Diversity bluetooth system and method

Information

  • Patent Grant
  • 9980189
  • Patent Number
    9,980,189
  • Date Filed
    Tuesday, October 11, 2016
    8 years ago
  • Date Issued
    Tuesday, May 22, 2018
    6 years ago
  • Inventors
  • Examiners
    • Pan; Yuwen
    • Tran; Paul P
    Agents
    • Goodhue, Coleman & Owens, P.C.
Abstract
A first device having a transceiver and an antenna operatively connected to the transceiver and a second device having a transceiver and an antenna operatively connected to the transceiver, the first device in operative communication with the second device through a communications linkage separate from the transceiver of the first device and the transceiver of the second device. The first device is adapted to wirelessly communicate with a remote device through the transceiver of the first device. The second device is adapted to wirelessly communicate with the remote device through the transceiver of the second device. The system is configured to evaluate the wireless connection between the first device and the remote device and to evaluate the wireless communication between the second device and the remote device and determine whether the first device or the second device has a better connection.
Description
FIELD OF THE INVENTION

The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to ear pieces, wireless headphones and other devices.


BACKGROUND

Issues with the transmission and reception of Bluetooth signals remains challenging in many situations. Common areas of difficulty involve systems that requite close proximity of the communicating entities. There are numerous reasons for such difficulties. Variables such as materials which are impervious to penetration by radio waves at the frequencies used by Bluetooth technology continue to remain problematic. One example of such difficulty involves the use of wireless Bluetooth earpieces.


Depending on the location of the source and the location of the antenna of the earpiece or headphone, a reliable and stable connection might be difficult or impossible, since the body itself of the person wearing the headphones acts as a shield. This is especially notable if the antenna is located on one side of the head, and the source is carried on the opposite side, for example in a trouser, or even a shirt pocket.


Outdoors the connection is made even more difficult due to lack of radio reflecting surfaces (ceiling, close vertical walls, solid floor), so that a close to line of sight connection between the communication actors may be needed. What is needed are new systems and methods to address these issues.


SUMMARY

Therefore, it is a primary object, feature, or advantage of the present invention to improve over the state of the art.


It is a further object, feature, or advantage of the present invention to improve wireless connections in devices such as wearable devices such as ear pieces and head phones which connect wirelessly to other devices.


It is a still further object, feature, or advantage of the present invention to provide for methods and systems that may maintain connections even in significantly adverse environments.


Another object, feature, or advantage is to provide for methods and systems suitable to use for audio streaming.


Yet another object, feature, or advantage is to provide for lowering power utilization by creating optimal linkages.


A further object, feature, or advantage is to provide for addressing problems of weak transmissions at an underserved area.


A still further object, feature, or advantage is to provide a solution which allows devices to remain within Bluetooth standards while simultaneously delivering the required connection in the defined adverse environments.


One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow. No single embodiment need provide each and every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an objects, features, or advantages stated herein.


According to one aspect a system includes a first device having a transceiver and an antenna operatively connected to the transceiver and a second device having a transceiver and an antenna operatively connected to the transceiver, the first device in operative communication with the second device through a communications linkage separate from the transceiver of the first device and the transceiver of the second device. The first device is adapted to wirelessly communicate with a remote device through the transceiver of the first device. The second device is adapted to wirelessly communicate with the remote device through the transceiver of the second device. The system is configured to evaluate the wireless connection between the first device and the remote device and to evaluate the wireless communication between the second device and the remote device and determine whether the first device or the second device has a better connection and if the first device has the better connection to use the wireless connection between the first device and the remote device and if the second device has the better connection to use the wireless connection between the second device and the remote device. The first device may be a left ear piece and the second device may be a right ear piece. The first device may be a left portion of a headphone set and the second device may be a right portion of the headphone system. The better connection may provide a stronger signal. The transceiver of the first device may be a Bluetooth transceiver and the transceiver of the second device may be a Bluetooth transceiver. The first device may be configured to receive streaming audio of the wireless connection between the first device and the remote device and the second device may be configured to receiving streaming audio of the wireless connection between the second device and the remote device. The communications linkage between the first device and the second device may be a wired linkage. The communications linkage between the first device and the second device may be a near field magnetic inductance (NFMI) wireless linkage. The communications linkage between the first device and the second device may be an ultra-wideband (UWB) wireless linkage. The transceiver of the first device and the transceiver of the second device may share connection data related to connection with the remote device. The transceiver of the first device and the transceiver of the second device may have synchronized protocol stacks. The first device and the second device may each perform signal measurements of signals from the remote device and share the signal measurements there between. The first device and the second device may be configured to coordinate handover of a connection with the remote device. The remote device may be a mobile device configured for communicating streaming audio.


