user only has a white-box decryptor, he may verify a MAC code but not create new MACS. This strengthens the non-repudiation properties of such a message authentication scheme.
The white-box implementation may be implemented using a plurality of basic blocks. The plurality of basic blocks is interconnected, in the sense that some of the blocks build on the outputs of one or more of the previous blocks. A basic block may be implemented in hardware, for example, as a computer chip. A basic block may use a switch board, a state machine or any other suitable construction for implementing functions in computer hardware. A basic block may also be implemented in software running on a general purpose computer chip, e.g. a microprocessor. For example, a basic block may use a plurality of computer instructions, including arithmetical instructions, which together implement the functionality of the basic block. A widely used implementation for the basic block, which may be used both in software and hardware, is a look-up table. For example, Chow 1 and Chow 2 take this approach to implement the AES and DES block ciphers. A look-up table implementation includes a list which lists for possible input values, an output value. The input value may be explicit in the lookup table. In that situation the look-up table implementation could map a particular input to a particular output by searching in the list of input values for the particular input. When the particular input is found the particular output is then also found. For example, the particular output may be stored alongside the particular input. Preferably, the input values are not stored explicitly, but only implicitly. For example, if the possible inputs are a consecutive range, e.g. of numbers or bit-strings, the look-up table may be restricted to storing a list of the output values. A particular input number may, e.g., be mapped to the particular output which is stored at a location indicated by the number. Further, finite state machines or code obfuscation may be used to implement the white-box implementation.
For example, a look up table for a function may be created by computing the output value of the function for its possible inputs and storing the outputs in a list. If the function depends on multiple inputs the outputs may be computed and stored for all possible combinations of the multiple inputs. Look-up tables are especially suited to implement non-linear functions, which map inputs to output in irregular ways. A white-box implementation can be further obfuscated, as is explained below, by applying to one or more of its look-up tables a fixed obfuscating input encoding and a fixed output encodings. The results of applying a fixed obfuscating input encoding and output encodings is then fully pre-evaluated. Using this technique, a look-up table would be replaced by an obfuscated look-up table which has the same dimensions, that it takes the same number input bits and produces the same number of output bits. The input encoding and output encoding used in such obfuscation are not explicit in the final white-box implementation.
The network of basic blocks are arranged to compute an output message when they are presented with an input message. Typically, the input message is operated upon by a number of basic input blocks. A number of further basic blocks may take input from one or more of the basic input blocks and/or from the input. Yet further basic blocks can take input in any combination of the input message, the output of basic input blocks and the output of the further basic blocks. Finally some set of basic exit blocks, i.e., at least one, produce as output all or part of the output-message. In this manner a network of basic blocks emerges which collectively computes the mapping from the input message to output message.
The key used may be a cryptographic key and may contain sufficient entropy to withstand an anticipated brute force attack. It is noted that in a white-box implementation, the key is typically not explicitly present in the implementation. This would risk the key being found by inspection of the implementation. Typically, the key is only present implicitly. Various ways are known to hide a key in a cryptographic system. Typically, at least the method of partial evaluation is used, wherein a basic block which needs key input is evaluated in-so-far that it does not depend on the input-message. For example, a basic operation wherein an input-value, a masking value, which does not depend on the input-message, e.g. a value from a substitution box (S-box), and a key-value need to be XORed can be partially evaluated by XORing the key value and the masking value together beforehand. In this way the operation still depends on the key-value although the key-value is not explicitly present in the implementation. Instead, only the XOR between the key-value and masking-value is present in the implementation. Note that, more complicated ways and/or further ways of hiding the keys are compatible with embodiments of this invention.
An interesting category of attacks on white-box implementations is correlation power analysis (CPA). These type of attacks work as follows.
An attacker collects a large number of execution traces for the white-box implementation, each with a different, but known plaintext. In CPA attacks, this trace is a power trace, but the traces may measure other different properties of the white-box implementation. The traces may be placed in a matrix t where ti,j denotes the trace-value (e.g., power consumption) at time point j for trace i.
