The present application is related to commonly-assigned and co-pending U.S. application Ser. Nos. 12/268,589, entitled REPLACEABLE CARTRIDGE FOR DIVERSIONARY DEVICE, 12/268,595, entitled SHOCK-STABILIZED FIRING MECHANISM FOR DIVERSIONARY DEVICE, 29/327,668, entitled DIVERSIONARY DEVICE, and 29/327,670, entitled DIVERSIONARY DEVICE, all filed on the filing date hereof, which applications are incorporated herein by reference in their entireties.
The present invention relates generally to diversionary devices, also known as stun grenades and flash-bang grenades and, in particular, to a diversionary device in which the payload is vertically deployed and ignited above the device.
Diversionary devices are used in a variety of military and law enforcement situations. Specifically, the device is intended to disorientate an adversary without inflicting permanent damage or harm. The device accomplishes this by producing a disorientating flash of light and a confusingly loud noise. Devices of this sort are often referred to as “stun grenades” or “flash-bang grenades.”
For example, a diversionary device might be used by a police SWAT team during a sniper situation. After forcing open the door to the room in which the sniper is located, one of the team members will toss or roll a diversionary device into the room close to the suspect. After a brief delay, the device goes off, producing a bright flash that temporarily blinds and a loud noise that temporarily deafens the suspect. The effects of the flash and noise last only a second or two which is enough for the SWAT team to rush into the room and subdue the suspect.
While the concept is sound in theory, in practice conventional diversionary devices have a number of disadvantages. Conventional diversionary devices may be inherently unstable and subject to accidental or premature detonation, especially when thrown. The devices typically contains a metal powder that violently combines with an oxidizer. The resulting explosion occurs within the body of the device and creates a zone of extreme pressure. This overpressure may blow out windows and shred furniture. In addition, the explosion creates significant heat which can cause furniture and other items to burn and can even cause a major fire. Because conventional diversionary devices are typically cylindrical with dispersion ports at one or both ends, the explosive force and heat is substantially non-directional. Moreover, the explosion may also result in a recoil reaction by the device, causing it to shoot rapidly in an unpredictable direction. It will be appreciated, therefore, that the use of a diversionary device may result in serious injury to the user or to the suspect. In fact, numerous injuries have been documented to police and military personnel as well as to suspects, with the latter also resulting in costly litigation against jurisdictions.
The present invention provides a device for creating a diversion. The device has a housing having dimensions L, W and H which are selected such that when the device is thrown or dropped, the device will come to rest only on one of its two primary sides. The two primary sides each have a circular dispersion port formed therethrough and aligned with each other. The device includes means for blocking the first dispersion port if the device comes to rest on the first primary surface and for blocking the second dispersion port if the device comes to rest on the second primary surface. The device further includes a firing mechanism within the housing and operable to discharge an ignitable composition out of a removable cartridge within the housing. The ignitable composition is discharged through the first dispersion port when the device rests on the second primary side and through the second dispersion port when the device rests on the first primary side. After being discharged, the composition forms a cloud above the device and may be ignited.
The described features, structures or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components and so forth. In other instances, well-known structures, materials or operations are not shown or described in detail to avoid obscuring aspects of the invention. Furthermore, for clarity a component may be described as being “secured” or “attached” or “connected” to another component. However, it will be understood that other, intermediate, components may be used and that the described connections may be functional connections rather than necessarily being direct physical connections.
Housing
A rear section 500 of the housing 100 includes a circular dispersion port 502A in the top surface 102 and another circular dispersion port 502B in the bottom surface 104, aligned with each other and centered on an axis parallel to the z-z axis. The length L of the device 100 is greater than the height H and the width W. The dimensions L, H and W are selected such that, when the device is thrown or rolled into a room or other area, it will come to rest on either the top 102 or bottom 104 side with one or the other of the dispersion ports 502, 504 facing upwards. Additionally, a slim profile enables the device to be more easily stored and carried. By way of example only, in one embodiment L=8 inches, H=1.5 inches and W=2.75 inches. It will be appreciated that the scope of the claims is not limited to these dimensions but that other dimensions will provide the benefit of the device coming to rest on the top or bottom surfaces when thrown or rolled.
An opening in the left side 112 of the housing 100 permits a trigger bar 114 to slide parallel to the x-x axis from a locked position (towards the front 106), in which the diversionary device is prevented from activating, to a ready position (towards the rear 108), which releases a hammer block and permits a trigger mechanism to operate, as will be explained in detail below. An opening in the right side 110 of the housing 100 permits a slide switch 116 to activate a timer, as will also be explained below.
The housing 100 may be constructed of any appropriate material although it is preferred that the material be lightweight. The housings of conventional diversionary devices are typically constructed of steel. While relatively strong, repeated use weakens the metal to such an extent that the number of reloads that is allowed is limited to prevent dangerous cracking or breaking. In contrast, in one embodiment of the diversionary device of the present invention, the housing 100 is constructed from aluminum. As illustrated in
One feature of the diversionary device of the present invention is the ability to accept a removable cartridge into the housing (such as illustrated in
Firing Mechanism
Secured to the shaft of the rotary solenoid 304 is a cam 312. Instead of being secured directly to the shaft, the cam 312 may be secured to a turntable or other intermediate component(s) which is (are) secured to the shaft.