According to another aspect, a system includes a first wearable device having a radio transceiver and an antenna operatively connected to the radio transceiver and a second wearable device having a radio transceiver and an antenna operatively connected to the radio transceiver, the first device in operative communication with the first device through a communications linkage separate from the radio transceiver of the first device and the radio transceiver of the second device. The first wearable device may be adapted to wirelessly communicate with a remote device through the radio transceiver of the first wearable device. The second wearable device may be adapted to wirelessly communicate with the remote device through the radio transceiver of the second wearable device. The first wearable device and the second wearable device may be adapted to perform signal measurements relative to the remote device and share measurement information and perform handovers there between. The first wearable device may be a left ear piece and the second wearable device may be a right ear piece. The first wearable device may be a left portion of a headphone set and the second wearable device may be a right portion of the headphone set.


According to another aspect, a method for improving signal communications is provided. The method includes providing a first wearable device and a second wearable device, monitoring at least one signal parameter associated with a signal communicated between a remote device and a radio transceiver of the first wearable device, monitoring at least one signal parameter between the remote device and a radio transceiver of the second wearable device. The method further includes communicating data between the first wearable device and the second wearable device over a communication channel separate than a communications channel between the radio transceiver of the first wearable device and the radio transceiver of the second wearable device. The method further includes connecting one of the first wearable device and the second wearable device, the one receiving a better signal based on a comparison of the at least one signal parameter associated with the signal communication between the remote device and the radio transceiver of the first wearable device and the at least one signal parameter associated with the signal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one example of a system.



FIG. 2 illustrates one example of wearable devices in the form of left and right ear pieces.



FIG. 3 illustrates one example of wearable devices in the form of headphones having left and right portions.





DETAILED DESCRIPTION

The present invention relates to wearable devices including ear pieces, wireless headphones and other devices, especially where there are multiple wearable devices capable of being in operative communication with a remote device, an external device, or source. Such a remote device may be a mobile device such as a phone or tablet, or other type of computing device. Although various types of devices, wearable devices or personal area devices are contemplated, for purposes of explanation, generally the example of a wireless headphone or a set of wireless earpieces is used. In the case of the headphone, the wireless connection is the connection between the headphone and the external wireless device. The connection between the two earpieces may be wireless or may be a wired connection. A wireless headphone that necessitates the use of two radio units would suffice. The headphone or wireless earpiece set comprises two radio units, one per side. The source is bonded to only one of the two radios. The two radios are capable of communicating with each other over a separate channel which is not affected by the same propagation issues. Some examples of this separate channel is the use of UWB, magnetic induction such as NFMI or wired connections. One of the radios behaves in the normal fashion, e.g. it advertises its presence and services to the surrounding environment. The other radio is a clone of the visible one, e.g. if they were visible, they would be indistinguishable from the one the source talks to.


According to one example, coverage of Bluetooth wireless headphones is extended using coordinated radios. The radios in the headphone or earpieces share all the connection data related to the connected source and their protocol stacks can be synchronized. All the radios perform signal measurements in relation to the source and share the measurements information over the out-of-band channel. The radios coordinate among themselves a seamless handover of the connection to the source in order to achieve the best signal, depending on their position on the body. In particular, the radio with the best signal becomes active and takes over the communication from the previously connected radio. A connection can be established and maintained even in more adverse environments. Even in less adverse environments, the advantage of a lower power connection may be utilized.