Then, the attacker chooses some intermediate value v or a function ƒ(v) thereof in a standard implementation that has some relation to a limited number of key-bytes. Because ƒ(v) equals v if ƒ is the identity function, in the description below ƒ(v) is used for both cases.
The attacker then determines the value ƒ(v) in the standard implementation for different guesses/hypotheses of the key bits on which the value depends and for the different plaintexts for which execution trace data has been collected. For the ith plaintext and the jth key hypothesis, this gives the value ƒ(vi,j).
For each key hypothesis k and time point p, the attacker determines the correlation between ƒ(vi,k) and ti,p over all traces. For the correct key-hypothesis, the correlation will typically be higher than for an incorrect key-hypothesis. If this is the case, then there is key leakage.
In hardware implementations where a white-box attack model is not assumed, attacks like this are typically prevented by adding random noise to the execution. This approach, however, does not work for white-box implementations because in a white-box attack model an adversary can disable the source generating the random data.
To harden white-box implementations against these type of attacks, embodiments are described that make the control flow of the white-box implementation input dependent. For table-based white-box implementations, like the ones described by Chow et al., this means that an attacker no longer at a given point in time has all traces that access the same lookup table in case of table-based white-box implementation. Because white-box implementations are heavily obfuscated programs for which it is hard for an attacker to understand what the obfuscated program is exactly doing (except for the literal instructions that are executed), they are well suited for inserting control flow variation such that it is difficult for an attacker to analyze and remove it.
Below white-box embodiments are described using the AES (Advanced Encryption Standard) block cipher, because AES has become a widely used standard for block ciphers. AES is a block cipher with a block size of 128 bits or 16 bytes. The plaintext is divided in blocks of 16 bytes which form the initial state of the encryption algorithm, and the final state of the encryption algorithm is the cipher text. At any given point in the encryption algorithm these 16 bytes are the state of the encryption algorithm. To conceptually explain AES, the bytes of the state are organized as a matrix of 4×4 bytes. AES includes a number of rounds, which depend on the key size. Each round includes similar processing steps operating on bytes, rows, or columns of the state matrix, each round using a different round key in these processing steps. In the discussion using AES as an example, it is noted that AES defines a round in a specific manner. In the embodiments below, a round is any grouping of steps that includes at least one non-linear mapping function, such as an S-box in AES. Accordingly, a round as described below includes one non-linear mapping function and any combination of other steps of the cryptographic function. Further, the boundary of the round may start with the non-linear mapping function, for example an S-box, or any other operation that may be merged with the non-linear mapping function, for example a key addition.
AddRoundKey 110—each byte of the state is XORed with a byte of the round key;
SubBytes 120—a byte-to-byte permutation using a lookup table;
ShiftRows 140—each row of the state is rotated a fixed number of bytes; and
MixColumns 150—each column is processed using a modulo multiplication in GF(28).
The steps SubBytes 120, ShiftRows 130, and MixColumns 150 are independent of the particular key used. The key is applied in the step AddRoundKey 110. Except for the step ShiftRows 140, the processing steps can be performed on each column of the 4×4 state matrix without knowledge of the other columns. Therefore, they can be regarded as 32-bit operations as each column consists of four 8-bit values. Dashed line 150 indicates that the process is repeated until the required number of rounds has been performed.
Each of these steps or a combination of steps may be represented by a lookup table or by a network of lookup tables. If the AddRoundKey 110 step is implemented by XORing with the round key, then the key is visible to the attacker in the white-box attack context. The AddRoundKey 110 step can also be embedded in lookup tables, which makes it less obvious to find out the key. In fact, it is possible to replace a full round of AES by a network of lookup tables. For example, the SubBytes 120, ShiftRows 130, and MixColumns 150 steps may be implemented using table lookups. Below a possible white-box implementation of AES in sufficient detail is discussed to describe the embodiments of the invention below, but further detailed descriptions of such an implementation are found in Chow 1. Also, other variations in the lookup table implementation may be used which are within the scope of the invention.