The firing mechanism 300 also includes a firing pin 314 positioned adjacent to the solenoid/cam assembly 304/312 and parallel to the x-x axis of the housing 100. The firing pin 314 is hingeably connected to a spring-loaded prop or link arm 316 which, in turn, is hingeably connected to a trip lever 318. The side of a top portion of the cam 312 facing the firing pin 314 and trip lever 318 has a diagonal cutout 313 into which a cam follower 320, secured to the trip lever 318, fits. Thus, when the rotary solenoid 304 is activated, the end of the trip lever 318 to which the cam follower 320 is attached is forced downward relative to the cam 312 while the opposite end of the trip lever 318 maintains a pivot point. This motion causes the spring-loaded prop 316 to release downward, in turn forcing the firing pin 314 downward also in a direction which is substantially orthogonal to the x-x axis from a cocked position to a fired position. The weight of a hammer 322 adds to the force with which the firing pin 314 moves. In one embodiment, the firing pin 314 directly or indirectly strikes a firing pin which, in turn, strikes one or more primers which accelerate pistons within the removable cartridge to begin the process of forcing an ignitable powder out of the cartridge. In the embodiment illustrated in
Because the motion of the rotary solenoid 304 is orthogonal to the motion of the firing pin 314, the firing mechanism 30 is unlikely to be accidentally activated. To further enhance the safety of the device, the firing mechanism 300 also includes a hammer block 326 which prevents accidental motion of the firing pin 314. One end of the hammer block 326 fits into a vertical slot 328 in the firing pin 314 and is biased away from the firing pin 314. The end of the hammer block 326 is maintained within the slot 328 in a safe position as long as the trigger bar 114 is in its forward locked or safe position. Sliding the trigger bar 114 away from the locked position towards the rear 108 of the housing, releases the hammer block 326 which disengages from the firing pin 314, allowing the firing pin 314 to move downward when the rotary solenoid 304 is activated.
Removable Cartridge
The chambers 404A, 404B of the second set serve to hold the ignitable powder and the oxidizer, respectively. A piston 408A, 408B is positioned at the front of each chamber 404A, 404B. A cover plate 410 is secured to the rear end of the cartridge body 400. In one side of the cover plate 410, in line with one chamber 404A and the first piston 408A, is a circular opening 412. In the other side of the cover plate 410, in line with the other chamber 404B and the second piston 408B, is another, smaller circular opening 414 surrounded by further small circular openings 416. A breakable material 418, such as foil, provides a seal between the cover plate 410 and the cartridge body 400 to retain the powder and oxidizer within their respective chambers. Secured to the inside of the cover plate 410 is a primer mount 420 having a small, circular opening 422 formed therethrough in line with the central small opening 414 in the cover plate 410. This central opening 422 is surrounded by further small openings 424 (not all of which are labeled in
The cartridge body 400 also includes a third set of parallel chambers 430A, 430B in which two primer tubes 432A, 432B are fitted. Shotgun primers 434A, 434B, or comparable devices, are fitted into the front ends of the primer tubes 422A, 432B and are ignited when the firing pin 314 (or splitter 324) strikes them. The resulting detonations force the pistons 408A, 408B rearward towards the cover plate 410. The first piston 408A forces the ignitable powder through the larger opening 412 of the cover plate 410 and through the breakable seal 418, into the rear section of the housing 100 and out one of the dispersion ports 502A, 502B, depending on the surface upon which the housing 100 is resting.
The second piston 408B forces the oxidizer through the small, central opening 422 in the cover plate 410 and through the breakable seal 418, into the rear section of the housing 100 and out one of the dispersion ports 502A, 502B. The second piston 408B also strikes the firing pins 428 which ignite the primers 426 whose ignition breaks the breakable seal 418 through the surrounding openings 416.
Preferably, the second piston 408B is heavier than the first piston 408A so that it moves more slowly. Thus, there is a slight delay, such as about 10 milliseconds for example, after the ignitable powder and oxidizer have been discharged out of the cartridge 400 and before the primers ignite. The delay allows the ignitable powder and oxidizer to mix and form a cloud outside and above the diversionary device before being ignited.
Dispersion Ports
As previously noted, the diversionary device of the present invention will come to rest on one of the two primary surfaces of the housing 100, either the top surface 102 or the bottom surface 104. The rear section 500 also includes a ball 512 within the opening 502. The ball 512 is kept within the opening 502 by retaining plates or grills 514A, 514B secured to the nozzle body 506 at the dispersion ports 502A, 502B, respectively. When the diversionary device is at rest on one of the two primary surfaces 102, 104, gravity causes the ball 512 to fall into what is then the lower part of the opening 502; that is, the part closest to the ground. The ball 512 then acts as a seal to prevent the ignitable powder and oxidizer from discharging out of what is the lower dispersion port. The powder and oxidizer, therefore, are forced out of what is then the upper dispersion port to form a cloud above the diversionary device and be ignited (
To replace a cartridge, the rear section 500 may be completely removable from the main housing body 100 or may be opened on a hinge 516, as illustrated in
The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
3238143 | Ainsley et al. | Mar 1966 | A |
5824945 | Barlog et al. | Oct 1998 | A |
6253680 | Grubelich | Jul 2001 | B1 |
7412929 | Walsh | Aug 2008 | B2 |
20060081147 | Walsh | Apr 2006 | A1 |
20080216699 | McAleer et al. | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100275803 A1 | Nov 2010 | US |