FIG. 1 illustrates one example of a system. As shown in FIG. 1 there is a first device 14 and a second device 10. The first device 14 and the second device 10 may be wearable devices such as ear pieces or portions of a headphone set, or other type of devices. A human body 12 may be situated between the first device 14 and the second device 10. A remote or external device or source 18 is also shown that may be in contact with the first device 14 and the second device 10. Note that the remote device 18 may be on one side of the human body 12 or the other side of the human body 12. Thus, for example, where the remote device 18 is a mobile phone, the mobile phone may, for example, be in the left pants pocket of a user or may be in the right pants pocket of the user. The location of the remote device 18 relative to the first device 14 or the second device 10 may adversely affect signal strength which may be problematic in various situations such as where the remote device 18 is sending streaming audio to the first device 14 and/or the second device 10. A transceiver such as a radio transceiver such as a Bluetooth transceiver 22 may be present in the first device 14 and another radio transceiver such as a Bluetooth transceiver 24 may be present in the second device 10. An antenna may be operatively connected to the transceiver 22 of the first device 14 and an antenna may be operatively connected to the transceiver 24 of the second device 10. In addition, the first device has an interface 20 and the second device has an interface 16 which put the first device 14 and the second device 10 in operative communication. The interfaces 16, 20 may be a wireless interface which provide for wireless communications such as through magnetic induction, near field magnetic induction (NFMI), ultra-wideband (UWB) or other types of wireless communications. Alternatively, the interfaces 16, 20 may connect with one another through a wired interface. Thus the interfaces 16, 20 may provide for a wireless linkage or a wired linkage.


The first device 14 and the second device 10 may both connect to the device 18 and may both analyze the signal from the device 18 such as to determine the strength of the signal. The first device 14 and the second device 10 may then communicate information about the measured signal strength or other signal characteristics through their linkage between interfaces 16, 20 to determine which of the devices is better receiving the signal from the device 18. Thus, the first device 14 and the second device 10 determine which device has a better connection with the device 18 and then use that connection for communications. It is contemplated that this ma be accomplished in various ways and use one or more signal parameters such as, but not limited to signal strength, signal-to-noise ratio, received signal strength indicator (RSSI), noise, signal quality or other signal measurements or other parameters. In addition both the first device 14 and the second device 10 may include an intelligent control (not shown) such as one or more processors or controllers which may be used to evaluate signals or may be involved in the switching. Alternatively, this functionality may be accomplished by the transceiver(s) 22, 24.


Both first device 14 and the second device 10 may perform signal measurements in relation to the source associated with the device 18 and share the measurement information over the out-of-band communications channel 25. In addition radios of the first device and the second device coordinate among themselves such as to provide a seamless handover of the connection to the device 18 or source in order to achieve the best signal. Thus, the radio with the best signal becomes active and takes over communications.



FIG. 2 illustrates a set of ear pieces 30 which includes a left device 32A and a right device 32B. In such an embodiment, a wireless linkage may be used to communicate between the left device and the right device. The wireless linkage used is separate from any wireless linkage between the left device or right device and the remote device.



FIG. 3 illustrates a set of headphones 36 with a left device 36 and a right device 40 and a central portion 42 spanning between the left device 36 and the right device 40. In such an embodiment, a wired connection may be used between the left device and the right device, the wire (not shown) traversing the central portion 42.


Although various types of radio transceivers may be used according to various protocols and standards, various embodiments may be implemented that are consistent with the Bluetooth standard. It is observed that a multiuser diversity system would theoretically solve at least some of the problems addressed, but such a system works outside of the Bluetooth standard. Further, it would also be limited due to the fact that candidate receivers may not always be available. Thus, a universally stable solution is provided herein that does not require cooperation between transmitting device and the location of receiving devices. This advantageous because Bluetooth cannot implement such a standard; and there are benefits to remaining within the Bluetooth standard to maintain the compatibility of Bluetooth devices support.


It should also be appreciated that a connection can be established and maintained even in significantly adverse environments. This is especially important for problematic experiences of using an audio device streaming music while placed in a location unfavorable for stable streaming. One example is the use of an audio streaming device where the receiving unit is present in the right ear, and the audio streaming device is located in the user's left pants pocket. In the cited example, the receiving unit would switch from the right side to the left.


It should be further appreciated that one of the advantages of various embodiments relates to lower power utilization. Lower power utilization may be achieved, as the linkage is automatically established with the receiving unit in the optimal location for reception of the transmitted signal. One example would be facilitating the ability to link to a receiving unit which moves into a line of sight position.


In addition, advantages over typical antenna diversity solutions is achieved. Antenna diversity increases the level of difficulty of implementation of a proposed solution, while still suffering from the fact that no matter how many antennas are hypothesized, physical location in the desired area will still be required. The use of a physical unit at the desired location solves the problem of weak transmission to the underserved area.