Both the table-based white-box implementations and the finite state machine implementations have the property that all intermediate values in the implementation are encoded (as compared to a standard implementation). Examples of white-box implementations using finite state machines are disclosed in U.S. Patent Publication 2007/0014394 entitled “Data Processing Method” and a presentation at the Re-trust Sixth Quarterly Meeting entitled “Synchrosoft MCFACT™ Secure Data Processing Technology” by Wulf Harder and Atis Straujums dated Mar. 11, 2008, which each are hereby incorporated by reference for all purposes as if fully set forth herein.
In order to describe embodiments of the invention, a basic description of a table-based white-box AES implementation will be described. For a more detailed description of a method for implementing a table-based white-box AES see Chow 1. Chow 1 illustrates a specific implementation that breaks up certain functions using tables of specified sizes. It is well understood that various other divisions of the tables may be made resulting in different functions for the look-up tables and different sizes. Further, while the embodiments of the invention described below use a table-based white-box implementation of AES, other ciphers and cryptographic functions may be implemented according to the embodiments described. Also, other types of white-box implementations may be used instead of the table-base implementation, for example, a finite-state implementation.
The description of the table-based white-box AES is split into two steps. In the first step, a round of AES is described as a network of lookup tables. In the second step, the tables are obfuscated by encoding their input and output.
Step 1: Implementing AES as a Network of Lookup Tables.
AES operates on data blocks of 16 bytes. These are typically described as a 4×4 byte matrix, called the state including bytes x1,1, x1,2, x1,3, . . . x4,4. A round of AES as described above with respect to
Now define a lookup table for each byte-to-byte function Qi,j,l(xi,j)=MCl,i·Ti,j(xi,j) with i,j,l=1, 2, . . . , 16. Then any output byte zl,j may be computed by XORing the results of these lookup tables, i.e., zl,j=Q1,j,l(x1,j)⊕Q2,j,l(x2,j)⊕Q3,j,l(x3,j)⊕Q4,j,l(x4,j). Note that the index i, j, l of Q-box can be interpreted as “the contribution of input byte i, j of a round to output byte l, j of the round”. The XOR may be implemented to operate on each of two nibbles (i.e., 4-bit values) as a lookup table to reduce the size of the XOR tables. Accordingly, the Q-box may be implemented to produce output nibbles so that the size of the tables is reduced. Therefore, the computation of each output byte zl,j of an AES-round has been described as a network of lookup tables. The network of lookup tables to compute a single output nibble of byte z2,3 is shown in
Step 2: Obfuscating the Tables and the Intermediate Values
In the implementation depicted in
A standard white-box implementation, like the table-based ones described above, Chow et al., and the finite-state-machine-based ones described above, have a fixed control-flow path. That is, if an attacker sequences the accesses to lookup tables or finite-state machines in different executions of the white-box implementation, then all executions have the same lookup table or finite state machine being accessed at any given position p in the sequence albeit for a different input and/or state. This makes these white-box implementations more vulnerable to CPA-like attacks. Below, embodiments are described that break this relationship by making the control flow dependent on the input of the white-box implementation. This may be done in the following two ways:
Embodiments of white-box implementations implementing these two approaches will now be described.
In a first white-box implementation embodiment, within a round r, the computations of the 16 output bytes are independent of one another. This means that they may be performed in any arbitrary order or that they may even be interleaved. Many ways exist to make the order/interleaving message dependent. The examples are provided below.
For example, all 16! permutations of the output bytes may be numbered. Because 16! is less than 245, any permutation of the output bytes may be encoded by a 45-bit number. Hence, the order in which the output bytes are computed may be defined as the permutation encoded by the first 45 bits of the input message or by a 45-bit hash value of the message. Any 45 bit segment of the input message may be used, include non-contiguous segments of the input message in any order.
In another example, the white-box implementation may sort the input bytes of round r in non-decreasing (or non-increasing) order. This order then defines the order in which the output bytes may be computed.
In another example, the input message may be partitioned into 16/2=8 ordered pairs of bytes and the output bytes of round r may also be partitioned into 8 ordered pairs. For each pair of input-message bytes pin, the white-box implementation associates a pair of round output-bytes pround. Then the first output byte in a pair pround may be computed before the second output byte in that same pair when the first input byte in the associated pair pin is smaller than the second byte. Alternatively, first output byte in a pair pround may be computed before the second output byte in that same pair when the first input byte in the associated pair pin is greater than the second byte. Further, both bytes in each pair may be calculated before moving on to the next pair, or one byte in each pair may first be calculated and then the second byte in each pair is the calculated.
Further, the computation of the order may also be done using an obfuscated table network. For example, it is not difficult to implement the example of partitioning the input into 16/2=8 ordered pairs of bytes using a lookup table network.
A second white-box implementation embodiment for varying the control flow of a white-box implementation includes changing the number of table lookups that the white-box implementation performs. For instance, this may be done as follows. Before a Q-box Qi,j,l(1), the designer of the white-box implementation may insert an 8 to 16-bit lookup table U, such that Qi,j,l(1)(U1(x))⊕Qi,j,l(1)(U2(x))=Qi,j,l(1)(x), where Uk gives the kth output byte of U and where x an input byte. That is, U splits an input byte x into two bytes U1(x) and U2(x). Then the two bytes U1(x) and U2(x) are input to the Q-box resulting in two outputs. The XOR of these two outputs is now the same as the output of the Q-box when byte x is the input. This results in two different choices for using the Q-box by either applying it directly to the input byte x or by applying it to two bytes U1(x) and U2(x) into which x has been split. The first choice results in a single table lookup, while the second choice results in four table lookups. By making the choice between these two choices message dependent, the goal of changing the number of table lookups from pass to pass has been achieved. Making the choice message dependent may be done in the same way as described above for changing the order of the lookup tables. For example as described above, the input message may be partitioned into 16/2=8 ordered pairs of bytes. Values of each pair of bytes are compared to one another. For the input with the smaller byte, the calculation may be done by directly inputting the input byte to the Q-box. For the input with the larger byte, the input byte may be split as described above and then input to the Q-box adding additional steps in the calculation.
Another way of changing the number of table lookups is by inserting a pseudo-random number of dummy table lookups, i.e., table lookups that do not contribute to the outcome of the implementation. For example, a segment of the input message including a certain number of input bits may be used to determine the number of dummy table lookup calls to carry out, where these calls do not vary the state of the cryptographic operation.
A method according to the embodiments of the invention may be implemented on a computer as a computer implemented method. Executable code for a method according to the invention may be stored on a computer program medium. Examples of computer program media include memory devices, optical storage devices, integrated circuits, servers, online software, etc. Accordingly, a white-box system may include a computer implementing a white-box computer program. Such system, may also include other hardware elements including storage, network interface for transmission of data with external systems as well as among elements of the white-box system.
In an embodiment of the invention, the computer program may include computer program code adapted to perform all the steps of a method according to the invention when the computer program is run on a computer. Preferably, the computer program is embodied on a non-transitory computer readable medium.
Further, because white-box cryptography is often very complicated and/or obfuscated it is tedious for a human to write. It is therefore of advantage to have a method to create the cryptographic system according to the embodiments of the invention in an automated manner.
A method of creating the cryptographic system according to the invention may be implemented on a computer as a computer implemented method, or in dedicated hardware, or in a combination of both. Executable code for a method according to the invention may be stored on a computer program medium. In such a method, the computer program may include computer program code adapted to perform all the steps of the method when the computer program is run on a computer. The computer program is embodied on a non-transitory computer readable medium.