Claims
  • 1. A system comprising: a first wearable device having a radio transceiver and an antenna operatively connected to the radio transceiver;a second wearable device having a radio transceiver and an antenna operatively connected to the radio transceiver, the first wearable device in operative communication with the second wearable device through a communications linkage separate from the radio transceiver of the first wearable device and the radio transceiver of the second wearable device;wherein the first wearable device is adapted to wirelessly communicate with a remote device through the radio transceiver of the first wearable device;wherein the second wearable device is adapted to wirelessly communicate with the remote device through the radio transceiver of the second wearable device;wherein the system is configured to evaluate a first wireless signal, the first wireless signal between the radio transceiver of the first wearable device and the remote device, by measuring a signal characteristic of the first wireless signal at the first wearable device;wherein the system is configured to evaluate a second wireless signal, the second wireless signal between the radio transceiver of the second wearable device and the remote device, by measuring a signal characteristic of the second wireless signal at the second wearable device;wherein the system is configured to determine whether the first wearable device or the second wearable device has a better wireless connection with the remote device by comparing the signal characteristic of the first wireless signal and the signal characteristic of the second wireless signal and if the first wearable device has the better wireless connection to use the wireless connection between the radio transceiver of the first wearable device and the remote device and if the second wearable device has the better connection to use the wireless connection between the radio transceiver of the second wearable device and the remote device.
  • 2. The system of claim 1 wherein the first wearable device is a left ear piece and the second wearable device is a right ear piece.
  • 3. The system of claim 1 wherein the first wearable device is a left portion of a headphone set and the second wearable device is a right portion of the headphone set.
  • 4. The system of claim 1 wherein the signal characteristic of the first wireless signal is signal strength and wherein the signal characteristic of the second wireless signal is signal strength.
  • 5. The system of claim 1 wherein the radio transceiver of the first wearable device is a Bluetooth transceiver and wherein the radio transceiver of the second wearable device is a Bluetooth transceiver.
  • 6. The system of claim 1 wherein the first wearable device is configured to receive streaming audio of the wireless connection between the radio transceiver of the first wearable device and the remote device and wherein the radio transceiver of the second wearable device is configured to receive streaming audio of the wireless connection between the radio transceiver of the second wearable device and the remote device.
  • 7. The system of claim 1 wherein the communications linkage between the first wearable device and the second wearable device is a wired linkage.
  • 8. The system of claim 1 wherein the communications linkage between the first wearable device and the second wearable device is a magnetic induction wireless linkage.
  • 9. The system of claim 1 wherein the radio transceiver of the first wearable device and the radio transceiver of the second wearable device share connection data related to connection with the remote device.
  • 10. The system of claim 1 wherein the radio transceiver of the first wearable device and the radio transceiver of the second wearable device have synchronized protocol stacks.
  • 11. The system of claim 1 wherein the first wearable device and the second wearable device each perform signal measurements of signals from the remote device and share the signal measurements there between.
  • 12. The system of claim 1 wherein the first wearable device and the second wearable device are configured to coordinate handover of a connection with the remote device.
  • 13. The system of claim 1 wherein the remote device is a mobile device configured for communicating streaming audio.
  • 14. The system of claim 1 further comprising: wherein the first wearable device is a left ear piece and the second wearable device is a right ear piece;wherein the radio transceiver of the first wearable device is a Bluetooth transceiver and wherein the radio transceiver of the second wearable device is a Bluetooth transceiver;wherein the communications linkage between the first wearable device and the second wearable device is a near field magnet induction (NFMI) wireless linkage;wherein the first wearable device is configured to receive streaming audio of the wireless connection between the first wearable device and the remote device and wherein the second wearable device is configured to receiving streaming audio of the wireless connection between the second wearable device and the remote device.
  • 15. A system comprising: a first wearable device having a radio transceiver and an antenna operatively connected to the radio transceiver;a second wearable device having a radio transceiver and an antenna operatively connected to the radio transceiver, the first wearable device in operative communication with the first second wearable device through a communications linkage separate from the radio transceiver of the first wearable device and the radio transceiver of the second wearable device;wherein the first wearable device is adapted to wirelessly communicate with a remote device through the radio transceiver of the first wearable device;wherein the second wearable device is adapted to wirelessly communicate with the remote device through the radio transceiver of the second wearable device;wherein the first wearable device and the second wearable device are adapted to perform radio signal measurements relative to the remote device and share radio signal measurement information and perform handovers there between;wherein the radio signal measurements include at least one of signal strength, signal-to-noise ratio, and received signal strength indicator (RSSI).
  • 16. The system of claim 15 wherein the first wearable device is a left ear piece and the second wearable device is a right ear piece.
  • 17. The system of claim 15 wherein the first wearable device is a left portion of a headphone set and the second wearable device is a right portion of the headphone set.
  • 18. A method for improving radio signal communications, the method comprising: providing a first wearable device and a second wearable device;monitoring at least one radio signal parameter associated with a radio signal communicated between a remote device and a radio transceiver of the first wearable device;monitoring at least one radio signal parameter between the remote device and a radio transceiver of the second wearable device;communicating data via a wired or wireless connection between the first wearable device and the second wearable device over a communication channel separate than a communications channel between the radio transceiver of the first wearable device and the radio transceiver of the second wearable device;connecting one of the first wearable device and the second wearable device, the one receiving a better radio signal based on a comparison of the at least one radio signal parameter associated with the radio signal communication between the remote device and the radio transceiver of the first wearable device and the at least one radio signal parameter associated with the radio signal communicated between the remote device and the radio transceiver of the second wearable device;wherein the at least one signal parameter includes at least one of signal strength, signal-to-noise ratio, and received signal strength indicator (RSSI).
  • 19. The method of claim 18 wherein the first wearable device is a left ear piece and the second wearable device is a right ear piece.
  • 20. The method of claim 18 wherein the first wearable device is a left portion of a headphone set and the second wearable device is a right portion of the headphone set.
PRIORITY STATEMENT