The cryptographic system described herein may be implemented on a user device such as a mobile phone, table, computer, set top box, smart TV, etc. A content provider, such as a television network, video stream service, financial institution, music streaming service, etc., may provide software to the user device for receiving encrypted content from the content provider. That software may have the encryption key embedded therein as described above, and may also include binding strings as described above. Then the content provider may send encrypted content to the user device, which may then decrypt using the supplied software and use the content.
The user request for access may first require the downloading of a software application that may be used to process the secure content provided by the content server 700. The software application may be downloaded from the application server 780. The software application may be obscured using the techniques described above as well as operate as described above. Once the user devices 750, 752 install the software application, the user device may then download secure content from the content server 700 and access the secure content using the downloaded software application. For example, the downloaded software application may perform decryption of encrypted content received from the content server. In other embodiments, the software application may perform other secure operations, such as for example, encryption, digital signature generation and verification, etc.
The content server 700 may control the access to the secure content provided to the user devices 750, 752. As a result when the content server 700 receives a request for secure content, the content server 700 may transmit the secure content to the requesting user device. Likewise, the application server 720 may control access to the software application provided to the user devices 750, 752. As a result when the content server 720 receives a request for the software application, the application server 720 may transmit the software application to the requesting user device. A user device requesting the software application or secure content may also be authenticated by the respective servers, before providing the software application or secure content to the user device.
The content server 700 may include a processor 702, memory 704, user interface 706, network interface 710, and content storage 712 interconnected via one or more system buses 780. It will be understood that
The processor 702 may be any hardware device capable of executing instructions stored in memory 704 or storage 712. As such, the processor may include a microprocessor, field programmable gate array (FPGA), application-specific integrated circuit (ASIC), or other similar devices.
The memory 704 may include various memories such as, for example L1, L2, or L3 cache or system memory. As such, the memory 702 may include static random access memory (SRAM), dynamic RAM (DRAM), flash memory, read only memory (ROM), or other similar memory devices.
The user interface 706 may include one or more devices for enabling communication with a user such as an administrator. For example, the user interface 706 may include a display, a mouse, and a keyboard for receiving user commands.
The network interface 710 may include one or more devices for enabling communication with other hardware devices. For example, the network interface 710 may include a network interface card (NIC) configured to communicate according to the Ethernet protocol. Additionally, the network interface 710 may implement a TCP/IP stack for communication according to the TCP/IP protocols. Various alternative or additional hardware or configurations for the network interface 710 will be apparent.
The content storage 712 may include one or more machine-readable content storage media such as read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, or similar storage media. In various embodiments, the content storage 712 may store content to be provided to users.
The application server 720 includes elements like those in the content server 700 and the description of the like elements in the content server 700 apply to the application server 720. Also, the content storage 712 is replaced by application storage 732. Further, it is noted that the content server and applications server may be implemented on a single server. Also, such servers may be implemented on distributed computer systems as well as on cloud computer systems.
Any combination of specific software running on a processor to implement the embodiments of the invention, constitute a specific dedicated machine.
As used herein, the term “non-transitory machine-readable storage medium” will be understood to exclude a transitory propagation signal but to include all forms of volatile and non-volatile memory. Further, as used herein, the term “processor” will be understood to encompass a variety of devices such as microprocessors, field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), and other similar processing devices. When software is implemented on the processor, the combination becomes a single specific machine.
It should be appreciated by those skilled in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the invention.
Although the various exemplary embodiments have been described in detail with particular reference to certain exemplary aspects thereof, it should be understood that the invention is capable of other embodiments and its details are capable of modifications in various obvious respects. As is readily apparent to those skilled in the art, variations and modifications can be effected while remaining within the spirit and scope of the invention. Accordingly, the foregoing disclosure, description, and figures are for illustrative purposes only and do not in any way limit the invention, which is defined only by the claims.