This application claims priority to U.S. Provisional Patent Application 62/244,167, filed on Oct. 20, 2015, and entitled Diversity Bluetooth System and Method, hereby incorporated by reference in its entirety.

US Referenced Citations (111)
Number Name Date Kind
3934100 Harada Jan 1976 A
4150262 Ono Apr 1979 A
4334315 Ono et al. Jun 1982 A
4375016 Harada Feb 1983 A
4588867 Konomi May 1986 A
4654883 Iwata Mar 1987 A
4682180 Gans Jul 1987 A
4791673 Schreiber Dec 1988 A
4865044 Wallace et al. Sep 1989 A
5191602 Regen et al. Mar 1993 A
5201007 Ward et al. Apr 1993 A
5280524 Norris Jan 1994 A
5295193 Ono Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5343532 Shugart Aug 1994 A
5363444 Norris Nov 1994 A
5497339 Bernard Mar 1996 A
5606621 Reiter et al. Feb 1997 A
5613222 Guenther Mar 1997 A
5692059 Kruger Nov 1997 A
5721783 Anderson Feb 1998 A
5749072 Mazurkiewicz et al. May 1998 A
5771438 Palermo et al. Jun 1998 A
5802167 Hong Sep 1998 A
5929774 Charlton Jul 1999 A
5933506 Aoki et al. Aug 1999 A
5949896 Nageno et al. Sep 1999 A
5987146 Pluvinage et al. Nov 1999 A
6021207 Puthuff et al. Feb 2000 A
6054989 Robertson et al. Apr 2000 A
6081724 Wilson Jun 2000 A
6094492 Boesen Jul 2000 A
6111569 Brusky et al. Aug 2000 A
6112103 Puthuff Aug 2000 A
6157727 Rueda Dec 2000 A
6167039 Karlsson et al. Dec 2000 A
6181801 Puthuff et al. Jan 2001 B1
6208372 Barraclough Mar 2001 B1
6275789 Moser et al. Aug 2001 B1
6339754 Flanagan et al. Jan 2002 B1
6408081 Boesen Jun 2002 B1
D464039 Boesen Oct 2002 S
6470893 Boesen Oct 2002 B1
D468299 Boesen Jan 2003 S
D468300 Boesen Jan 2003 S
6542721 Boesen Apr 2003 B2
6560468 Boesen May 2003 B1
6654721 Handelman Nov 2003 B2
6664713 Boesen Dec 2003 B2
6694180 Boesen Feb 2004 B1
6718043 Boesen Apr 2004 B1
6738485 Boesen May 2004 B1
6748095 Goss Jun 2004 B1
6754358 Boesen et al. Jun 2004 B1
6784873 Boesen et al. Aug 2004 B1
6823195 Boesen Nov 2004 B1
6852084 Boesen Feb 2005 B1
6879698 Boesen Apr 2005 B2
6892082 Boesen May 2005 B2
6920229 Boesen Jul 2005 B2
6952483 Boesen et al. Oct 2005 B2
6987986 Boesen Jan 2006 B2
7136282 Rebeske Nov 2006 B1
7203331 Boesen Apr 2007 B2
7209569 Boesen Apr 2007 B2
7215790 Boesen et al. May 2007 B2
7463902 Boesen Dec 2008 B2
7508411 Boesen Mar 2009 B2
7558529 Seshadri Jul 2009 B2
7778657 Lin Aug 2010 B2
7983628 Boesen Jul 2011 B2
8140357 Boesen Mar 2012 B1
8363823 Santos Jan 2013 B1
9467796 Caine Oct 2016 B1
20010005197 Mishra et al. Jun 2001 A1
20010027121 Boesen Oct 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020002413 Tokue Jan 2002 A1
20020007510 Mann Jan 2002 A1
20020010590 Lee Jan 2002 A1
20020030637 Mann Mar 2002 A1
20020046035 Kitahara et al. Apr 2002 A1
20020057810 Boesen May 2002 A1
20020076073 Taenzer et al. Jun 2002 A1
20020118852 Boesen Aug 2002 A1
20030065504 Kraemer et al. Apr 2003 A1
20030100331 Dress et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030115068 Boesen Jun 2003 A1
20030125096 Boesen Jul 2003 A1
20030218064 Conner et al. Nov 2003 A1
20040070564 Dawson et al. Apr 2004 A1
20040160511 Boesen Aug 2004 A1
20040170122 Guo Sep 2004 A1
20050043056 Boesen Feb 2005 A1
20050125320 Boesen Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050165663 Razumov Jul 2005 A1
20050196009 Boesen Sep 2005 A1
20050251455 Boesen Nov 2005 A1
20050266876 Boesen Dec 2005 A1
20060029246 Boesen Feb 2006 A1
20060074671 Farmaner et al. Apr 2006 A1
20060074808 Boesen Apr 2006 A1
20070147629 Chiloyan Jun 2007 A1
20070149261 Huddart Jun 2007 A1
20080101279 Russell May 2008 A1
20080254780 Kuhl et al. Oct 2008 A1
20090046869 Griffin, Jr. Feb 2009 A1
20140294193 Tikander Oct 2014 A1
20160219358 Shaffer Jul 2016 A1
Foreign Referenced Citations (7)
Number Date Country
1017252 Jul 2000 EP
2871857 May 2015 EP
2074817 Apr 1981 GB
06292195 Oct 1998 JP
2014043179 Mar 2014 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO
Non-Patent Literature Citations (37)
Entry
International Search Report & Written Opinion, PCT/EP2016/075130 (dated Feb. 2, 2017).
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014).
BRAGI is on Facebook (2014).
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014).
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015).
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014).
BRAGI Update—Let's Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014).
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014).
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014).
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014).
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014).
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014).
BRAGI Update—New People @Bragi—Prototypes (Jun. 26, 2014).
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014).
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015).
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015).
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014).
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015).
BRAGI Update—Alpha 5 and Back to China, Backer Day, On Track(May 16, 2015).
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015).
BRAGI Update—Certifications, Production, Ramping Up (Nov. 13, 2015).
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015).
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015).
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015).
BRAGI Update—Getting Close(Aug. 6, 2014).
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015).
BRAGI Update—On Track, On Track and Gems Overview (Jun. 24, 2015).
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@Bragi(Apr. 1, 2015).
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015).
Last Push Before The Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014).
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000.
Stretchgoal—It's Your Dash (Feb. 14, 2014).
Stretchgoal—The Carrying Case for The Dash (Feb. 12, 2014).
Stretchgoal—Windows Phone Support (Feb. 17, 2014).
The Dash + The Charging Case & The BRAGI News (Feb. 21, 2014).
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014).
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014).
Related Publications (1)
Number Date Country
20170111834 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62244167 Oct 2015 US